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Abstract: To solve the problems of backward means of coal mine gas and coal dust explosion
monitoring, late reporting, and low leakage rate, a sound recognition method of coal mine gas and
coal dust explosion based on GoogLeNet was proposed. After installing mining pickups in key
monitoring areas of coal mines to collect the sounds of the working equipment and the environment,
the collected sound was analyzed by continuous wavelet to obtain its scale coefficient map. This
was then imported into GoogLeNet to obtain the recognition model of coal mine gas and coal
dust explosions. The test sound was obtained by continuous wavelet analysis to obtain the scale
coefficient map, brought into the completed training recognition model to obtain the sound signal
class, and verified by experiment. Firstly, the scale coefficient map extracted from the sound signal
by continuous wavelet analysis showed that the similarity between the subjective and objective
indicators of the wavelet coefficient maps of the gas explosion sound and coal dust explosion sound
was higher, but the difference between these and the rest of the coal mine sounds was clearer, helping
to effectively distinguish gas and coal dust explosion sounds from other sounds. Secondly, the
experimental results of GoogLeNet parameters can be obtained. When the dropout parameter is 0.5
and the initial learning rate is 0.001, the recognition effect of the model established by GoogLeNet was
optimal. According to the selected parameters, the training loss, testing loss, training recognition rate,
and testing recognition rate of the model are all in line with expectations. Finally, the experimental
recognition results show that the recognition rate of the proposed method is 97.38%, the recall rate
is 86.1%, and the accuracy rate is 100% for the case of a 9:1 ratio of test data to training data, and
the overall recognition effect of the proposed GoogLeNet is significantly better than that of vgg
and Alexnet, which can effectively solve the problem of under-sampling of coal mine gas and coal
dust explosion sounds and can meet the need for the intelligent recognition of coal mine gas and
dust explosions.

Keywords: gas and coal dust explosion; sound recognition; image recognition; continuous wavelet
analysis; GoogLeNet

1. Introduction

Gas explosions, coal dust explosions, and gas and coal dust explosions (hereinafter
referred to as gas and coal dust explosions) in coal mines are serious accidents [1] that
cause a large number of casualties and economic losses. Therefore, there has been ongoing
research and scholarship on this topic of study. Such research is mainly focused on the
detonation conditions [2,3], explosion suppression materials [4,5], unsafe behavior [6], and
other aspects.

In order to properly recognize imminent gas and coal dust explosions and raise the
alarm, Refs. [7,8] studied the characteristics of explosion sounds in the time and frequency
domains, as they are different from other sounds. It was proposed to detect coal mine gas
and coal dust explosions through sound intelligence analysis and analysis of characteristic
parameters such as sound frequency, amplitude, and short-time energy. The study in [9]
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characterized the sound signal by the energy–entropy ratio obtained from the dual-tree
complex wavelet transform and classifies the sound using an Extreme Learning Machine
(ELM) to identify gas and coal dust explosion sounds. To further improve the accuracy
of coal mine gas and coal dust explosion identification, it is necessary to conduct in-
depth research on the sound identification of coal mine gas and coal dust explosions. The
study in [10] used Complementary Ensemble Empirical Mode Decomposition (CEEMD)
to decompose the sound signal, obtain the sample entropy of the modal components,
constitute the feature quantity of the sound signal, and then input the feature quantity to a
Support Vector Machine (SVM) for the recognition and classification of the sounds of coal
dust explosions.

Previous sound recognition research mainly selects suitable sound features and a
recognition classifier to complete the recognition classification work. With the changing
scenarios of sound recognition, the combination of sound recognition and image recogni-
tion has become a new means of sound recognition. Many scholars have done in-depth
research on this aspect. The studies in [11,12] analyzed the characteristics of the lung
sound spectrogram and proposed a wheezing sound recognition method based on the lung
sound spectrogram, which provided reasonable hints and visual clues for pathological
lung sound recognition. In [13], a sound event recognition method based on spectrogram
texture features was proposed for the recognition of sound events in various environments.
In [14], for the sound scene recognition problem in complex sound scene recognition tasks,
a sound spectrogram extraction neural network is proposed to replace the traditional Meier
inverse spectrum extraction process, and the sound spectrogram is automatically adapted
to the sound scene dataset by training the network. With the continuous development
of deep learning technology, GoogLeNet has been widely used in the field of pattern
recognition. In [15], an accurate classification method based on wavelet decomposition of
1D-GoogLeNet was proposed to achieve the intelligent classification of cardiac arrhythmias.

Inspired by the research of the above researchers, a sound recognition method of coal
mine gas and coal dust explosions based on GoogLeNet was proposed by analyzing its
coefficient map through wavelet transform after analyzing the sound signals collected
in the field from underground coal mines, as shown in Figure 1. Firstly, mining pickups
are installed in key monitoring areas, such as rock faces being mined, the comprehensive
excavation working face, the top of the roadway, and the roadway gang in underground
coal mines, to collect the sound in the monitoring areas in real time; secondly, the collected
sound signals are pre-processed by pre-emphasis, windowing, and framing, and then
the coefficients are obtained by continuous wavelet transform to obtain coefficient maps,
which are input to GoogLeNet for training to build coal mine gas and coal dust explosion
sound recognition models for recognizing coal mine gas and coal dust explosions; finally,
the test sound signals are also analyzed by continuous wavelet to obtain their coefficient
maps, which are input to the trained recognition model to complete the sound recognition
classification.
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2. Preprocessing

Since the collected underground sound signal samples are long, the features cannot
be extracted directly. To facilitate signal analysis and feature extraction, the sound signal
needs to be pre-processed, and the pre-processing steps include normalization, framing,
windowing, and adding category labels.

2.1. Normalization

This paper uses the mean value method to normalize the sound signal to the mean value.

2.2. Framing

The sound signal is characterized by short-time smoothness. Therefore, this paper uses
the Hamming window to split the sound signal into frames, and the non-overlapping part
of the frames is the frameshift. This system uses a Hamming window with a frame length
of 20 ms and a frameshift of 10 ms. This kind of framing has two effects: (1) it can reduce
the interference of silent audio; (2) it can reduce the difficulty of audio post-processing,
optimize the algorithm process, simplify the calculation, and improve the computing speed
and recognition efficiency of the recognition system.

2.3. Category Labels

To train the recognition model, this paper assigns different category labels to different sounds.

3. Continuous Wavelet Transform

The sound signal is a one-dimensional time series with low dimensionality of infor-
mation features, and the sound signal collected from underground coal mines contains
unnecessary high-frequency noise information. To increase the data dimensionality and
denoising, this paper uses multi-resolution continuous wavelet transform to decompose
the data, which both obtains the subsignals of each frequency band and increases the signal
dimensionality, so that the model proposed in this paper achieves better recognition results.

The continuous wavelet analysis mainly decomposes the original signal into subsig-
nals of different frequency bands by the scale function ∅0,k(m) and the wavelet function
ψj,k(m) [16,17]. The wavelet approximation coefficients a0(k) and detail coefficients dj(k)
of the assumed signal s(t) can be expressed as

a0(k) =
1√
M

M

∑
m=1

s(m)∅0,k(m) (1)

dj(k) =
1√
M

M

∑
m=1

s(m)ψj,k(m) (2)

where j is the scaling of the subsignal in the frequency domain, and k is the frequency shift
of the subsignal in the frequency domain.

The original signal can be reconstructed according to the approximation and detail
coefficients, as shown in Equation (3):

s(t) = a0(k) + dj(k) (3)

To preserve the frequency characteristics of the sound signal, the Morse wavelet [18,19]
with better time-frequency resolution is chosen, which is a fully resolved wavelet and does
not have negative frequency leakage. The coefficients obtained by Morse wavelet analysis
are plotted as images using the pcolor function in MATLAB to obtain their coefficient
maps, adjusting the image size to 224 × 224 × 3 to be able to meet the small and large
requirements of GoogLeNet for the input image.
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4. GoogLeNet

GoogLeNet [20] is a new deep learning structure proposed by Christian Szegedy
in 2014; all the deep learning structures before this one obtain better training results by
increasing the depth (number of layers) of the network, but the increase in the number
of layers brings many negative effects [15], such as overfitting, gradient disappearance,
and gradient explosion. The proposal of GoogLeNet, on the other hand, improves the
training results from the perspective of increasing the network width of the convolutional
network in extracting deep features; the Inception structure is introduced to fuse feature
information at different scales, as shown in Figure 2. A 1 × 1 convolutional kernel is used
for dimensionality reduction and mapping; two auxiliary classifiers are added; the fully
connected layer is discarded and the average pooling layer is used, which greatly reduces
the model parameters.
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Figure 2. Structure diagram of Inception.

The advantages of GoogLeNet compared to other deep learning structures are [15,21]:
it can use computational resources more efficiently and extract more features with the
same amount of computation, thus improving the training results. The network structure
of GoogLeNet is shown in Figure 3. Among them, s1 and s2 represent the stride of the
neural network module, s1 = 2 and s2 = 1. The whole network can be divided into three
parts: pre-processing, feature extraction, and classifier. Among these, pre-processing is
for adjusting the test data format to the format specified by Inception for input to extract
features; feature extraction is composed of multiple Inceptions; the classifier consists of
fully connected layer and dropout, where the activation function of Linear is chosen as the
sigmoid function.
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GoogLeNet is mostly used in the field of image processing and recognition. In this
paper, the coefficient map obtained from the sound signal through continuous wavelet
analysis is brought into GoogLeNet training to obtain the sound recognition model; the
coefficient map obtained from the sound signal to be measured through continuous wavelet
analysis is brought into the trained recognition model to realize the recognition and alarm
of a coal mine gas or coal dust explosion.

5. Experimental Results and Analysis
5.1. Experimental Material

In this paper, the experimental work of non-explosion sound data acquisition in the
underground coal mine was carried out in the Shuangma coal mine of Shenhua Ningxia
Coal Group, and the field acquisition work in the Shuangma coal mine is shown in Figure 4.
The collection tools covered the key monitoring areas such as the comprehensive mining
working face, comprehensive excavation working face, underground central distribution
room, roadway, central water pump room, etc. The collected sounds include: the normal
operation sound of equipment in the coal mining working face and excavation working
face, rubber wheel car driving sound, water pump working sound, ventilator working
sound, low-voltage feeder running sound, high-voltage distribution equipment running
sound, primary distribution equipment running sound. The sound of a gas explosion and
coal dust explosion was recorded by China Coal Industry Group Chongqing Research
Institute Co. as shown in Table 1. The experimental algorithm verification was done on a
DELL server with Inter i9-9980HK CPU@2.40 GHz, 32 Gb memory, and 64-bit OS using
MATLAB2020a, and the sound editing was done using Goldwave software.
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Table 1. Sound material.

Sound Type Total Duration/s Number of
Sound Clips Data Volume/MB

Gas explosion sound 10 5 3
Coal dust explosion sound 10 5 3

Coal mine underground
Non-explosion sound 8000 800 734
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5.2. Wavelet Coefficient Map Extraction

In this section, continuous wavelet analysis is used as the theoretical basis to explore
the feasibility and robustness of wavelet coefficient maps for characterizing sound signals.
Due to the limitation of space, this paper takes gas explosion sound, coal dust explosion
sound, coal mining machine working sound, roadheader working sound, and ventilator
working sound as examples, and the time domain diagrams of the five sounds are shown
in Figure 5. As can be seen from Figure 5, the time domain diagrams of the gas explosion
sound and coal dust explosion sound have certain differences at the beginning of the sound
stage, and the overall similarity is high; the time domain diagrams of the other three sound
signals differ significantly, and the time domain characteristics alone cannot accurately
determine the differences in their respective signals and do not have the conditions to
be identified.
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To study the feasibility of the coefficient maps obtained by wavelet transform of five
sound signals as feature extraction objects, in this paper, the coefficient maps obtained by
wavelet transform of four sound signals of 0.5 s duration are shown in Figure 6. Figure 6a
shows the wavelet coefficient map of the gas explosion sound, Figure 6b shows the wavelet
coefficient map of the coal dust explosion sound, Figure 6c shows the wavelet coefficient
map of the working sound of the coal mining machine, Figure 6d shows the wavelet
coefficient map of the working sound of the roadheader, and Figure 6e shows the wavelet
coefficient map of the working sound of the ventilator. In the figures, the horizontal axis
represents time, and the vertical axis represents frequency.

From Figure 6, we can see that the wavelet coefficients of the gas explosion sound and
the coal dust explosion sound have high similarity in distribution and are concentrated
in the middle- and high-frequency part. The wavelet coefficients of the working sound of
the coal mining machine are concentrated in the middle- and low-frequency part, while
the wavelet coefficients of the working sound of the roadheader are scattered. The wavelet
coefficients of the working sound of the ventilator are concentrated in the middle- and
high-frequency part. The wavelet coefficients of the working sound of the ventilator are the
most concentrated, followed by the working sound of the coal mining machine, followed
by the sound of the gas explosion and the coal dust explosion. The worst is the working
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sound of the roadheader; the wavelet coefficient plots of the sound of the gas explosion
and the coal dust explosion have high similarity and differ significantly from the wavelet
coefficient distribution plots of the working sound of the coal mining machine, the working
sound of the roadheader, and the working sound of the ventilator.
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To objectively evaluate the feasibility of the wavelet coefficient map proposed in this
paper, the mean value, entropy, standard deviation, and average gradient will be used as
objective indicators to achieve the evaluation of the extracted wavelet coefficient map of
the sound signals.

The larger the mean value of the image, the higher the image brightness, which can be
calculated as

M1 =
1

MN

[
M

∑
a=1

N

∑
b=1

f (m, n)

]
. (4)
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where MN is the size of the image and f (m, n) is the pixel value of the image at the
coordinates (m,n).

The entropy of an image is a statistical form of a feature that reflects the average
amount of information in the image, which can be calculated as

H = −
255

∑
i=0

pi·logpi. (5)

where pi is the probability that a certain grayscale appears in the image.
The standard deviation of the image indicates the degree of light and dark variation

in the image, and the larger the standard deviation, the more obvious the light and dark
variation in the image, which can be calculated as

δ =

√√√√ 1
MN

M

∑
a=1

N

∑
b=1

(p(i, j)− u)2. (6)

where p(i, j) is the pixel value of the ith row and jth column, and u is the mean value.
The average gradient of the image means that there is a significant difference in

grayscale near the boundary or both sides of the shadow line of the image; the rate of
grayscale change and the magnitude of this rate of change can be used to indicate the image
sharpness, which can be calculated as

G =
1

MN

M

∑
a=1

N

∑
b=1

√√√√(
∂ f
∂x

)2
+
(

∂ f
∂y

)2

2
. (7)

where ∂ f
∂x is the gradient in the horizontal direction, ∂ f

∂y is the gradient in the vertical direction.
The mean, entropy, standard deviation, and average gradient of the images were

obtained by calculating the wavelet coefficient maps of the five sound signals, respectively,
as shown in Table 2. From Table 2, we can see that the values of the four indicators of the
wavelet coefficient maps of the gas explosion sound and the coal dust explosion sound are
close in size, indicating that the brightness, average information, and clarity of the wavelet
coefficient maps of the sound signals are similar, while the magnitudes of the wavelet
coefficient diagrams of the working sound of the coal mining machine, the working sound
of the roadheader, and the working sound of the ventilator are different.

Table 2. Evaluation values of diagram.

Evaluation
Indicators Gas Explosion Coal Dust

Explosion
Coal Mining

Machine Roadheader Ventilator

Mean 93.4 96.0 82.9 105.2 87.1
Entropy 6.2 6.2 5.7 7.1 6.2
Standard
deviation 95.9 93.9 94.8 88.3 91.0

Mean gradient 11.4 13.8 6.2 21.3 10.7

Through the above analysis, it can be seen that the coefficient maps of the gas explosion
sound and the coal dust explosion sound obtained by continuous wavelet analysis have
similar values of parameter characteristics, which indicates that the similarity of the wavelet
coefficient maps of the gas explosion sound and the coal dust explosion sound is high; the
coefficient maps of the gas explosion sound and the coal dust explosion sound and other
sounds in the coal mine underground obtained by continuous wavelet analysis have more
obvious differences, which can effectively distinguish gas and coal dust explosion sounds
and non-explosion sounds. Therefore, the wavelet coefficient maps obtained by continuous
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wavelet transform of the sound signals are feasible as image feature extraction objects of
the GoogLeNet network and have high robustness.

5.3. Parameter Experiments

To select the appropriate parameters to achieve the optimization of the algorithm, this
paper will conduct parameter experiments mainly including the dropout parameter of
GoogLeNet and the initial learning rate. The dropout parameter is a proportion of neurons
that are randomly ignored in the training process of the neural network model to achieve
the joint adaptation between neurons and increase the generalization ability of the neural
network. There must be an optimal solution for the initial learning rate, and the larger the
value of the initial learning rate, the larger the value of the initial learning rate, leading
to the occurrence of the non-convergence of the neural network recognition model, and
the low initial learning rate will lead to the slow convergence speed or failure to learn.
Therefore, this paper will select the appropriate dropout parameters and initial learning
rate by experiment.

The dataset consists of 40 sets of gas explosion sounds and 172 sets of other sounds
collected from underground coal mines, which are directly input to the GoogLeNet network.
The training dataset is divided into training and test sets at a ratio of 9:1. The evaluation
indexes for two parameters are recognition rate, accuracy rate, and recall rate. The formulas
of precision rate and recall rate can be calculated as

P =
TP

TP + FP
× 100%. (8)

R =
TP

TP + FN
× 100%. (9)

where P is the precision rate, R is the recall rate, TP denotes the frequency of predicting
positive class samples as positive class, FN denotes the frequency of predicting negative
class samples as negative class, FP denotes the frequency of predicting negative class
samples as positive class. In this paper, the positive class is coal mine gas and coal dust
explosion, and all the remaining sounds are negative classes.

The value of the initial learning rate of GoogLeNet is generally set to 0.0001, and the
value of the dropout parameter of GoogLeNet is generally set to 0.5. To choose more suitable
parameters, this paper compares the experimental results with the value of the dropout
parameter of 0.30.7 and the initial learning rate values of 0.0001 and 0.001, respectively.
The recognition results are shown in Figure 7. Figure 7a shows the recognition results
for different values of the dropout parameter when the initial learning rate is 0.0001, and
Figure 7b shows the recognition results for different values of the dropout parameter
when the initial learning rate is 0.001. From Figure 7, we can see that the recall rate of
the proposed algorithm is 100% for different initial learning rates and different values
of dropout parameter, which also shows that the algorithm of this paper can effectively
distinguish gas and coal dust explosion sounds from non-explosion sounds; when the
initial learning rate is 0.001, the overall recognition accuracy and recognition rate of the
trained model are higher than that of the initial learning rate of 0.0001; when the initial
learning rate is 0.001 and the dropout parameter value is 0.5, the recognition performance
of the trained recognition model is optimal, with the recognition rate of 97.38%, accuracy
rate of 86.1, and recall rate of 100%. The author also performed the same experimental
analysis of the initial learning rate of 0.00001 and 0.01 with different dropout parameter
values, and the experimental results show that with the initial learning rates of 0.00001 and
0.001, when the completed, the training model cannot distinguish between gas and coal
dust explosion sounds and non-explosion sounds.

Combined with the above analysis, it can be seen that the coefficient map obtained by
wavelet analysis proposed in this paper can effectively distinguish between gas and coal
dust explosion sounds and non-explosion sounds and has high robustness. According to
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the test results of the experimental dataset, the parameter of GoogLeNet dropout is set to
0.5 and the initial learning rate is set to 0.001.
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6. Experimental Results and Analysis
6.1. Experimental Results

To verify the superiority of the proposed method, the collected sound samples were
edited by Goldwave software, and the edited sound signals were passed through the
continuous wavelet transform to extract their wavelet coefficients. A total of 212 sets of
data were involved in the test, including 40 sets of wavelet coefficients of gas and coal
dust explosion sounds and 172 sets of wavelet coefficients of non-explosion sounds. The
test datasets were directly input into the GoogLeNet network, and the ratio of test data
to training data was set to 9:1 and 8:2, respectively. The test data and training data were
brought into the three different neural networks of GoogLeNet, vgg, and Alexnet, and the
results of the recognition experiments are shown in Table 3.

Table 3. Recognition results of different classification models.

Percentage
of Training Model Recognition

Rate/%
Recall
Rate/%

Accuracy
Rate/%

Training
Time/s

10%
GoogLeNet 97.38 86.1 100 124

VGG 81.15 0 0 193
Alexnet 89.53 44.4 100 25

20%
GoogLeNet 100 100 100 238

VGG 85.88 25 100 385
Alexnet 92.35 59.35 100 45

From the comparison results in Table 3, we can make some observations. (1) When
the ratio of test data to training data is 9:1, the recognition rate of the gas and coal dust
explosion sound recognition model proposed in this paper is 97.38%, which is 16.23%
higher than that of VGG and 7.85% higher than that of Alexnet; the recall rate is 86.1%,
which is 86.1% higher than that of VGG and 41.7% higher than that of Alexnet; the accuracy
rate is 100%, which is 100% higher than VGG and tied with that of Alexnet (also 100%).
(2) When the ratio of test data to training data is 8:2, the recognition rate, accuracy rate,
and recall rate of the gas and coal dust explosion sound recognition model proposed in
this paper are all 100%; compared with VGG, the recognition rate is 14.12% higher, the
recall rate is 75% higher, and the accuracy rate is the same; compared with Alexnet, the
recognition rate is 7.65% higher, the recall rate is 40.65% higher, and the accuracy rate is the
same. It can be seen that the algorithm proposed in this paper still performs well in the
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case of a relative lack of training samples and can overcome the disadvantages of a large
variety of sound samples and a small amount of data in underground coal mines. In terms
of training time, Alexnet has the shortest training time, with 25 s and 45 s for 9:1 and 8:2,
respectively, followed by the proposed algorithm with 124 s and 238 s, respectively, and
VGG with 193 s and 385 s, respectively.

Combined with the above analysis, it can be seen that the proposed sound recognition
model for gas and coal dust explosions has the best performance in terms of recognition
rate, accuracy rate, and recall rate and can still identify and distinguish between coal mine
gas and coal dust explosions and non-explosions more accurately in the absence of training
samples. Although the training time is not the lowest, considering that the model training
can be arranged during non-working time and the use of historical data for training the
recognition classification model, this does not affect the real-time recognition classification
work, which is also acceptable.

6.2. Experimental Analysis

The above experimental process and results show that the coefficient maps obtained
by continuous wavelet analysis of gas and coal dust explosion sounds and other sounds in
coal mines are significantly different, which can effectively distinguish between gas and
coal dust explosion sounds and non-explosion sounds; the identification experiment results
show that the proposed method has an excellent identification effect.

To avoid the pickups near the explosion source being damaged by high temperature
and explosion shock waves, the mining pickups in this paper adopt a multi-point arrange-
ment or use the existing mining camera’s pickups as a supplement. Although the explosion
flame wave propagation speed is faster than the sound waves, the propagation distance of
the explosion flame wave is smaller than the propagation distance of the explosion sound
waves. A large number of mining pickups outside the vicinity of the explosion source will
be saved for explosion sound recognition. We can determine the source of the explosion by
monitoring and analyzing the sound characteristics of different monitoring locations, the
sequence of monitoring gas and coal dust explosion sounds, and the sequence of damage
to explosion-proof pickup equipment.

7. Conclusions

In this paper, a sound recognition method of coal mine gas and coal dust explosions
based on GoogLeNet was proposed, using sound collected from the underground coal
mine field as the experimental material. The following conclusions are drawn after several
sets of experiments.

(1) The wavelet coefficient distribution of gas and coal dust sound signals obtained by
continuous wavelet analysis is mainly concentrated in the middle and high frequencies,
and the difference between the coefficient maps obtained by continuous wavelet analysis
for gas explosion sounds and other sounds in coal mine shafts is more obvious. This can
help effectively characterize gas and coal dust explosion sounds and non-explosion sounds
and has strong robustness. It is feasible to use it as an image of GoogLeNet network feature
extraction object.

(2) The parameters of dropout parameter and initial learning rate of GoogLeNet
are determined through experiments. When the initial learning rate is 0.001, the overall
recognition accuracy and recognition rate of the trained model are higher than that of the
initial learning rate of 0.0001; when the initial learning rate is 0.001 and the value of the
dropout parameter is 0.5, the recognition performance of the trained recognition model is
optimal.

(3) Through comparison experiments with other classification models, it can be seen
that the recognition rate, accuracy rate, and recall rate of the proposed recognition model
are the best and can meet the needs of coal mine gas and coal dust explosion recognition.
It can be applied to the recognition and alarm of abnormal sound in different application
scenarios by modifying the training samples.
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