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Abstract: Infrared and visible image fusion methods based on feature decomposition are able to
generate good fused images. However, most of them employ manually designed simple feature
fusion strategies in the reconstruction stage, such as addition or concatenation fusion strategies.
These strategies do not pay attention to the relative importance between different features and thus
may suffer from issues such as low-contrast, blurring results or information loss. To address this
problem, we designed an adaptive fusion network to synthesize decoupled common structural
features and distinct modal features under an attention-based adaptive fusion (AAF) strategy. The
AAF module adaptively computes different weights assigned to different features according to their
relative importance. Moreover, the structural features from different sources are also synthesized
under the AAF strategy before reconstruction, to provide a more entire structure information. More
important features are thus paid more attention to automatically and advantageous information
contained in these features manifests itself more reasonably in the final fused images. Experiments on
several datasets demonstrated an obvious improvement of image fusion quality using our method.

Keywords: image fusion; adaptive fusion strategy; attention mechanism

1. Introduction

Infrared and visible image fusion (IVIF) are widely used in many fields such as pattern
recognition [1], remote sensing [2–6], video surveillance [7], and modern military mis-
sions [8]. Infrared images and visible images have different imaging properties. Infrared
images contain more information about thermal radiation and mainly use pixel intensity to
distinguish a significant target from the background. Visible images contain more infor-
mation about texture structure and mainly use gradients to reveal rich detail information
about the scene. Therefore, the goal of image fusion is to retain as much advantageous
features of source images as possible, such as texture information in visible images and
salient target information in infrared images.

Fusion algorithms are usually classified into traditional methods and deep learning-
based methods. Traditional methods usually include three approaches: multi-scale-based
methods [9–11]; sparse representation-based [12–14] and low-rank representation-based [15,16]
methods. Multiscale methods usually decompose source images into different scales for
feature extraction and use an appropriate fusion strategy to fuse features on each scale. The
inverse operator is then used to reconstruct the fused image. Their performance highly
depends on multiscale feature extraction algorithms. In sparse representation (SR)-based
methods, the same dictionary is used to represent both source images. In low-rank repre-
sentation (LRR)-based methods, the same coefficient matrix is used to extract the significant
components from all source images. For SR and LRR-based methods, it is difficult to handle
complex source images due to the long dictionary learning period. Traditional methods
have poor feature extraction capability and mostly use element-by-element maximum
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fusion strategy or element-by-element weighted fusion strategy. The fusion performance
of these methods is limited because the manually designed fusion rules cannot fuse fea-
tures adaptively.

Deep learning (DL) methods use deep neural networks to extract features and re-
construct fused images, overcoming the shortcomings of feature extraction capability of
traditional methods. Considering each source image pair is generated under the same
scene but sensor specific imaging mechanisms, Xu et al. [17] first proposed a fusion method
(DRF) for decoupled representation. Xu et al. [18] proposed a double encoder-decoder
method (CUFD) based on common and unique features. One encoder-decoder network
focuses on extracting shallow and deep features, and the other one is used to decompose
source images into similar common parts and unique parts according to pixel intensity
distribution in source images. Fu et al. [19] proposed a two-branch network for decoupling
features. The features are extracted and decoupled by an encoder including a detail branch
for dense connection and a semantic branch for fast downsampling, and then fused under
an addition strategy. Li et al. [20] proposed deep image decomposition fusion (DIDFuse)
method, which uses a pair of encoder-decoder networks with shared parameters to decom-
pose source images into two types of features: similar background features and dissimilar
detail features. The features of the same type from different sources are first synthesized
with an addition strategy, then the features of different types are cascaded and fed into the
decoder. Kong et al. [21] treated IVIF as a normalized modulation process and proposed
a pixel-adaptive normalization (PEAN) mechanism to fuse the summed structure and
the summed detail feature, obviously improving the image fusion quality. However, the
features of the sample type from different sources still employ addition fusion strategy.

Although extensive methods have been trying to decompose source images into
source-invariant structure features of the scene and source-specific modal features, the
extracted structure features from different sources still differ to a large extent due to
their vast discrepancy in imaging mechanisms. The above mentioned DL methods focus
only on complementary source-specific modal features, ignoring the complementarity
between source-invariant structure features. Moreover, most of these DL methods use
hand-designed simple fusion strategies for synthesizing the features of the same type but
from different sources, such as average addition or addition with fixed weights designed
by hand. In fusion of features of different types, simple concatenation strategy is the most
choice. These simple strategies only provide fixed and manually designed weights for
different features, not taking the relative significance of different features into account and
thus limiting the fusion performance.

To address these issues, this paper proposes an adaptive fusion network for IVIF tasks,
based on multi-scale channel attention mechanism [22]. Source images are first decomposed
into source-invariant common structure features and source-specific modal features. An
attention-based adaptive fusion (AAF) module within this network learns the importance
of extracted features and thus can dynamically assign different weights to different features
in fusion process, according to their relative importance. The contributions of this paper
are summarized as follows:

1. To the best of our knowledge, it is the first time an adaptive fusion strategy has
been introduced in IVIF. The AAF module based on multiscale channel attention
mechanism dynamically generates fusion weights for different features along the
channel dimension in a pixel-wise dynamic weighting manner;

2. In addition to applying the AAF strategy to synthesize structural features and modal
features, we also apply it to synthesize structural features from different sources
before reconstruction, in contrast to usual addition strategy applied to features of the
same type in current methods. As a consequence, our synthesized structural features
reflect more entire structural information;

3. Our network can pay more attention to the dominant features and generate fused
images with super-high quality.
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The remaining part of this paper is organized as follows. Section 2 introduces related
work, including image fusion based on DL, fusion strategies, and attention mechanisms.
Section 3 describes the details of attention-based adaptive fusion module and our fusion
framework. Then, experimental results are presented and discussed in Section 4. Finally,
conclusions are drawn in Section 5.

2. Related Work

In this section, we first review some DL-based image fusion methods proposed in the
past, and then introduce the existing fusion strategies. Finally, some advanced attention
mechanism methods are introduced.

2.1. Deep Learning Image Fusion Methods

AE-based fusion framework. AE-based frameworks are an important branch of
deep learning methods that train autoencoders to achieve feature extraction and feature
synthesis. Xu et al. [17] first proposed a fusion method with a decoupling representation
(DRF), which decomposes source images into source invariant scene features and source
specific attribute features, and fuses the scene features and attribute features before feeding
them into a pre-trained generator to reconstruct target images. CUFD [18], Dual-branch
Net [19], and DIDFuse [20] also use similar ideas in feature decoupling. However, these
methods use simple strategies to fuse the structure and modal features, such as addition
and concatenation, which limits the fusion performance because these strategies do not take
the relative importance between different features into account. Kong et al. [21] proposed
an adaptive normalization mechanism-based fusion method (Normfuse), which injects the
detail (modal) features into the structure feature. This adaptive normalization mechanism
significantly improves the fustion performance. However, Normfuse still uses addition
strategy to fuse features of the same type.

CNN-based fusion framework. In recent years, convolutional neural networks
(CNNs) have gradually become popular in the field of image fusion. One kind of CNN-
based fusion approaches use only pre-trained CNN networks to implement activity level
measurements or fusion of extracted features, but the overall fusion framework is still
traditional. For example, Li et al. [23] use a deep learning framework based on VGG-19
networks to extract and fuse multilayer features of detail information. However, these CNN
models still employ manual design rules for feature fusion. Zhang et al. [24] proposed a
CNN-based generic image fusion model (IFCNN), which is composed of three modules:
feature extraction layer, feature fusion layer, and image reconstruction layer. It is worth
noting that, unlike the previously mentioned CNN approaches, the training of the fusion
layer of IFCNN synchronizes with the model. Therefore, IFCNN alleviates the limitations
imposed by manually designed fusion rules. Xu et al. [25] proposed an unsupervised
end-to-end fusion network (U2Fusion) to avoid the drawbacks of manually set fusion rules.
By automatically estimating the relative importance of features through feature extraction
and information metrics, the network can be trained to maintain the adaptive similarity
between the fused and source images.

GAN-based fusion framework. GAN-based models also learns the direct mapping
from source image pairs to fused images in an end-to-end manner. Ma et al. first introduced
GAN into image fusion task (FusionGAN) to generate fused images via a game playing
between discriminators and generators [26]. To improve the quality of detail information
and edge sharpening of hot targets, Ma et al. [27] proposed a new end-to-end model on the
fusion framework of GAN by designing additional detail loss and target enhancement loss
functions. However, a single discriminator may cause the fused image preferring visible
or infrared images. Therefore, Ma et al. [28] proposed a dual discriminator conditional
generative adversarial network (DDcGAN), which uses two discriminators to balance the
similarity distribution between the fused image and the source images. Since GANs-based
methods mostly focus on the information of the whole input image, they cannot identify
important features. Therefore, Li et al. introduced a multiscale attention mechanism in
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the GAN-based fusion framework [29] to encourage the generators and discriminators
to focus more on the most distinguishing regions. Moreover, Zhou et al. [30] developed
a dual-discriminator generative adversarial network (SDDGAN) where an information
quantity discrimination (IQD) block was designed to guide the image fusion progress
and supervise semantic information of source images in the fused image. Reference [31]
designed a unified gradient and intensity-discriminator generative adversarial network for
gradient and intensity retention in different image-fusion tasks. However, the end-to-end
CNN-based approaches and the GAN-based approaches lack a stage of feature extraction,
resulting in poor fusion.

2.2. Existing Convergence Strategies

The key to image fusion depends on feature extraction and fusion strategies. However,
in the past extensive attention have been paid on designing suitable feature extraction
methods, and few studies have been focused on designing fusion strategies. The fusion
strategies employed in past fusion methods mainly include addition [15,17,20,21], concate-
nation [15,18,24,32], average [33], choose-max [11,12,24], max-l1 [13], and l1-norm [20,23,26].
Among them, the max-l1 strategy is used to fuse the sparse coefficients of the source image
pair. It generates a binary mask for fusion using the larger sparse coding coefficients by
comparing two sparse codes. In [23], feature maps are used to calculate initial activity level
maps using l1-norm, and then final activity level maps are calculated using the averaging
operator. In general, these fusion rules rely on setting values, without estimating the
relative importance of extracted features. For example, the features extracted by different
methods may correspond to bright regions or dark regions. Choose-max strategy will
retain those features corresponding to bright regions and ignore those corresponding to
dark regions. However, features corresponding to dark regions may contain valuable
information. Therefore, in DL methods, a soft selection fusion strategy [34] with contextual
information awareness is proposed. While there are many differences among the various
fusion strategies, the differences in implementation details are negligible when abstracting
these methods into a mathematical form. The feature fusion formulas for different strate-
gies are shown in Table 1 . Linear strategies such as addition and concatenation are not
context-aware. In contrast, the soft selection strategy utilizes two input feature maps for
guidance and obtain a weight map of the same size as the input features. Moreover, the
sum of the weights applied to the two input features must be 1 in the soft selection strategy.
This allows the network to dynamically adjust the fusion weights between each pixel of the
input features X and Y, while it is not the case with other fusion strategies.

Table 1. Feature fusion formulas for different fusion strategies. G(·) denotes the weight generation
module and ⊗ denotes the matrix multiplication.

Context-Aware Type Formulation Example

Addition X + Y DRF [17], Dual-branch [19]
Concatenation WAX:,i,j + WBY:,i,j DIDFuse [20], CUFD [18]

None
Average 1

2 X + 1
2 Y TIF [33]

Choose-max X:,i,j/Y:,i,j GFF [11], IFCNN [24]
Max-l1 WA maxX + WB maxY NGDC [13]

L1-norm WAX + WBY DenseFuse [26]

Fully Soft Selection G(X + Y) ⊗ X + (1 − G(X + Y)) ⊗ Y SKNet [34]

2.3. Attention Mechanism

Attention mechanisms have played a very important role in serial and transformation
models. They improve the model performance by focusing on the key information wanted
in tasks and reducing the attention to unrelated information. Hu et al. first proposed a
squeezed incentive network (SENet) based on channel weight assignment [35]. SENet uses
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a global average pooling layer to compress the input feature map to obtain global features,
and then squeezes and expands the channel dimensionality of global features to learn the
relative importance of different features. Woo et al. [36] proposed a convolutional block
attention module (CBAM) based on channel attention and spatial attention. CBAM adds
a spatial attention module to the channel attention module of SENet serially, achieving
adaptive feature refinement. Fu et al. [37] proposed a combined spatial attention (SA)
and channel attention (CA) mechanism in a parallel dual attention network (DANet),
which can capture global dependencies and remote context information more effectively.
Liu et al. [38] proposed a pyramidal attention network (PANet) to learn feature relations at
different distances in a multiscale feature pyramid. Dai et al. [22] proposed a multiscale
channel attention module (MS-CAM), which adds the local scale channel attention to the
global scale channel attention, achieving channel attention at both scales. Same as SENet,
the global scale channel attention of MS-CAM helps to extract large target features from
the global statistical information. The local scale channel attention of MS-CAM is based
on SENet but removes the global average pooling layer and directly performs channel
dimensionality reduction and increase. Hence, its role is to retain and highlight small
target features.

In IVIF tasks, we want networks to recognize and capture the relative importance
of decoupled features at different scales. Motivated by the advantages of MS-CAM, we
propose an adaptive feature fusion network for IVIF tasks.

3. Method

In this section, the adaptive fusion strategy is introduced in Section 3.1, structure
information enhancement part is described in Section 3.2, then the overall framework is
presented in Section 3.3, and finally the loss functions are described in Section 3.4.

3.1. Attention-Based Adaptive Feature Fusion Strategy

The key of feature fusion algorithms is how to explore the relative importance of
different features for high-quality fusion. Channel attention mechanism can determine
the feature importance of different channels, give different weights to enhance important
features and weaken irrelevant features, and thus achieve dynamic selection of important
features from infrared and visible images. Previous IVIF methods do not realize this point
and employ simple fusion strategies with fixed weights. In this paper, we introduce a
multi-scale channel attention mechanism into IVIF tasks and propose an attention-based
adaptive fusion (AAF) strategy, which dynamically assigns fusion weights to two input
features. As shown in Figure 1a, the multiscale channel attention module F generates
weight map in channel domain by aggregating the relative importance of global channels
and local channels in spatial domain. F is formulated by the following equation:

F(X) = σ(G(X)⊕ L(X)), (1)

where F(X) denotes the generated fusion weight map, G(X) measures the relative impor-
tance of features on a global scale, and L(X) measures the relative importance on a local
scale. δ(·) denotes the Sigmoid function, and ⊕ denotes the broadcast addition.
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Figure 1. Schematic of AAF strategy. (a) The multiscale channel attention module F. (b) The two-layer
iterative AAF module.

Given intermediate features X ∈ RC×H×W , Global Average Pooling (GAP) is used to
compute the global distribution information M ∈ RC×1×1 in channel domain. The gating
mechanism of two point-by-point convolution layers is adopted to learn the nonlinear
interactions of the global distribution information among channels, i.e., 1 × 1 point-by-
point convolution with scale factor r performs channel dimensionality reduction to ob-
tain M1 ∈ R

C
r ×1×1, and then channel dimensionality increase is performed by another

1 × 1 convolution to obtain G(X) ∈ RC×1×1. The global channel attention features G(X) is
formulated in Equation (2).

G(X) = B(W2(δ(B(W1(g(X))))), (2)

where g(x) = 1
H×W ∑H

i=1 ∑W
j=1 X(:, i, j) is global average pooling (GAP), δ(·) denotes ReLU

activation function, B(·) denotes batch normalization, and W1 and W2 are point-by-point
convolutions with kernel sizes of 1× 1× C× C

r and 1× 1× C
r × C respectively.

We remove GAP from the global channel attention branch and directly use two point-
by-point convolutions to perform channel dimensionality reduction and increase to obtain
local channel attention features L(X) with the same size as the input features in order to
retain and highlight detail information. L(X) ∈ RC×H×W is formulated in Equation (3).

L(X) = B(W4(δ(B(W3(X))))), (3)

where W3 and W4 are point-by-point convolutions with kernel sizes of 1× 1× C× C
r and

1× 1× C
r × C, respectively.

As shown in Figure 1b, given two input features X, Y ∈ RC×H×W , the AAF strategy
based on the multiscale channel attention module F can be expressed as

1. Single-layer attention fusion.

AAF(X, Y) = X⊗ F(X + Y) + Y⊗ (1− F(X + Y)), (4)
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where ⊗ denotes matrix multiplication. F(X + Y) generates fusion weights consist-
ing of real values from 0 to 1. F(X + Y) and 1− F(X + Y) enable the network to
dynamically assign fusion weights between X and Y.

2. Multiple iterations of attention fusion.

AAFn(X, Y) = X⊗ F(AAFn−1(X, Y)) + Y⊗ (1− F(AAFn−1(X, Y)). (5)

AAFn(X, Y) is the fused features generated in n-th iteration.

Addition and Concatenation are context-independent strategies. AAF is a fully context-
aware soft selection strategy, i.e., the fusion weights are adaptively estimated based on
all input features. It is worth noting that there is a performance bottleneck in this fully
context-aware approach, i.e., how to synthesize two input features initially. As shown in
Equation (4), employing a simple fusion strategy like X + Y to synthesize X and Y as input
to the AAF module may have an impact on the final fusion weights. Therefore, we use
multiple iterations of the AAF module to solve this problem, as shown in Equation (5).
Interactive use of the AAF module improves the input quality to the next AAF module.
Considering the marginal effects and the growth of computation demand, we only use a
two-layer AAF module AAF2 as shown in Figure 1b. In the remaining of this paper, AAF2
is denoted as AAF for simplicity. It is noteworthy that the output weights by the AAF
module are tensors with the same size as the input features, i.e., each pixel of each feature
will be assigned a dynamic weight.

3.2. Structure Information Enhancement

Although all current IVIF methods based on feature disentanglement expect the
structural features from different sources are as similar as possible, they do differ from each
other to a large extent due to the vast discrepancy of different source imaging mechanisms.
Different source images provide different dominant structure information, such as the
thermal target edge information in infrared images and the rich texture information in
visible images. The application of simple fusion strategies such as addition to them is easy to
cause weakening of dominant structure information and occurrence of unwanted structure
information. In order to provide a complete structure frame that contains all dominant
structure information, it is necessary to apply the AAF strategy to the structural features
from different sources before reconstruction. Such a structure frame is a prerequisite for
super-high quality image fusion. The synthesized structural features S under the AAF
strategy can be formulated as

S = AAF2(SI , SV) = SI ⊗ F(AAF(SI , SV)) + SV ⊗ (1− F(AAF(SI , SV)), (6)

where SI and SV denotes the structural features of infrared and visible images respectively.

3.3. Overall Framework

Our aim is to fully synthesize all valuable structure and modal information from
different sources and exhibit them in a fused image as more reasonable as possible. The
AAF network proposed in this paper is based on an encoder-decoder architecture. The
encoder consists of a common convolutional layer Conv1, two structural residual module
(SRM) layers, and a convolutional decoupling layer Conv2. The decoupling layer can
effectively disentangle structure features from the modal features. We embed SRM in the
encoder to aggregate the extracted residual convolutional feature stream with the Sobel
gradient information stream for feature reuse, enhancing the network’s ability to describe
fine-grained details through the residual edge gradient stream, as shown in Figure 2.
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Figure 2. Specific design of the structural residual module (SRM). Structural residual parallel Sobel
operator consisting of two 3 × 3 convolution kernels, two batch normalization layer, and two PReLU
activation function.

The structure information enhancement part contains an AAF layer. This layer adap-
tively fuses the structural features extracted from infrared and visible sources into a group
of structure features, integrating all of their dominant structure information. The decoder
contains three AAF layers and one convolutional layer that enable soft selection of impor-
tant features from infrared and visible images, allowing the reconstructed images to retain
more complete global structural information and meanwhile preserve more modal infor-
mation. The network structure is shown in Figure 3. To solve the problem of inadequate
cross-level fusion, the AAF strategy was used in the cross-level fusion from the lower to
the higher layers, preventing detailed information and loss of source images after multiple
convolutions and accelerating the training convergence.
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Figure 3. Schematic diagram of the overall AAF framework. SRM is the structural residual module
and AAF is attention-based adaptive fusion module. conv1 consists of a 3 × 3 convolution kernel, a
PReLU activation function, conv2 consists of a 3 × 3 convolution kernel, a batch normalization layer,
a Tanh activation function, and conv3 consists of a 3 × 3 convolution kernel, a batch normalization
layer, a Sigmoid activation function.

In the training phase, we fed the infrared images I and the visible images V into the
encoder, decomposed the source images into similar structural features SI and SV with
distinct modal information MI and MV . To capture all complementary dominant spatial
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structure information of the source image, we combined SI and SV into the AAF layer to
generate the dominant structural features S. Then, the modal features of each source MI
and MV were fused with S through the decoder to reconstruct the source images Î and V̂,
respectively. It is noteworthy that we reconstructed the infrared images I and visible images
V using the same encoder-decoder architecture. In the test phase, we aimed to fuse all
features extracted from both sources. We added a fusion step to the training network by
combining the modal features from different sources under addition strategy to generate
fused modal features M. Here we chose the addition strategy because the extracted modal
features from different sources are almost fully complementary. Then, S and M were fed
into the decoder to generate the final fused images. The test network structure is shown in
Figure 4.

 Test

R
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n
c
o
d
e
r

D
e
c
o

d
e
r

Sum

I

V

Modal

Structure

Modal

Structure Common  Structure

A
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F

M

Figure 4. Schematic diagram of AAF test framework. M represents the added modal features and R
is the fused image.

3.4. Loss Function

The loss function consists of three main components, namely image decomposition
loss Ld and image reconstruction loss Lr , and global structure loss Lstructure , the exact
definition of the total loss can be expressed as

Ltotal = Ld + Lr + Lstructure. (7)

3.4.1. Image Decomposition Loss

The differences between the infrared and visible structural feature maps should be
as small as possible. In contrast, the differences between their respective structural and
modal information should be as large as possible. Therefore, we extract similar background
structure feature maps and unique modal feature maps by calculating their pixel intensity
and gradient distribution distances. The image decomposition loss function of the encoder
can be defined as

Ld = α1Φ((||SV − SI ||22) + α2Φ((||∇SV −∇SI ||22)− α3(||SV − DV ||22)− α4(||SI − DI ||22), (8)

where Φ(·) is the tanh function and ∇ denotes the gradient operator.
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3.4.2. Image Reconstruction Loss

In order to drive the pixel intensity, structural similarity index (SSIM) of the recon-
structed image as close as possible to the input image. Therefore, the image reconstruction
loss function of the decoder is

Lr = α5 f
(

I, Î
)
+ α6 f

(
V, V̂

)
, (9)

where I and Î, V and V̂ represent the input and reconstructed infrared and
visible images, respectively.

f (X, X̂) = || X − X̂ ||22 + λLSSIM(X, X̂), (10)

where X and X̂ represent the above input image and reconstructed image, respectively, and
λ is a hyperparameter. SSIM can be described as

LSSIM
(
X, X̂

)
=

1 − SSIM
(
X, X̂

)
2

. (11)

3.4.3. Global Structure Loss

Fully enhancing the dominant structure information in fused images is the core of
our network, and thus we designed the global structure loss to achieve this goal. Given a
pair of aligned infrared and visible images, we used the Sobel edge filtering operator to
generate the edge feature map of the infrared image ∇I and the structure feature map of
the visible image∇V, respectively. The two structure feature maps were synthesized by the
“choose-max strategy” to generate a global structure feature map ∇S, which contained the
dominant structure information of the source images. The global structure loss proposed in
this paper was used to calculate the feature distance between the reconstructed image and
∇S, guiding the AAF module in the structure information enhancement part to integrate
all dominant structure information from both sources. The fused image can retain the
significant target edge information of the infrared images and the rich texture information
of the visible images at the same time.

The global structure feature map can be formulated as

∇S = MAX(∇I,∇V), (12)

where ∇ denotes the gradient filter operator and MAX denotes the maximum fusion rule.
Global structure loss Lstructure reflects the structural information contained in reconstructed
images and can be expressed as

Lstructure = α7MSE
(
∇ Î − ∇S

)
+ α8MSE

(
∇V̂ − ∇S

)
. (13)

∇ Î and ∇V̂ denote the structural feature maps of the reconstructed infrared and visible
images, respectively. MSE is the mean-squared error loss. When the difference between
the predicted and true values is larger, the penalty of mean-squared loss is larger. Note that
α1, α2, α3, α4, α5, α6, α7, α8 are adjustable hyperparameters.

4. Experimental Results and Analysis

In this section, we first describe the experimental details. Then, we present an experi-
mental result comparison of similar models to demonstrate the effectiveness of the AAF
model. In addition, we evaluate the fusion performance of the AAF model on two public
datasets qualitatively and quantitatively and compare it with five state-of-the-art fusion
methods. Finally, several ablation studies were conducted to demonstrate the effectiveness
of our specific design.
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4.1. Experimental Details

To train the proposed fusion model, we selected 180 image pairs from the Road-
Scene [39] image fusion dataset as the training set. Prior to training, all images in the
training set were converted to grayscale maps and cropped centrally with 128 × 128 pixels.
In the training phase, the optimizer of the fusion network uses Adam, the learning rate is
set to 10−3, the hyperparameters were set to: α1 = 0.3, α2 = 0.3, α3 = 0.4, α4 = 0.4, α5 = 9,
α6 = 8, α7 = 5, α8 = 20, λ = 5. The fusion model was implemented using Pytorch and
experimented on a computer equipped with two NVIDIA 16 G V100 GPUs.

To fully evaluate the generalized performance of the AAF model, we conducted test ex-
periments on the RoadScene [39] and TNO [40] datasets. Thirty-eight TNO image pairs and
thirty-six RoadScene image pairs were selected as the test sets. We compare our model with
eight existing fusion methods, including three traditional methods, namely IFEVIP [41],
HMSD [42], and HMSD_GF [32], four AE-based methods, namely DenseFuse [26] and
DIDFuse [20], DRF [17], and Dual-branch Net [19], and one GAN-based method, namely Fu-
sionGAN [43]. The code implementations of all these eight methods are publicly available,
and during the experiments we adopt the hyperparameter values from the original papers.

The qualitative assessment relies on the subjective evaluation of details such as image
texture and contrast by the human visual system, which is not fully convincing. Therefore,
we chose six metrics to quantitatively evaluate the fusion results in an objective manner,
including entropy (EN) [44], peak signal-to-noise ratio ( PSNR ), visual information fidelity
(VIF) [45], spatial frequency (SF) , standard deviation (SD), and mean gradient (MG). EN
measures the amount of information contained in the fused image from an information-
theoretic perspective. PSNR measures the fusion performance in terms of how similar the
fused image is to the source image, with larger values indicating less distortion in the fusion
process. VIF measures the information fidelity of the fused image from the perspective of
the human visual system by calculating the distortion of the image. SF measures the spatial
frequency information contained in the fused image, and a larger SF indicates that the
fused result contains more texture edge information. MG reflects the texture and structure
information of the image, and SD reflects the contrast of the fused image from a statistical
point of view. Fusion algorithms with larger EN, PSNR, VIF, SF, SD and MG indicate a
better fusion performance.

4.2. Experimental Comparison of Similar Models

The proposed AAF fusion method is a representation disentanglement fusion model.
The biggest difference between our method and other representation disentanglement-
based methods is that we adopted an adaptive fusion strategy for the synthesis of structural
features from different sources before reconstruction and the synthesis of modal features
with structural features, while simple fusion strategies are adopted in other similar methods.
In order to demonstrate the effectiveness of our method, we choose other three represen-
tation disentanglement-based fusion methods, DIDFuse [20], DRF [17] and Dual-branch
Net [19], for comparison.

Qualitative evaluation. As shown in Figure 5, we selected some representative re-
gions in the source and fused images and zoomed in to view them. We can see that, for
images containing pedestrian, other methods suffer from poor target saliency, low contrast,
blurred edges, and inconspicuous high-frequency details. Similarly, for images of natural
landscapes or street scenes, other methods suffer from false gray skies, poor sharpness,
blurred edge contours of tree branches, and low color contrast. In contrast, our method is
able to obtain fused images with high contrast, brighter targets, and more texture detail
information retained.



Entropy 2023, 25, 407 12 of 21

IR
V
IS

D
ID
F

D
u
a
lb
ra
n
c
h

D
R
F

O
U
R
S

Figure 5. Qualitative experimental result comparison of the AAF model with DRF, Dual-branch Net
and DIDFuse on the TNO and RoadScene datasets. The first two rows are infrared and visible images,
and the following are the fused images by DRF, Dualbranch, DIDFuse, and our AAF model in order.
Three columns on the left: TNO dataset, two columns on the right: RoadScene dataset.

Quantitative evaluation. From Tables 2 and 3, we can see that our EN is always higher
than that of other methods, indicating that our fusion strategy retains more information.
Our SF and MG are much higher than those of other methods, indicating that our model
has a clear advantage in texture detail and edge information preservation.In terms of SD
values, our model achieves the maximum optimal, indicating that the fused images by
our model provide highest contrast. The AAF fusion strategy adopted by our model is
a channel attention mechanism, which can determine the feature importance of different
channels, give different weights to enhance important features and weaken irrelevant
features. As a result, the error between the pixel value of the generated fusion image
and the single source image increases, which affects the performance of PSNR index. In
addition, the VIF algorithm compares each image region of the source image and the fusion
image equally from the perspective of the human visual system. The attention mechanism
may influence the final assessment. However, our model still achieves high levels in terms
of VIF and PSNR values, indicating that our model’s fused images provide excellent low
distortion results.
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Table 2. Quantitative comparison of AAF model with DRF, Dual-branch Net and DIDFuse on the
TNO dataset. The best, second best and third best values are indicated in black bold, red and
blue, respectively.

Methods EN SF MG PSNR SD VIF

DRF 6.4773 3.0594 2.1140 14.0305 28.2402 0.3480
Dualbranch 6.3507 3.5606 2.3751 15.5899 24.4902 0.2988

DIDF 7.1002 6.0910 4.3534 13.9378 48.0636 0.6456
OURS 7.2234 7.5430 5.7878 14.4210 50.7800 0.6276

Table 3. Quantitative comparison of AAF model with DRF, Dual-branch Net and DIDFuse on the
RoadScene dataset. The best, second best and third best values are shown in black bold, red and
blue, respectively.

Methods EN SF MG PSNR SD VIF

DRF 7.2503 4.7228 3.4275 14.3983 44.6414 0.5403
Dualbranch 6.7988 4.9488 3.3732 16.4648 31.0218 0.4433

DIDF 7.3795 6.8482 5.6517 14.8007 52.0672 0.7935
OURS 7.5016 7.7386 6.9507 14.6679 55.4926 0.8484

4.3. Fusion Performance Comparison Test

It is well known that generalization performance is an important aspect for evaluating
deep learning-based methods. Therefore, we performed generalization experiments on
the TNO and RoadScene datasets to demonstrate the generalization performance of the
proposed AAF model.

Qualitative evaluation. Figure 6 shows the qualitative comparison results of AAF
methods with five other state-of-the-art methods on the TNO and RoadScene test datasets.
We selected three and two pairs of typical infrared and visible image pairs from the TNO
and RoadScene test datasets, respectively. All images were converted to grayscale, and the
image pairs were pre-aligned and had the same resolution. We show the source images
in the first two top rows of Figure 6, followed by the fused images by IFEVIP, HMSD,
HMSD_GF, FusionGAN, DenseFuse, and our AAF model. The three columns on the left:
the TNO test dataset, and the two columns on the right: the RoadScene test dataset. We
selected some representative regions in the source and fused images zoomed in to view
them. Observing the details of the fused images, such as the sky and the houses in the
first column, and so on, we can find that the texture information of the background in the
fused images by other methods is disturbed by the thermal radiation information. iFEVIP,
HMSD, HMSD_ GF, FusionGAN, DenseFuse cannot reflect the real sky, background, and
other targets. Our fusion results are closer to the real sky, i.e., the advantageous information
provided by the visible source. While the images generated by IFEVIP and FusionGAN
methods retain the significant target information of infrared source, rarely retain enough
detail information of visible images. The images generated by DenseFuse method have
blurred edges and low contrast. The images generated by the HMSD and HMSD_ GF
methods are worse than those by our method in terms of brightness and contrast. The
fused images generated by our method can reflect all advantageous information from both
sources, a more complete structure frame of the original scene with richer texture details,
more significant infrared target information, and higher contrast.
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Figure 6. Qualitative comparison of AAF model with five state-of-the-art IVIF methods on the TNO
and RoadScene test datasets. The first two top rows are the infrared and visible images, and the
following are the fused images by IFEVIP , HMSD, HMSD_GF, FusionGAN, DenseFuse, and our
AAF model. The three columns on the left: the TNO dataset, and the two columns on the right: the
RoadScene dataset.

Quantitative evaluation. The comparative results of different methods on the six
metrics are shown in Figures 7 and 8, Tables 4 and 5. Obviously, our method obtains the
best scores on EN, SF, MG, SD, and VIF, except PSNR. The AAF fusion strategy increases the
error between the fused image and the single original image in pixel value, which reduces
the performance of PSNR index. However, PSNR is not a perfect image quality evaluation
index; it cannot fully reflect the difference in image fusion quality and should be combined
with other image quality evaluation indicators for comprehensive evaluation.The best EN,
SF, and MG indicate that our method generates fused images with more information, higher
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resolution, and clearer textures. The best performance on SD and VIF metrics indicate that
our algorithm generates fused images with better visual effects. The quantitative evaluation
results verifies the obvious effectiveness of adaptive fusion strategy in IVIF tasks.

Table 4. Quantitative comparison of AAF model with five state-of-the-art methods on six metrics
for the TNO test dataset, with the best, second-best and third-best values in black bold, red and
blue, respectively.

Methods EN SF MG PSNR SD VIF

IFEVIP 6.8462 5.7771 4.0711 13.6033 38.9830 0.4660
HMSD 7.1094 6.3570 4.5506 15.9629 39.8504 0.4650

HMSD_GF 7.1526 6.7203 4.9077 15.2930 44.0640 0.4720
DenseFuse 6.5797 4.2510 2.7574 15.3697 31.5165 0.3716

FusionGAN 6.6638 5.1906 3.6460 10.4271 30.5577 0.4299
OURS 7.2234 7.5430 5.7878 14.4210 50.7800 0.6276

Table 5. Quantitative comparison of AAF model with five state-of-the-art methods on six metrics for
the RoadScene test dataset, with the best, second-best and third-best values in black bold, red and
blue, respectively.

Methods EN SF MG PSNR SD VIF

IFEVIP 6.9767 6.5449 5.1182 14.0182 43.1022 0.6860
HMSD 7.1896 7.2915 6.3481 16.0270 40.2494 0.5596

HMSD_GF 7.4004 7.4812 6.6571 15.7815 48.0379 0.6702
DenseFuse 6.9147 5.4990 3.7439 16.6239 34.9110 0.4891

FusionGAN 7.1849 7.5082 6.6071 12.4593 39.9997 0.5565
OURS 7.5016 7.7386 6.9507 14.6679 55.4926 0.8484

30

50

70

90

S
D

IFEVIP:38.9830

HMSD:39.8504

HMSD_GF:44.0640

densefuse:31.5165

FusionGAN:30.5577

OURS:50.7800

5 10 15 20 25 30 35

Image pair

0.5

1

1.5

2

V
I
F

IFEVIP:0.4660

HMSD:0.4650

HMSD_GF:0.4720

densefuse:0.3716

FusionGAN:0.4299

OURS:0.6276

3

5

7

9

11

M
G

IFEVIP:4.0711

HMSD:4.5506

HMSD_GF:4.9077

densefuse:2.7574

FusionGAN:3.6460

OURS:5.7878

6.5

7

7.5

8

E
N

IFEVIP:6.8462

HMSD:7.0194

HMSD_GF:7.1526

densefuse:6.5797

FusionGAN:6.6638

OURS:7.2234

5 10 15 20 25 30 35

Image pair

5

6

7

8

9

S
F

IFEVIP:5.7771

HMSD:6.3570

HMSD_GF:6.7203

densefuse:4.2510

FusionGAN:5.1906

OURS:7.5430

P
S
N
R

IFEVIP:13.6033

HMSD:15.9629

HMSD_GF:15.2930

densefuse:15.3697

FusionGAN:10.4271

OURS:14.4210

3838

Figure 7. Quantitative comparison results of the AAF model with five state-of-the-art methods on six
metrics for the TNO test dataset.
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Figure 8. Quantitative comparison results of the AAF model with five state-of-the-art methods on six
metrics for the RoadScene test dataset.

4.4. Ablation Experiments
4.4.1. Edge and Texture Retention Analysis

Our model retains the dominant structural information from both sources and relies
partially on the global structure loss to guide the AAF module in the structure information
enhancement part, adaptively fusing the thermal target edge information from infrared
source and the rich texture information from visible source. To verify the importance of
the global structure loss and the AAF module in the structure information enhancement
part, we performed two ablation experiments by removing one of them, while keeping the
remaining network structure unchanged. More specifically, we trained our fusion model
without global structural loss and replacing the structure information enhancement part by
concatenation, called NO_Loss and NO_S_AAF, respectively.

Some typical examples are shown in Figure 9. Carefully observing the zoomed-in
regions of the red-framed bushes in the first column and the road sign in the fourth column,
we find that the model with the structure information enhancement part generates fused
images with higher target saliency (from infrared source) and clearer texture details (from
visible source) than the model without the enhancement part. The zoomed-in regions of
green-framed utility poles in the third column and green-framed tires in the fifth column
of Figure 9 exhibit very smooth texture details and blurred edges, respectively, for the
model without the global structure loss. In contrast, the model with the global structure
loss maintains the visible texture information and the high frequency salient infrared
information. We also did quantitative ablation analysis on TNO and RoadScene datasets.
As shown in Tables 6 and 7, SF and MG metrics of NO_Loss and NO_S_AAF are much
lower than those of the full model, undoubtedly verifying that both the global structure
loss and the structure information enhancement part better preserve the thermal target
edge information from infrared source and rich texture information from visible source.
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Figure 9. The two columns on the left: TNO test dataset, and the three columns on the right:
RoadScene test dataset. The first two top rows are the source images, followed by the fused images
by the NO_Loss model and NO_S_AAF model and the full model, respectively.

Table 6. Six metrics of the fused images by the NO_Loss model and NO_S_AAF model and the full
model on TNO test dataset, respectively. The best values are in bold.

Methods EN SF MG PSNR SD VIF

NO_Loss 7.1109 6.4755 4.6123 12.3098 50.4393 0.6457
NO_S_AAF 7.2530 6.9701 5.2198 14.1635 49.9152 0.6470

OURS 7.2234 7.5430 5.7878 14.4210 50.7800 0.6276

Table 7. Six metrics of the fused images by the NO_Loss model and NO_S_AAF model and the full
model on RoadScene test dataset, respectively. The best values are in bold.

Methods EN SF MG PSNR SD VIF

NO_Loss 7.3880 6.8765 5.7245 14.689 54.2375 0.8454
NO_S_AAF 7.4297 6.6505 6.0720 13.7379 54.8860 0.8520

OURS 7.5016 7.7386 6.9507 14.6697 55.4926 0.8484

4.4.2. AAF Fusion Strategy Ablation Analysis

To verify the necessity of the adaptive fusion strategy in improving the fusion quality of
fusion, we performed ablation experiments, while keeping the remaining network structure
and loss function unchanged. We trained a model that only adopted a concatenation
fusion strategy to replace all AAF modules in the network. We refer to this method
as S_CAT. We selected two pairs of images from each of the TNO and RoadScene test
datasets for qualitative comparison. As shown in Figure 10, the model with concatenation
strategy generates fused images with blurred edge contours, little high-frequency detail,
and unnecessary gradient variations around the highlighted targets. In contrast, the model
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with the AAF module generates fused images with salient targets, sharper edge textures,
higher contrast, and better visual effects. Tables 8 and 9 show the six metrics of the fusion
results for TNO and RoadScene test datasets, respectively. The model with the AAF module
has the best performance on all six metrics, which demonstrates the superior performance
of adaptive strategy relative to concatenation strategy.
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Figure 10. Qualitative ablation study of AAF strategy. The three columns on the left: TNO test dataset
and the two columns on the right: RoadScene test dataset. The first two top rows are the source
images, and the following are the fusion images by the model with concatenation strategy and those
by the AAF model.

Table 8. Six metrics of the fused images by the concatenation model and the AAF model on TNO test
dataset, respectively. The best values are in bold.

Methods EN SF MG PSNR SD VIF

S_CAT 7.1671 6.5785 4.8097 13.1636 45.6796 0.5864
OURS 7.2234 7.5430 5.7878 14.4210 50.7800 0.6276

Table 9. Six metrics of the fused images by the concatenation model and the AAF model on RoadScene
test dataset, respectively. The best values are in bold.

Methods EN SF MG PSNR SD VIF

S_CAT 7.0836 6.3428 4.9261 12.3407 44.0769 0.6438
OURS 7.5016 7.7386 6.9507 14.6679 55.4926 0.8484

4.5. Efficiency Comparison

To analyze the complexity of the AAF model, we tested the average running time
on the TNO and RoadScene datasets, as shown in Table 10. All traditional methods
were run on the CPU, while deep learning methods DenseFuse, FusionGAN, and OURS
were run on the GPU. Since deep learning methods include training and testing, we only
recorded the testing time for comparison. The results in the table show that our AAF model
has moderate time complexity, which can effectively meet the task requirements while
maintaining good performance.
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Table 10. Average running time of different methods on two datasets (unit: second).

Datasets IFEVIP HMSD HMSD_GF DenseFuse FusionGAN OURS

TNO 0.034 3.224 0.644 0.056 0.224 0.265
RoadScene 0.029 1.555 0.317 0.046 0.119 0.193

5. Conclusions

To address the problems that previous IVIF methods ignore—the complementarity
of the scene structure features from different sources and the limitation of simple fusion
strategies—this paper proposes an attention-based adaptive fusion network. The attention-
based adaptive fusion strategy is able to measure the relative importance of features and
adaptively assign dynamic weights to different features. We adopted this adaptive strategy
to enhance dominant structure information from both sources before reconstruction and
fused the structure features and modal features into reconstructed images. A global
structure loss function was also proposed to guide the structure enhancement architecture
to retain all dominant source information. Based on extensive qualitative and quantitative
experiments, our method can fully fuse the target edge information from the infrared source
and the rich texture information from a visible source into one image with high resolution,
high contrast, and excellent visual effect.
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