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Abstract: This paper deals with the problems of finite-time boundedness (FTB) and H∞ FTB for
time-delay Markovian jump systems with a partially unknown transition rate. First of all, sufficient
conditions are provided, ensuring the FTB and H∞ FTB of systems given by linear matrix inequalities
(LMIs). A new type of partially delay-dependent controller (PDDC) is designed so that the resulting
closed-loop systems are finite-time bounded and satisfy a given H∞ disturbance attenuation level.
The PDDC contains both non-time-delay and time-delay states, though not happening at the same
time, which is related to the probability distribution of the Bernoulli variable. Furthermore, the PDDC
is extended to two other cases; one does not contain the Bernoulli variable, and the other experiences
a disordering phenomenon. Finally, three numerical examples are used to show the effectiveness of
the proposed approaches.

Keywords: finite-time boundedness; H∞ control; Markovian jump system; time-delay

1. Introduction

In actual industrial processes, the transient performance of systems is sometimes
particularly important. For example, aircraft control systems require that the states not
exceed a given limit [1]; the temperature of a chemical reaction needs to be strictly controlled
within a certain range [2]; the angular location of a robot arm should be limited to a
particular scope [3]. In recent years, an increasing number of academics have focused on the
finite-time stability (FTS) problem. Different from the traditional Lyapunov stability [4–7],
FTS discusses the transient performance of systems in the finite-time interval. In fact, the
stable systems in the Lyapunov sense may have very bad transient performances, such as
severe oscillation. The definition of FTS (or short-time stability [8]) was first proposed by
Kamenkov in [9]. According to FTS, a system state is limited to a certain critical value within
a certain time region, if the initial state is norm bounded. The authors of [10] extended FTS
to the concept of FTB and took external disturbances into account. The studies of FTS and
FTB have been further developed with the evolution of LMI theory [11–19]. For example,
in [11], sufficient conditions for FTB of closed-loop systems were given in the form of LMIs
by designing a dynamic feedback controller. Meanwhile, finite-time H∞ control/filtering
problems [20–24] have received much attention in order to reduce influences on a system
caused by external disturbances.

On the other hand, abrupt changes are often encountered in the industrial process due
to a component fault, invalidation, an associated change between subsystems, a sudden
environmental disturbance [25], and so on. The occurrence of these situations causes
the structure and parameters of a system to switch between various subsystems, such as
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networked control systems or power electrics. The Markov jump system [26] is used to deal
with this kind of practical system via the transition probabilities of the jump process. In
recent decades, many researchers have performed studies on these types of systems, such
as [27–32]. Moreover, some research results have been utilized in many engineering fields,
such as power systems [33], manufacturing systems [34], communication systems [35], etc.
Although there have been lots of research achievements about Markov jump systems, most
assume that the transition probabilities are all known; however, it is difficult to ascertain
precise transition probabilities in real life due to instrument and measurement limitations.
Therefore, further research on a Markov jump system with a partially unknown transition
rate is really vital and necessary. Readers may refer to [36–38].

Time delay, as an inevitable phenomenon, widely exists in communication [39], the
chemical industry [40], transportation [41], and other systems. The existence of a time delay
may make the performance of a system deteriorate, destroy the balance and stability of
systems, and even produce a chaos phenomenon. This leads to the development of and
changes to the systems such that they depend not only on the present state but also on
the previous state [42–46]. By studying the FTS of various time-delay systems [47–50], it is
found that most of the results mainly consider the controller with or without a time delay.
However, in practice, data transmission events with or without a delay occur randomly,
which inspires us to consider designing a controller with both a time delay and no time
delay, or non-simultaneous occurrences according to probability.

In this paper, we handle the FTB and H∞ FTB problems of time-delay Markov jump sys-
tems with a partially unknown transition rate via some general PDDCs. The following are
the main contributions: (1) With LMIs, we give sufficient conditions for FTB for the defined
system. (2) A new kind of PDDC is designed to make the resulting system H∞ FTB. The
PDDC contains both non-time-delay and time-delay states; however, these are not happen-
ing at the same time. In comparison to conventional state feedback controllers [47–49,51],
the probability distributions play an important role in the PDDC. (3) Different from the
existing results of [46], the PDDC is extended to two new cases: one does not contain the
Bernoulli variable, and the other experiences a disordering phenomenon.

The rest of this paper is arranged as follows: In Section 2, the preparation and problem
statement are presented. Section 3 discusses the main results for the FTB and H∞ FTB of
the system defined by LMIs via the PDDC’s design. Three examples are given to show the
effectiveness of the obtained results in Section 4. Some conclusions are given in Section 5.

Notation: λmax(Q) ( λmin(Q)) means the maximum (minimum) eigenvalue of a real
symmetric matrix Q; E[·] refers to the mathematical expectation operator; the superscript T
is the transposition of the matrix. In the matrices, diag {· · · } stands for the block-diagonal
matrix, the symbol ∗ is the symmetric term of a matrix, and (P)? = P + PT . The σ-algebras
of the sample space subsets are represented by F . Pr denotes the mathematic probability.

2. Problem Statement and Preliminaries

Consider a linear time-delay Itô stochastic Markovian switching system
dx(t) = [S(σt)x(t) + Sτ(σt)x(t− τ) + L(σt)u(t) + G(σt)v(t)]dt

+ [U(σt)x(t) + Uτ(σt)x(t− τ) + J(σt)u(t) + F(σt)v(t)]dω(t),

z(t) = H(σt)x(t) + Hτ(σt)x(t− τ) + D(σt)v(t), ∀t ∈ [0, T̃],

x(t) = ψ(t), σt = σ0, ∀t ∈ [−τ, 0],

(1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control input, and z(t) ∈ Rq is the
control output. S(σt), Sτ(σt), L(σt), G(σt), U(σt), Uτ(σt), J(σt), F(σt), H(σt), Hτ(σt), and
D(σt) are constant matrices, for simplicity. When σt = i, they are denoted as Si, Sτi, Li,
Gi, Ui, Uτi, Ji, Fi, Hi, Hτi, and Di. The time delay is τ ≥ 0. The continuous vector-valued
function ψ(t) is defined on [−τ, 0]; ω(t) is the standard one-dimensional Wiener process
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defined on the probability space (Ω,F ,P) satisfying E[dω(t)] = 0, E[d2ω(t)] = dt; and v(t)
is the external disturbance satisfying∫ t

0
vT(s)v(s)ds < d2, d > 0. (2)

The transition rate of the Markovian process {σt, t ≥ 0} is given by

Pr(σt+4t = j|σt = i) =

{
πij4t + o(4t), i 6= j,
1 + πii4t + o(4t), i = j,

(3)

where {σt, t ≥ 0} takes the values in S = {1, 2, · · · , N}, o(4t) is the order of 4t that
satisfies 4t > 0, and lim

4t→0

o(4t)
4t = 0. πij ≥ 0(i 6= j, i, j ∈ S) is the transition rate of σ(t)

from the mode i at the time t to the mode j at the time t +4t, such that πii = −∑j 6=i πij.
All of the transition rates πij, i, j ∈ S, can be collected into the following transition rate
matrix

Π =


π11 π12 · · · π1N
π21 π22 · · · π2N

... · · · . . .
...

πN1 πN2 · · · πNN

.

Assume that the transition rate is partially unknown, for example, there is a 2× 2 transition
rate matrix

Π1 =

[
π11 π12

? ?

]
where “?” is an unknown element and πij is known. For all πij ∈ S, define S = Li

k + Li
uk,

where

Li
k = {j : if πij is known}, Li

uk = {j : if πij is unknown}.

If Li
k is non-empty, it is described as follows

Li
k = {k

i
1, ki

2, · · · , ki
m, }, 0 ≤ m ≤ N,

where ki
m ∈ S denotes the mth known element in the matrix Π’s ith row.

Definition 1 (FTB). For the given scalars c2 > c1 > 0, T̃ > 0 and the matrix Ri > 0(i ∈ S),
system (1) with u(t) = 0 is FTB with respect to (c1, c2, T̃, Ri, d), if

E[xT(t1)Rix(t1)] ≤ c1 ⇒ E[xT(t2)Rix(t2)] < c2, (4)

and (2) holds, where t1 ∈ [−τ, 0], t2 ∈ [0, T̃] .

Remark 1. FTB can be simplified to FTS with respect to (c1, c2, T̃, Ri) when v(t) = 0. The
FTB/FTS can be used to solve some practical problems, such as the chemical reaction process,
electronic circuit systems, and medicine. For example, the body’s normal systolic blood pressure is
90–140 mmHg. If the body’s systolic blood pressure is greater than 140 mmHg, then one suffers
from high blood pressure disease. One must take blood pressure medicine.
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Definition 2 (H∞ FTB). For the given scalar γ > 0, system (1) with u(t) = 0 is H∞ FTB with
respect to (c1, c2, T̃, Ri, d, γ). If system (1) is FTB and under zero initial condition, for any non-zero
disturbance v(t), the control output z(t) satisfies

E[
∫ T̃

0
zT(t)z(t)dt] < γ2E[

∫ T̃

0
vT(t)v(t)dt]. (5)

When the control problem is considered, the following definition is needed.

Definition 3 (H∞ FTB stabilization). System (1) is finite-time H∞ stabilizable if there exists a
controller u(t) such that the resulting closed-loop system is H∞ FTB.

Lemma 1 (Gronwall–Bellman inequality [52,53]). Let g(t) be a nonnegative continuous func-
tion. If there are positive constants r, q such that

g(t) ≤ r + q
∫ t

0
g(s)ds, 0 ≤ t ≤ T̃, (6)

then

g(t) ≤ rexp(qt), 0 ≤ t ≤ T̃. (7)

Remark 2. Lemma 1 can be reformulated with sharp inequalities. The proof is given in Appendix A.

Lemma 2 (Schur’s complement lemma [54]). For the real matrix H, the real symmetric matrix
S, and the positive-definite matrix U, the below inequalities are equivalent:

S + HU−1HT < 0

and [
S H

HT −U

]
< 0.

3. Main Results

Firstly, we discuss the FTB problem for system (1) (when u(t) = 0) in this section.

Theorem 1. System (1) (when u(t) = 0 ) is FTB with respect to (c1, c2, T̃, Ri, d), if for a real
scalar η ≥ 0, there exist the scalars λi1 > 0, λi2 > 0, symmetric matrices Pi > 0, Qi > 0, and
Oi > 0 satisfying 

Ψi1 PiSτi PiGi UT
i

∗ −Oi 0 UT
τi

∗ ∗ −Qi FT
i

∗ ∗ ∗ −P−1
i

 < 0, (8)

Oi < Ri, (9)

λi1 I < Pi < λi2 I, (10)

c1(λi2 + τ) + λmax(Qi)d2 < c2exp(−ηT̃)λi1, (11)
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where
Ψi1 = ∑

j∈Li
uk

πij[(PiSi)
? + Oi + Pj] + ζ i

k + (1 + πi
k)[(PiSi)

? + Oi],

ζ i
k = ∑

j∈Li
k

πijPj, πi
k = ∑

j∈Li
k

πij, P̄i = R−
1
2

i PiR
− 1

2
i .

Proof. For system (1), we choose a stochastic Lyapunov functional as

V(xt, σt) = xT(t)P(σt)x(t) +
∫ t

t−τ
xT(s)O(σt)(s)x(s)ds. (12)

For each σt = i ∈ S, let L be the differential generating operator of system (1). According
to the Itô formula, it follows that

LV(xt, σt = i)

= xT(t)[(PiSi)
? +

N

∑
j=1

πijPj + Oi]x(t) + [Ξ]T Pi[Ξ]− xT(t− τ)Oix(t− τ)

+ 2xT(t)PiSτix(t− τ) + 2xT(t)PiGiv(t)

= xT(t)[(PiSi)
? + Oi + ∑

j∈Li
uk

πijPj + ζ i
k + ∑

j∈Li
k

πij((PiSi)
? + Oi)]x(t)

+ 2xT(t)Pi[Sτix(t− τ) + Giv(t)] + [Ξ]T Pi[Ξ]− xT(t− τ)Oix(t− τ)

= xT(t)[(1 + πi
k)((PiSi)

? + Oi) + ζ i
k + ∑

j∈Li
uk

πij((PiSi)
? + Oi + Pj)]x(t)

+ 2xT(t)Pi[Sτix(t− τ) + Giv(t)] + [Ξ]T Pi[Ξ]− xT(t− τ)Oix(t− τ)

(13)

where Ξ = Fiv(t) + Uix(t) + Uτix(t− τ).
From (8) and (13), it is easy to obtain

LV(xt, σt = i) < ηV1(xt, σt = i) + vT(t)Qiv(t), ∀t ∈ [0, T̃],

where V1(xt, σt = i) = xT(t)Pix(t), so

LV(xt, σt = i) < ηV(xt, σt = i) + λmax(Qi)vT(t)v(t). (14)

Integrating both sides of (14) from 0 to t (t ∈ [0, T̃]) yields

V(xt, σt = i)−V(x0, σ0) < η
∫ t

0
V(xs, σs)ds + λmax(Qi)

∫ t

0
vT(s)v(s)ds. (15)

Taking the mathematical expectation on both sides of (15), the following is concluded

E[V(xt, σt = i)]− E[V(x0, σ0)] < ηE[
∫ t

0
V(xs, σs)ds] + λmax(Qi)E[

∫ t

0
vT(s)v(s)ds],

i.e.,

E[V(xt, σt = i)] < E[V(x0, σ0)] + η
∫ t

0
E[V(xs, σs)]ds + λmax(Qi)E[

∫ t

0
vT(s)v(s)]ds. (16)

Applying Lemma 1 or the Gronwall–Bellman-type inequality for the three functions [55]
to (16) yields

E[V(xt, σt = i)] < E[V(x0, σ0)]exp(ηt) + λmax(Qi)E[
∫ t

0
vT(s)v(s)ds]exp(ηt). (17)
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Set λ̆i = mini∈Sλmin(Pi) and λ̂i = maxi∈Sλmax(Pi). Together with (10), we have

E[V(xt, σt = i)] = E[
∫ t

t−τ
xT(s)Oix(s)ds] + E[V1(xt, σt = i)]

≥ E[V1(xt, σt = i)] ≥ λ̆iE[xT(t)Rix(t)] ≥ λi1E[xT(t)Rix(t)],
(18)

E[V(x0, σ0 = i)]exp(ηt) = E[xT(0)R
1
2
i PiR

1
2
i x(0)]exp(ηt) + E[

∫ 0

−τ
xT(s)Oix(s)ds]exp(ηt)

≤ c1(λ̂i + τ)exp(ηT̃) ≤ c1(λi2 + τ)exp(ηT̃),
(19)

λmax(Qi)E[
∫ t

0
vT(s)v(s)ds]exp(ηt) < λmax(Qi)d2exp(ηT̃). (20)

From conditions (17) to (20), it is derived

E[xT(t)Rix(t)] ≤ exp(ηT̃)[
(τ + λi2)c1 + λmax(Qi)d2

λi1
]. (21)

For all t ∈ [0, T̃], E[xT(t)Rix(t)] < c2 holds, which is obtained by

[c1(λi2 + τ) + λmax(Qi)d2]exp(ηT̃)λ−1
i1 < c2,

which is (11). The proof is complete.

Remark 3. If Fi = Gi = 0, then Theorem 1 is reduced to Theorem 1 in [29] .

In the following, we propose three novel types of partially delay-dependent controllers.
One of the controllers is

u(t) = (1− δ(t))Kτ(σt)x(t− τ) + δ(t)K(σt)x(t), (22)

where Kτ(σt) and K(σt) represent the control gains, and δ(t) is the Bernoulli variable defined
as

δ(t) =

{
1, if x(t) is available,
0, if x(t− τ) is available,

and satisfies

Pr{δ(t) = 1} = δ, Pr{δ(t) = 0} = 1− δ.

Furthermore,

E[(δ(t)− δ)2] = δ(1− δ) = β2, E[δ(t)− δ] = 0.

Substituting (22) in (1), we have
dx(t) =[Ŝ(σt)x(t) + Ŝτ(σt)x(t− τ) + G(σt)v(t) + (δ(t)− δ)W(σt)]dt

+ [Û(σt)x(t) + Ûτ(σt)x(t− τ) + F(σt)v(t) + (δ(t)− δ)Z(σt)]dω(t),

z(t) = H(σt)x(t) + Hτ(σt)x(t− τ) + D(σt)v(t), ∀t ∈ [0, T̃],

x(t) = ψ(t), σt = σ0, ∀t ∈ [−τ, 0],

(23)
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where

Ŝ(σt) = S(σt) + δL(σt)K(σt), Ŝτ(σt) = Sτ(σt) + (1− δ)L(σt)Kτ(σt),

W(σt) = − L(σt)Kτ(σt)x(t− τ) + T(σt)K(σt)x(t), Û(σt) = U(σt) + δJ(σt)K(σt),

Ûτ(σt) = Uτ(σt) + (1− δ)J(σt)Kτ(σt), Z(σt) = −J(σt)Kτ(σt)x(t− τ) + J(σt)K(σt)x(t).

The following theorem gives the sufficient condition of H∞ FTB for the closed-loop
system (23) via controller (22).

Theorem 2. System (23) is H∞ FTB with respect to (c1, c2, T̃, Ri, d, γ), if for a real scalar η ≥ 0,
there exist the scalars γ > 0, λi1 > 0, λi2 > 0, matrices Xi > 0, Ōi > 0, and Yi, Yτi satisfying

Ψ̃i1 Ψ̃i2 GiXi HT
i Ψ̃i3 Ψ̃i4 Xi

∗ Ψ̃i5 0 HT
τi Ψ̃i6 Ψ̃i7 0

∗ ∗ −γ2 I Di FT
i 0 0

∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ −Xi 0 0
∗ ∗ ∗ ∗ ∗ −Xi 0
∗ ∗ ∗ ∗ ∗ ∗ −Ōi


< 0, (24)

R−1
i < Ōi, (25)

[
−λi1 R−

1
2

i
∗ −Xi

]
< 0, (26)

−2R−
1
2

i + Xi + λi1 I < 0, (27)

c1(λi2 + τ) + γ2d2 < c2e−ηT̃λi1, (28)

where

Ψ̃i1 = (1 + Xiπ
i
k)(SiXi + δLiYi)

? + Xiζ
i
kXT

i

+ Xi ∑
j∈Li

uk

πij[(SiXi + δLiYi)
? + X−1

j XT
i ]− ηXi,

Ψ̃i2 = SτiXi + (1− δ)LiYτi, Ψ̃i3 = XiUT
i + δYT

i JT
i , Ψ̃i4 = βYT

i JT
i ,

Ψ̃i5 =− 2Xi + Ōi, Ψ̃i6 = XiUT
τi + (1− δ)YT

τi J
T
i , Ψ̃i7 = −βYT

τi J
T
i .

Moreover, the gains of controller (22) are

Ki = YiX−1
i , Kτi = YτiX−1

i .
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Proof. Choosing the Lyapunov functional (12) for system (23), we obtain

LV(xt, σt = i)

= xT(t)[(PiŜi)
? +

N

∑
j=1

πijPj]x(t) + 2xT(t)PiGiv(t) + 2xT(t)PiŜτix(t− τ)

+ xT(t)Oix(t)− xT(t− τ)Oix(t− τ) + β2ZT
i PiZi + Ξ̃T PiΞ̃

= xT(t)[(1 + πi
k)(PiŜi)

? + ζ i
k + ∑

j∈Li
uk

πij((PiŜi)
? + Pj) + Oi]x(t)

+ 2xT(t)PiGiv(t) + β2ZT
i PiZi + Ξ̃T PiΞ̃

− xT(t− τ)Oix(t− τ) + 2xT(t)PiŜτix(t− τ),

(29)

where Ξ̃ = Fiv(t) + Ûix(t) + Ûτix(t− τ).
Let Ōi = O−1

i per (24) and the following inequality

−XiOiXi ≤ −Xi − Xi + Ōi, . (30)

The following result is obtained

Ψ̃i1 Ψ̃i2 GiXi HT
i Ψ̃i3 Ψ̃i4 Xi

∗ Ψ́i5 0 HT
τi Ψ̃i6 Ψ̃i7 0

∗ ∗ −γ2 I Di FT
i 0 0

∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ −Xi 0 0
∗ ∗ ∗ ∗ ∗ −Xi 0
∗ ∗ ∗ ∗ ∗ ∗ −Ōi


< 0, (31)

where Ψ́i5 = −XiOiXi.
By pre- and post-multiplying both sides of (31), respectively, by diag {X−1

i , X−1
i , I, I, I, I, I}

and diag {X−1
i , X−1

i , I, I, I, I, I}T ; denoting Xi = P−1
i , Yi = KiXi, Yτi = KτiXi; and accord-

ing to Lemma 2, one obtains Πi1 Πi2 Πi3
∗ −γ2 I + FT

i PiFi Di
∗ ∗ −I

 < 0, (32)

where

Πi1 =

[
Ω̂i1 Ω̂i2
∗ Ω̂i3

]
,

Ω̂i1 = (1 + πi
k)(PiSi + δPiLiKi)

? + ζ i
k

+ ∑
j∈Li

uk

πij((PiSi + δPiLiKi)
? + Pj) + Oi − ηPi

+ (Ui + δJiKi)
T Pi(Ui + δJiKi) + β2(JiKi)

T Pi(JiKi),

Ω̂i2 = PiSτi + Pi(LiKτ i) + β2(JiKi)
T Pi(JiKτi)

+ (Ui + δJiKi)
T Pi(Uτi + (1− δ)JiKτi),

Ω̂i3 =−Oi + β2(JiKτi)
T Pi(JiKτi)

+ (Uτi + δJiKτi)
T Pi(Uτi + (1− δ)JiKτi),

Πi2 =

[
PiGi + (Ui + δJiKi)

T PiFi
(Uτi + (1− δ)JiKτi)

T PiFi

]
, Πi3 =

[
Hi Hτi

]T .
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By pre- and post-multiplying (32) by diag [xT(t) xT(t− τ) vT(t) zT(t)] and its trans-
pose, respectively, and comparing it with (29), it is seen that

LV(xt, σt = i) < ηV1(xt, σt = i) + γ2vT(t)v(t)− zT(t)z(t).

Then, one has

LV(xt, σt = i) < ηV(xt, σt = i) + γ2vT(t)v(t)− zT(t)z(t). (33)

Under zero initial condition, taking mathematical expectation, and integrating both sides
of (33) from 0 to t (t ∈ [0, T̃]), by applying Lemma 1, it is deduced that

E[V(xt, σt = i)] < eηT̃{γ2E[
∫ T̃

0
vT(t)v(t)dt]− E[

∫ T̃

0
zT(t)z(t)dt]}. (34)

It is also clear that (34) implies

E[
∫ T̃

0
zT(t)z(t)dt] < γ2E[

∫ T̃

0
vT(t)v(t)dt].

By (33), we obtain

LV(xt, σt = i) < ηV(xt, σt = i) + γ2vT(t)v(t). (35)

Because of Ri > 0, it is easy to see that (9) is the actual condition (26). For (10), it is
equivalent to Pi < λi2 I and Pi < λi2 I, that is,

−λi2 I + R−
1
2

i PiR
− 1

2
i < 0, (36)

and

λi1 I − R−
1
2

i PiR
− 1

2
i < 0. (37)

According to Lemma 2, (26) is equivalent to (36), and (37) is acquired by (27) and (30). From
Theorem 1, if Qi = γ2 I, it is concluded that (14) and (35) are equivalent. The rest is similar
to the proof of (16)–(21), which is obtained by conditions (9), (10), and (28). This completes
the proof.

Remark 4. Compared with the literature [42–44], controller (22) combines two traditional con-
trollers, u(t) = Kx(t) and u(t) = Kτ(t)x(t− τ), and therefore is more general and has broader
applications, such as networked control systems [45] .

With the idea behind controller (22), another stabilizing controller without a Bernoulli
variable is devised

u(t) = Kτ(σt)x(t− τ) + K(σt)x(t). (38)

Using controller (38) in system (1), which includes the Bernoulli variable, one obtains
dx(t) =[S(σt)x(t) + Sτ(σt)x(t− τ) + G(σt)v(t) + δ(t)L(σt)u(t)]dt

+ [U(σt)x(t) + Uτ(σt)x(t− τ) + (1− δ(t))J(σt)u(t) + F(σt)v(t)]dω(t),

z(t) =H(σt)x(t) + Hτ(σt)x(t− τ) + D(σt)v(t), ∀t ∈ [0, T̃],

x(t) =ψ(t), σt = t0, ∀t ∈ [−τ, 0],



Entropy 2023, 25, 402 10 of 20

which is rewritten as follows
dx(t) =[Ŝ(σt)x(t) + S̄τ(σt)x(t− τ) + G(σt)v(t) + (δ(t)− δ)W̄(σt)]dt

+ [Ū(σt)x(t) + Ûτ(σt)x(t− τ) + F(σt)v(t) + (δ(t)− δ)Z̄(σt)]dω(t),

z(t) =H(σt)x(t) + Hτ(σt)x(t− τ) + D(σt)v(t), ∀t ∈ [0, T̃],

x(t) =ψ(t), σt = t0, ∀t ∈ [−τ, 0],

(39)

where

S̄τ(σt) = Sτ(σt) + δL(σt)Kτ(σt),

W̄(σt) = L(σt)K(σt)x(t) + L(σt)Kτ(σt)x(t− τ),

Ū(σt) = U(σt) + (1− α)J(σt)K(σt),

Z̄(σt) = J(σt)K(σt)x(t) + J(σt)Kτ(σt)x(t− τ).

The following theorem is developed, which is a sufficient condition of H∞ FTB for the
closed-loop system (39).

Theorem 3. System (39) is H∞ FTB with respect to (c1, c2, T̃, Ri, d, γ), if for a real scalar η ≥ 0,
there exist the constants γ > 0, λi1 > 0, λi2 > 0, the symmetric matrix Xi > 0, the matrices
Ōi > 0 and Yi, Yτi satisfying (25)–(28), and

Ψ̃i1 Ψ̂i2 GiXi HT
i Ψ̂i3 Ψ̃i4 Xi

∗ Ψ̃i5 0 HT
τi Ψ̃i6 Ψ̂i7 0

∗ ∗ −γ2 I Di FT
i 0 0

∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ −Xi 0 0
∗ ∗ ∗ ∗ ∗ −Xi 0
∗ ∗ ∗ ∗ ∗ ∗ −Ōi


< 0, (40)

where
Ψ̂i2 = SτiXi + δLiYτi, Ψ̂i7 = βYT

τi J
T
i , Ψ̂i3 = XiUT

i + (1− δ)YT
i JT

i .

The gains of controller (38) are presented by

Ki = YiX−1
i , Kτi = YτiX−1

i .

Proof. Choosing the Lyapunov functional (12) for system (39), then LV(xt, σt = i) satisfies

LV(xt, σt = i)

= xT(t)[(PiŜi)
? +

N

∑
j=1

πijPj]x(t) + 2xT(t)PiS̄τix(t− τ)

+ 2xT(t)PiGiv(t) + β2Z̄T
i PiZ̄i + xT(t)Oix(t)

+ Ξ̂T PiΞ̂− xT(t− τ)Oix(t− τ)

= xT(t)[(1 + πi
k)(PiŜi)

? + ζ i
k + ∑

j∈Li
uk

πij((PiŜi)
? + Pj) + Oi]x(t)

+ 2xT(t)PiS̄τix(t− τ) + β2Z̄T
i PiZ̄i + Ξ̂T PiΞ̂

+ 2xT(t)PiGiv(t)− xT(t− τ)Oix(t− τ),

(41)

where Ξ̂ = Fiv(t) + Ũix(t) + Ûτix(t− τ).
The next steps are the same as those for the proof of Theorem 2. Pre- and post-multiply

(40) by diag {X−1
i , X−1

i , I, I, · · · , I} and its transpose, respectively. Then, by Schur’s com-
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plement and pre- and post-multiplying both sides by [xT(t) xT(t− τ) vT(t) zT(t)] and its
transpose, respectively, and, by comparing it with (41), one obtains

LV(xt, σt = i) < ηV(xt, σt = i) + γ2vT(t)v(t)− zT(t)z(t).

The following step is similar to Theorem 2 and is omitted here. The proof ends.

Remark 5. If Kτ(σt) = 0, then Theorem 3 is reduced to Theorem 3.3 in [51].

For system (1), another controller experiencing a disordering phenomenon is described
as

u(t) =[(1− δ(t))Kτ(σt) + δ(t)K(σt)]x(t)

+ [(1− δ(t))K(σt) + δ(t)Kτ(σt)]x(t− τ),
(42)

which implies

u(t) =


Kτ(σt)x(t− τ) + K(σt)x(t),

if δ(t) = 1 or without disordering,
K(σt)x(t− τ) + Kτ(σt)x(t),

if δ(t) = 0 or with disordering.

It is easy to see that (42) is the same as

u(t) =[(1− δ)Kτ(σt) + δK(σt) + (δ(t)− δ)(K(σt)− Kτ(σt))]x(t)

+ [(1− δ)K(σt) + δKτ(σt) + (δ(t)− δ)(Kτ(σt)− K(σt))]x(t− τ).
(43)

Controller (43) is applied to system (1), and let δt = δ(t)− δ. Then, we have

dx(t) = [S̃(σt)x(t) + +S̃τ(σt)x(t− τ) + Gv(t)

+ δtL(σt)(K(σt)− Kτ(σt))x(t)

+ δtL(σt)(Kτ(σt)− K(σt))x(t− τ)]dt

+ [Ũ(σt)x(t) + Fv(t) + Ũτ(σt)x(t− τ)

+ δt J(σt)(K(σt)− Kτ(σt))x(t)

+ δt J(σt)(Kτ(σt)− K(σt))x(t− τ)]dω,

z(t) = H(σt)x(t) + Hτ(σt)x(t− τ) + D(σt)v(t), ∀t ∈ [0, T̃],

x(t) = ψ(t), σt = t0, ∀t ∈ [−τ, 0],

(44)

where

S̃(σt) = S(σt) + L(σt)[δK(σt) + (1− δ)Kτ(σt)],

S̃τ(σt) = Sτ(σt) + L(σt)[δKτ(σt) + (1− δ)K(σt)],

Ũ(σt) = U(σt) + J(σt)[δK(σt) + (1− δ)Kτ(σt)],

Ũτ(σt) = Uτ(σt) + J(σt)[δKτ(σt) + (1− δ)K(σt)].

Then, the following theorem is developed.
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Theorem 4. For the given real scalar η ≥ 0, system (44) is H∞ FTB with respect to (c1, c2, T̃, Ri, d, γ),
if there exist γ > 0, λi1 > 0, λi2 > 0, the matrices Xi > 0, Ōi > 0 and Yi, Yτi satisfying (25)–(28),
and 

Ψ̆i1 Ψ̆i2 GiXi HT
i Ψ̆i3 Ψ̆i4 Xi

∗ Ψ̃i5 0 HT
τi Ψ̆i6 Ψ̆i7 0

∗ ∗ −γ2 I Di FT
i 0 0

∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ −Xi 0 0
∗ ∗ ∗ ∗ ∗ −Xi 0
∗ ∗ ∗ ∗ ∗ ∗ −Ōi


< 0. (45)

where

Ψ̆i1 = (1 + Xiπ
i
k)(SiXi + δLiYi + (1− δ)LiYτi)

? + Xiζ
i
kXT

i − ηXi

+ Xi ∑
j∈Li

uk

πij[(SiXi + δLiYi + (1− δ)LiYτi)
? + X−1

j XT
i ],

Ψ̆i2 = SτiXi + δLiYτi + (1− δ)LiYi, Ψ̆i3 = XiUT
i + δYT

i JT
i + (1− δ)YT

τi J
T
i ,

Ψ̆i4 = β(YT
i JT

i −YT
τi J

T
i ), Ψ̆i7 = β(YT

τi J
T
i −YT

i JT
i ),

Ψ̆i6 = XiUT
τi + δYT

τi J
T
i + (1− δ)YT

i JT
i .

Then, the gains of controller (42) are obtained by

Ki = YiX−1
i , Kτi = YτiX−1

i .

Proof. Choosing the Lyapunov functional (12) for system (44), it is obtained that

LV(xt, σt = i)

= xT(t)[(PiS̃i)
? +

N

∑
j=1

πijPj]x(t) + β2Z̆T
i PiZ̆i

+ 2xT(t)PiGiv(t) + 2xT(t)PiS̃τix(t− τ)

+ xT(t)Oix(t) + Ξ̆T PiΞ̆− xT(t− τ)Oix(t− τ)

= xT(t)[(1 + πi
k)(PiS̃i)

? + ζ i
k + Pj + Oi]x(t)

+ 2xT(t)PiS̃τix(t− τ) + 2xT(t)PiGiv(t)

+ β2Z̆T
i PiZ̆i + Ξ̆T PiΞ̆− xT(t− τ)Oix(t− τ).

(46)

where
Ξ̆ = Ũix(t) + Ũτix(t− τ) + Fiv(t),

Z̆i = Ji(Ki − Kτi)x(t) + Ji(Kτ i− Ki)x(t− τ).

Pre- and post-multiply (45), respectively, by diag {X−1
i , X−1

i , I, I, · · · , I} and its transpose.
Then, from Lemma 2, by pre- and post-multiplying both sides by [xT(t) xT(t− τ) vT(t) zT(t)]
and its transpose, respectively, and comparing it with (46), one obtains

LV(xt, σt = i) < ηV(xt, σt = i) + γ2vT(t)v(t)− zT(t)z(t).

The next steps are same as Theorem 2 and are omitted here. The proof is complete.

Remark 6. If δ(t) = 1 or controller (42) does not experience a disordering phenomenon, then
Theorem 4 is reduced to Theorem 3.
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4. Numerical Examples

In this part, three examples are given to illustrate the effectiveness of the proposed
results.

Example 1. Consider system (1) with the following parameters:

Mode1:

S1 =

[
−3.1 0.3

1 0.1

]
, Sτ1 =

[
−1.7 1.1

0 0.2

]
, U1 =

[
0.61 0.13
0.17 0.15

]
, Uτ1 =

[
−0.2 0.1

0 −0.1

]
,

G1 =

[
0.1 −1.3
0.2 −0.9

]
, F1 =

[
−0.2 −0.7
1.9 0

]
, L1 =

[
2.1
0.9

]
, J1 =

[
1.1
0.5

]
, R1 =

[
1 0
0 1

]
,

H1 =

[
−0.4 0.1
0.7 0.1

]
, Hτ1 =

[
0.1 0.2
0.2 −0.3

]
, D1 =

[
−0.2 0.5
0.3 −0.1

]
.

Mode2:

S2 =

[
−3.9 0.9
1.1 0

]
, Sτ2 =

[
−0.7 1.2

0 0.3

]
, U2 =

[
0.5 0.3
0.1 0.3

]
, Uτ2 =

[
−0.2 0.3
0.5 −0.1

]
,

G2 =

[
0.3 −0.9
0.7 −1.1

]
, F2 =

[
−0.1 −1
0.2 0.1

]
, L2 =

[
1.6
1.5

]
, J2 =

[
1.3
0.4

]
, R2 =

[
1 0
0 1

]
,

H2 =

[
−0.3 0.1
0.9 0.3

]
, Hτ2 =

[
0.1 0.2
0.1 −0.3

]
, D2 =

[
−0.2 0.6
0.2 −0.1

]
.

The partially unknown transition rate matrix is

Π =

[
−0.5 0.5

? ?

]
.

Moreover, T̃ = 10, c1 = 0.5, τ = 1, δ = 0.6, d = 1, x0 = [0.1 − 0.05]T , and v(t) = 1
(1+t2)

.
From Theorem 2, the feasible solution can be found when η ∈ [0, 1.90]. The relationship
curves of η with c2 and γ are shown in Figures 1 and 2, respectively. From Figure 1, it
is seen that the minimum value of c2 is 32.3726 and the corresponding γ = 2.8132 when
η = 0.05.

When η = 0.05, the gains of controller (22) are

K1 =
[
−1.8478 −1.1423

]
, Kτ1 =

[
0.1438 −0.2441

]
,

K2 =
[
−1.1312 −1.4924

]
, Kτ2 =

[
0.0100 −0.2335

]
.

This indicates that under controller (22), when E[xT(t1)Rix(t1)] ≤ 0.5, t1 ∈ [−1, 0], then
E[xT(t2)Rix(t2)] < 32.3726, t2 ∈ [0, 1], and E[

∫ 1
0 zT(t)z(t)dt] < 2.81322E[

∫ 1
0 vT(t)v(t)dt].

According to the conditions mentioned above, Figure 3 shows the state response of
system (23), where the small figures represent the curves of a possible Markovian mode
evolution and the evolution of the Bernoulli variable δ(t) with δ = 0.6. The evolution of
E[xT(t)Rx(t)] is shown in Figure 4, which implies that the closed-loop system (23) is H∞
FTB.
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Figure 1. When η ∈ [0, 1.90], the curve of c2.

Figure 2. When η ∈ [0, 1.90], the curve of γ.

Figure 3. The state response of system (23).
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In order to show the advantages of Theorem 2 and the influence of the probability δ,
Figure 5 depicts the relationship between c2 and δ. It is seen that c2 takes the minimum
value when δ = 0.78. This means controller (22) has less conservatism.

Figure 4. The evolution of E[xT(t)Rx(t)] for system (23).

Example 2. Consider system (39) with the parameters of Example 1. By Theorem 3, we obtain the
feasible solution when η ∈ [0, 1.90]. The minimum value of c2 is 67.8162 and the corresponding
γ = 5.0148 when η = 0. The gains of controller (38) are

K1 =
[

2.1007 −1.3952
]
, Kτ1 =

[
0.3184 −0.1772

]
,

K2 =
[
−0.2674 −1.8616

]
, Kτ2 =

[
0.1328 −0.4017

]
.

Figures 6 and 7 show the state response of system (39) and the evolution of E[xT(t)Rx(t)],
respectively. From these figures, it is seen that the closed-loop system (39) is H∞ FTB by the
designed controller (38). This implies that Theorem 3 is valid.

Figure 5. The relationship between δ and c2.
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Figure 6. The state response of system (39).

Figure 7. The evolution of E[xT(t)Rx(t)] for system (39).

Example 3. Consider system (44) with the system parameters of Example 1. By Theorem 4, the feasible
region is η ∈ [0, 1.89]. When η = 0.03, the minimum value of c2 is 310.9813, and the corresponding
γ = 9.7316. The gains of controller (42) are

K1 =
[
−0.5970 −0.3385

]
, Kτ1 =

[
0.8791 −0.2409

]
,

K2 =
[
−0.6966 −0.3475

]
, Kτ2 =

[
0.6689 −0.2812

]
.

Similar to Example 2, the state response of system (44) is shown in Figure 8, and the
evolution of E[xT(t)Rx(t)] is drawn in Figure 9. It is concluded from these plots that the
closed-loop system (44) is H∞ FTB, by the designed controller (42). Therefore, Theorem 4 is
valid.
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Figure 8. The state response of system (44).

Figure 9. The evolution of E[xT(t)Rx(t)] for system (44).

5. Conclusions

In this paper, the FTB and H∞ FTB problems of time-delay Markovian jump systems
with a partially unknown transition rate have been studied. A sufficient condition of FTB for
the given system is obtained by the LMIs technique and the Lyapunov functional method.
A new controller that is partially time delay-dependent is designed. This controller has the
advantages of strong generality and less conservative property. Based on PDDCs, two new
kinds of controllers are derived; one does not contain the Bernoulli variable, and the other
describes controllers experiencing a disordering phenomenon. Combined with LMIs, some
sufficient conditions of H∞ FTB for closed-loop systems are given via the designed controllers.
Three numerical examples illustrate that the proposed methods are effective. The results in
this paper can be extended to the H∞ filtering problem for Markovian jump systems with
time-varying delays. In the future, the FTB and H∞ FTB problems of fractional systems will
be considered by means of the theories of fractional calculus and negative probabilities [56].
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Appendix A

In this section, Lemma 1 is reformulated with sharp inequalities and also proved.
Let g(t) be a nonnegative continuous function. If there are positive constants r, q

such that

g(t) < r + q
∫ t

0
g(s)ds, 0 ≤ t ≤ T̃, (A1)

then

g(t) < rexp(qt), 0 ≤ t ≤ T̃. (A2)

Proof. Let

U(t) = r + q
∫ t

0
g(s)ds, 0 ≤ t ≤ T̃. (A3)

Then, the derivative of U(t) is U̇(t) = qg(t). From (A1), we have U̇(t) < qU(t), i.e.,
U̇(t)− qU(t) < 0. Then, it is deduced that

U̇(t)exp(−qt)− qU(t)exp(−qt) < 0,

which implies that the derivative of U(t)exp(qt) satisfies (U(t)exp(−qt))′ < 0. From the
monotonicity, U(t)exp(−qt) < U(0) = r, which guarantees that U(t) < rexp(qt). Together
with (A1) and (A3), (A2) is obtained.
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