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Abstract: Existing secure multiparty computation protocol from secret sharing is usually under this
assumption of the fast network, which limits the practicality of the scheme on the low bandwidth
and high latency network. A proven method is to reduce the communication rounds of the protocol
as much as possible or construct a constant-round protocol. In this work, we provide a series of
constant-round secure protocols for quantized neural network (QNN) inference. This is given by
masked secret sharing (MSS) in the three-party honest-majority setting. Our experiment shows that
our protocol is practical and suitable for low-bandwidth and high-latency networks. To the best of
our knowledge, this work is the first one where the QNN inference based on masked secret sharing
is implemented.

Keywords: secure inference; quantized neural network; masked secret sharing

1. Introduction

As an essential application of machine learning as a service (MLaaS) [1], neural
network inference is widely used in image recognition [2,3], medical diagnosis [4], and
so on. In the traditional MLaaS paradigm, the model owner provides a trained neural
network, and a user, who holds some queries, calls an API of MLaaS to enjoy the inference
service. However, with the increase in people’s privacy awareness and the perfection of
laws and regulations [5], the traditional MLaaS paradigm is being challenged. On the one
hand, the user is unwilling to reveal queries and inference results to the model owner. On
the other hand, the trained model is intellectual property belonging to the model owner
and cannot be revealed to the user. Secure inference utilizes cryptographic techniques to
ensure that sensitive information is not revealed to each other.

In general, different cryptographic tools have different concerns. Fully homomorphic
encryption (FHE) is communication-efficient but computation-expensive, which makes it
unpractical [6]. As an important component of secure multiparty computation (MPC), secret
sharing (SS) is computation-efficient but more communication rounds are required [7,8].
Existing works from secret sharing are usually under this assumption of the fast network,
which has a high-bandwidth and low-latency network, for example, in the local area
network (LAN) setting. However, all these works are inefficient in low-bandwidth and high-
latency networks, even under the semi-honest model. A fast network is difficult to achieve
in the real world, especially in the wide area network (WAN) setting. A proven method is
to reduce communication rounds of the protocol as much as possible or construct protocols
with constant rounds. In addition, these methods are also important for computationally
intensive neural network inference.

Recently, QNN has gained much attention. The quantization technique reduces the
overall model computational overhead by limiting the representation bit-width of data
and parameters in the model at the expense of a certain level of model accuracy. More
precisely, quantization converts the float-point arithmetic (FP32, 32-bit floating point, single
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precision) of neural networks into the fixed-point arithmetic (e.g., INT8, 8-bit fixed-point
integer) since the latter is easy to deploy in resource-limited devices, such as laptops and
mobile devices. We wonder the following: could we achieve constant-round communication
protocols based on secret sharing for QNN inference? As we will show, the answer is yes with
our proposed protocols.

1.1. Related Work on Secure Inference

Researchers in recent years have proposed several solutions for secure inference.
Gilad-Bachrach et al. proposed CryptoNets [6] mainly based on leveled homomorphic

encryption, which allows a limited number of multiplication operations, and thus it is more
efficient than the scheme based on FHE. However, the computation cost of CryptoNets is
still high and unacceptable. Instead of relying on homomorphic encryption, some works
introduce garbled circuit (GC) as the underlying cryptographic tool for secure inference.
For example, DeepSecure [9] was the first work mainly based on GCs with free-XOR
optimization, but it still has bad communication efficiency, even in low-latency networks.
Some other works based on three-party replicated secret sharing (RSS) focus on obtaining
high throughput of secure inference, such as ABY3 [7] and FALCON [8]. Most works use
multiple protocols to achieve better performance. For example, Mohassel and Zhang
presented SecureML [10], which utilizes additive secret sharing (ASS) for linear operations
and GCs for piecewise-approximated activation.

There are some works related to QNN. According to the bitwidth of weight, a QNN can
be binary neural network, ternary neural network, and other varieties. Riazi et al. presented
XONN [11] for the binary neural network, where the values of weights and activations are
restricted to the binary set {−1,+1}. The multiplication is replaced by XNOR operations,
which can be computed by GCs. Ibarrondo et al. proposed BANNERS [12] for binary
neural network inference based on three-party RSS. Zhu et al. proposed SecureBiNN [13]
for binary neural network inference based on three-party RSS and three-party oblivious
transfer (OT). Agrawal et al. proposed QUOTIENT [14] for ternary neural networks, where
the weight is restricted to the ternary set {−1, 0,+1}. Ternary multiplication can be done
by using 1-out-of-2 OT. Dalskov et al. presented SecureQ8 [15] based on three-party RSS in
the different threat models for INT8 quantization. Shen et al. proposed a practical secure
two-party framework ABNN2 for arbitrary-bitwidth QNN inference [16]. A few works
focus on the secure training of QNN, such as [17]. However, reduction in communication
rounds is not considered in all these works.

1.2. Our Contributions

This work considers QNN inference with INT8 quantization in the honest majority
setting. In detail, our contributions are described as follows:

• We provide a series of constant-round communication complexity secure protocols for
QNN inference, including secure truncation, conversion, and clamping protocol. We
achieve this by constructing protocols based on MSS.

• We give detailed proof of security in the semi-honest model. Concretely, our protocols
are secure against one single corruption.

• The experiment shows that our protocols are practical and suitable for the high-latency
network. Compared to the previous work for quantized inference, our protocols are
1.5 times faster in the WAN setting.

The remainder of this work is organized as follows. In Section 2, we define notations
and primitives related to cryptographic tools, security model, neural networks, and quan-
tization. In Section 3, we show the architecture for QNN secure inference. In Section 4,
we give several building blocks of QNN inference and provide security analysis of our
protocols. In Section 5, we provide our QNN structure. In Section 6, we implement our
protocols and then report the experimental results. Finally, we conclude this work in
Section 7.
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2. Preliminaries
2.1. Basic Notations

At first, we define the notations used in this work in Table 1.

Table 1. Description of notations used in this work.

Notation Description
c≡ Computationally indistinguishable
κ The computational security parameter
Pj The computing party, where j ∈ {0, 1, 2}
A The tensor or matrix
a The vector
` The logarithm of the ring size

Z2` ,Z2 The integer ring and the boolean ring
[a, b] The real interval
[a, b]Z The discrete interval [a, b] ∩Z

x ∈R D Uniform random sample x from distribution D
(a ≤? b) Return 1 if a ≤ b holds, and 0 otherwise

Clamp(x; a, b) Set x ← a if x < a, x ← b if x > b, and x ← x otherwise

2.2. Threat Model and Security

In this work, we consider three non-colluding servers as the computing parties of
MPC to execute secure inference tasks, where static, semi-honest adversaryA corrupts only
a single party during the protocol execution. The semi-honest adversary corrupts one of
three parties and obtains its view (including its input, random tape, and received messages
during the protocol execution), but follows the protocol specification exactly.

Our protocols rely on secure pseudo-random function (PRF), and thus, we can only
provide security against a computationally bounded adversary; hence, all our protocols are
computationally secure. Formally, we can define semi-honest security as follows:

Definition 1 (Semi-honest Security [18]). Let Π be a three-party protocol in the real world, F :
({0, 1}∗)3 → ({0, 1}∗)3 be the ideal funcationality in the ideal world. We say Π securely computes
F in presence of a single semi-honest adversary if for every corrupted party Pi (i ∈ {0, 1, 2}) and
every input x ∈ ({0, 1}∗)3, there exists an efficient simulator Sim such that

{Sim(xi,Fi(x)),F (x)} c≡ {Viewi,Π(x),OutputΠ(x)}, (1)

where |x1| = |x2| = |x3|, Viewi,Π(x) is the view of Pi, OutputΠ(x) is the output of all parties, and
Fi(x) is the i-th output of F (x).

In other words, a protocol Π is computationally secure in the semi-honest model, if
and only if the view of the ideal world simulator and the view of the real world adversary
is computationally indistinguishable.

2.3. Secret Sharing Semantics

Let x be the secret. Similar to [19], we use the following sharing in this work.

• 〈·〉-sharing: ASS among P1 and P2. The dealer samples random elements x1, x2 ∈R Z2`

as the shares of x, such that x = x1 + x2 mod 2` holds. The dealer distributes the
shares to each party such that Pi for i ∈ {1, 2} holds xi. For simplicity, we denote 〈x〉i
as the additive shares of Pi, and 〈x〉 := (x1, x2).

• J·K-sharing: MSS among all parties. The dealer samples random element λx ∈R Z2` ,
computes mx = x + λx mod 2`, and then shares λx = 〈λx〉1 + 〈λx〉2 among P1 and
P2 by 〈·〉-sharing. The dealer distributes the shares to each party, such that P0 holds
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(〈λx〉1, 〈λx〉2), P1 holds (mx, 〈λx〉1), and P2 holds (mx, 〈λx〉2). For simplicity, we
denote JxKi as the masked shares of Pi, and JxK := (mx, 〈λx〉1, 〈λx〉2).
Table 2 summarizes the individual shares of the parties for the aforementioned secret

sharing. It is easy to see that each party only misses one share to reconstruct the secret x.

Table 2. The shares of different secret-sharing schemes for each party, where x is the secret.

Scheme Notation P0 P1 P2

ASS 〈x〉 := (〈x〉1, 〈x〉2) — x1 x2
MSS JxK := (mx, 〈λx〉1, 〈λx〉2) (〈λx〉1, 〈λx〉2) (mx, 〈λx〉1) (mx, 〈λx〉2)

The above steps can also be extended to Z2 by replacing addition/subtraction with
XOR and multiplication with AND. We use both Z2` and Z2 as the computation fields and
refer to the shares as arithmetic sharing and boolean sharing, respectively. We denote the
Boolean sharing with B in the superscript, which means the Boolean sharing of bit b is 〈b〉B
and JbKB depending on the type of sharing semantics.

Note that both 〈·〉-sharing and J·K-sharing satisfy the linearity property, which allows
the parties to compute the linear combination of two shared values non-interactively. We
only introduce the basic operations of MSS in this section. To reduce communication costs,
FRand is used (cf. Appendix A).

Suppose that Pi for i ∈ {0, 1, 2} holds the shares JxK = (mx, 〈λx〉1, 〈λx〉2), JyK =
(my, 〈λy〉1, 〈λy〉2), and public constants c, d, e.

• For linear combination z = cx± dy± e, the parties locally compute its shares to be
JzK = (mz, 〈λz〉1, 〈λz〉2) = (c ·mx ± d ·my± e, c · 〈λx〉1± d · 〈λy〉1, c · 〈λx〉2± d · 〈λy〉2).

• For multiplication z = xy, we denote as functionality FMul, then ΠMul can be achieved
as follows [19]:

1. P0 and P1 locally sample random 〈λz〉1 and 〈γxy〉1 by using FRand;
2. P0 and P2 locally sample random 〈λz〉2 by using FRand;
3. P0 locally computes γxy = λxλy and sends 〈γxy〉2 = γxy − 〈γxy〉1 to P2;
4. Pi for i ∈ {1, 2} locally computes 〈mz〉i = (i − 1)mxmy − mx〈λy〉i − my〈λx〉i +

〈λz〉i + 〈γxy〉i;
5. Pi for i ∈ {1, 2} sends 〈mz〉i to P3−i, who locally computes mz = 〈mz〉1 + 〈mz〉2.

It is easy to see that the multiplication requires communication of at most 3` bits and
2 rounds. Note that steps 1–3 are independent of the secret x and y, which can be improved
by using the offline–online paradigm (see Section 3). In this way, the multiplication only
requires 2` bits and 2 rounds in the online phase.

The aforementioned scalar operation can be extended to tensor A or vector α by
sharing the elements of A or α element-wise. We omit the detail here.

2.4. Neural Network

A neural network usually includes many linear and non-linear layers, all stacked on
top of each other such that the output of the previous layer is the input of the next layer.
We summarize the linear layers and non-linear layers as follows.

The linear layers usually include fully connected layer and convolution layer. Both
can be computed by matrix multiplications and additions:

• The fully connected layer can be formulated as y = Wx + b, where y is the output of
the fully connected layer, x is the input vector, W is the weight matrix and b is the bias
vector.

• The convolution layer can be converted into computing the dot product of the matrix
and vector, and then one addition as shown in [20]; thus, it can be formulated as
Y = WX + B.

The non-linear layers introduce nonlinearity into neural networks and allow bound
inputs to a fixed range, for example, evaluating the activation function. In this work, we
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only consider the rectified linear unit (ReLU) activation, which is defined as ReLU(x) =
max(x, 0).

2.5. Quantization

Although there are many different quantization methods [21], we only consider the
linear quantization method proposed by Jacob et al. [22] in this work. This is because the
linear quantization method only involves linear operations, which benefits constructing an
SS-based MPC protocol.

For 8-bit quantization, 32-bit float-point α ∈ R is quantized as an 8-bit integer
a ∈ [0, 28)Z. The relationship between α and a is a dequantized function DS,Z:

α = DS,Z(a) = S · (a− Z), (2)

where S ∈ R+ is called scale, and Z ∈ [0, 28)Z is called zero-point. As pointed out by Jacob
et al. [22], both S and Z are determined at the training phase of the neural network; thus,
(S, Z) is a constant parameter in the inference phase. We use a single set of quantization
parameters for each activation array and weights array in the same neural network layer.

In order to convert FP32 to INT8, we define quantized function QS,Z to be the inverse
of DS,Z, then we have the following:

a ≈ QS,Z(α) = b
α

S
e+ Z, (3)

where b·e is a rounding operation. Note that multiple numbers may map to the same
integer due to the rounding operation; see Figure 1 (cf. [15]).

0 Z 28 − 1
Z

αmin 0 αmax

R

Figure 1. The visualization of quantized function [15], where αmin = −S · Z, αmax = S · (28 − 1− Z).

As an important part of QNN, when we compute the convolution of two quantized
tensors, we have to compute the clamping function Clamp(x; a, b) = min(max(x, a), b) to
bind the quantized result to [0, 28)Z, i.e., Clamp(x; 0, 28 − 1) should be computed. We refer
the reader to [15,22] for more details.

3. The Architecture for Secure Inference

Our secure inference system is built on outsourced computation architecture and is
given in Figure 2. The system has three different roles, which we describe as follows:

• Server: There are three non-colluding servers in our system, denoted as P1, P2, P3.
Three servers can be from different companies in the real world, such as Amazon,
Alibaba, and Google; any collusion will damage their reputations. Similar to prior
works, we assume that all servers know the layer types, the sizes of each layer, and
the number of layers. All servers perform a series of secure protocols proposed in
Section 4 to execute inference tasks for users’ shared queries in a secure way.

• User: The user holds some queries as input and wants to enjoy a secure inference
service without revealing both queries and inference results to others. To do so, the
user uses Equation (3) to convert the query to the 8-bit integer firstly, then uses J·K-
sharing to split quantized queries to its masked shares before uploading to three
servers, and receive the shares of inference results from three servers in the end. Note
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that only the user can reconstruct the final results; the privacy of both queries and
inference results are protected during the secure inference.

• Model Owner: The model owner holds a trained QNN model, which includes all
quantized weights of different layers along with the quantization parameters. As
an important intellectual property belonging to the model owner, the privacy of the
QNN model should be protected. To do so, the model owner uses J·K-sharing to split
quantized weights to its masked shares before deploying to three servers. Once the
deployment is done, the model owner can go offline until the model owner wants to
update the model.

User

Model Owner  

Query

Result

Model

Secure Inference

Server  

Figure 2. System architecture of secure inference.

Similar to prior works of secure inference [8,20], we do not consider black-box attacks
toward neural networks, such as model extraction attacks, model inversion attacks, and
membership inference attacks, since these attacks are independent of the cryptographic
techniques used to make the inference process secure [23].

As pointed out by Dalskov et al. [15], we might not enjoy the benefits of the size
reduction when considering secure inference. Although data and network weights can
be stored by 8-bit integer, the arithmetic operation must be computed modulo 2`. This
work only focuses on reducing communication rounds and computation costs among
three servers.

We use the offline–online paradigm to construct our secure protocols. This paradigm
makes it possible to split the protocol into the offline phase and online phase, where the
offline phase is independent of the input of the parties and the online phase depends on
the specific input. We argue that the user occasionally raises inference requests; the servers
will have enough time to process the offline phase to speed up the execution of upcoming
inference requests [23].

4. Protocols Construction

According to Section 3, the model owner provides the weights of the layer and the
quantization parameters to three servers, which allows us not to consider the impact of
quantization. To construct an efficient, secure inference scheme in the WAN setting, we
need to create a series of building blocks with constant rounds communication for the three
servers, which is the goal of this section. Our main contribution here is to present a secure
truncation, conversion, and clamping protocol for secure inference of three servers. The
other protocols follow the previous work [19], but we still give details for integrity.

4.1. Secure Input Sharing Protocol

Let Pi be the secret owner holding x. We define functionality FShare, which allows the
parties to generate JxK. To achieve FShare, we follow [19] and show it in Protocol 1, which
requires the communication of at most 2` bits and 1 round in the online phase.
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Protocol 1: JxK← ΠShare(Pi, x)

Offline:

• If Pi = P0: P0 and Pk for k ∈ {1, 2} together sample 〈λx〉k ∈R Z2` by using
FRand.

• If Pi = Pk for k ∈ {1, 2}: P0 and Pk together sample 〈λx〉k ∈R Z2` , while P0 and
P3−k together sample 〈λx〉3−k ∈R Z2` , by using FRand.

Online: Pi sends mx = x + λx to Pk for k ∈ {1, 2}, who sets JxK = (mx, 〈λx〉k).

Observe that if both Pi and Pj hold the secret x, then JxK := (mx, 〈λx〉1, 〈λx〉2) can be
generated without any communication by setting some shares to 0 instead of using FRand,
which is inspired by [24]. For simplicity, we still use the same notation to denote this case,
i.e., JxK← FShare(Pi, Pj, x). To achieve FShare, ΠShare can be done as follows:

• (Pi, Pj) = (P0, Pk) for k ∈ {1, 2}: The parties locally set mx = 〈λx〉3−k = 0, 〈λx〉k = −x.
• (Pi, Pj) = (P1, P2): The parties locally set mx = x, 〈λx〉1 = 〈λx〉2 = 0.

4.2. Secure Truncation Protocol

Recall that when the parties execute secure multiplication protocol in the fixed-point
value, we have to deal with the double-precision result. More precisely, when all shared
values are represented as `-bit fixed-point values with d-bit precision, then multiplying
two fixed-point numbers, the result will be 2d-bit precision and must be truncated by d
bits to keep right fixed-point representation. ABY3 [7] proposed the faithful truncation,
which only works on RSS. Although [19] has the same semantics as us, they do not provide
a secure truncation protocol in their work. In this work, we extend the faithful truncation
to MSS as one of our contributions.

We define secure truncation functionality JxK ← FTrunc(Jx′K, d), where x′ has 2d-bit
precision, and x = x′/2d. Suppose that the parties hold Jx′K and random shared truncated
pair (r, rd), where r is a random value, and rd denotes the value of the r truncated d-bit,
i.e., rd = r/2d. The online phase of truncation can be performed by the parties to mask,
reveal, truncate (x′ − r) in the clear, use rd to unmask, and obtain the truncated result x,
i.e., x = (x′ − r)/2d + rd.

The challenge here is to generate random shared truncated pair (〈r〉, JrdK) among the
parties. To do so, we utilize the fact that if rd denotes the last d bits of r, then we have
r = 2d · rd + rd. Instead of sampling r by P0 directly, P0 and Pj for j ∈ {1, 2} together sample
random 〈r〉j by using FRand such that r = 〈r〉1 + 〈r〉2 can be locally computed by P0. In this
way, P0 can compute rd directly, and then share to P1 and P2 by invoking FShare. During
the online phase, P1 and P2 reconstruct y = x′ − r and truncate to obtain yd, which follows
by using JrdK to unmask the result. The protocol is described in Protocol 2, which requires
the communication of at most 2` bits and 1 round in the online phase.
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Protocol 2: (JxK)← ΠTrunc(Jx′K, d)

Offline:

1. P0 and Pj for j ∈ {1, 2} together sample random 〈r〉j ∈R Z2` by using FRand.
2. P0 locally computes r = 〈r〉1 + 〈r〉2, and then truncates d bits to obtain rd.
3. The parties generate JrdK← FShare(P0, rd).

Online:

1. P1 locally sets 〈x′〉1 = mx′ − 〈λx′〉1, while P2 sets 〈x′〉2 = −〈λx′〉2.
2. Pj for j ∈ {1, 2} locally computes and sends 〈y〉j = 〈x′〉j − 〈r〉j to P3−j.
3. P1 and P2 locally reconstruct y = x′ − r and then truncate d bits to obtain yd.
4. The parties locally generate JydK← FShare(P1, P2, yd).
5. The parties locally compute JxK = JydK+ JrdK.

4.3. Secure Conversion Protocol

We define FBit2A to convert the Boolean shares of a single bit JbKB to its arithmetic
shares JbK. To do so, we utilize the fact that if a and b are two bits, then a⊕ b = a + b− 2ab.

Let bA be the value of bit b over Z2` , then according to the fact and masked sharing
semantics, we have bA = (mb ⊕ λb)

A = mA
b + λA

b − 2mA
b λA

b , where λA
b = 〈λA

b 〉1 ⊕ 〈λ
A
b 〉2 =

〈λA
b 〉1 + 〈λ

A
b 〉2 − 2〈λA

b 〉1 · 〈λ
A
b 〉2. In other words, ΠBit2A can be computed by invoking

secure input sharing protocol and secure multiplication protocol of masked secret sharing.
Note that P0 holds both 〈λA

b 〉1 and 〈λA
b 〉2, and thus u = 〈λA

b 〉1 · 〈λ
A
b 〉2 can be locally

computed by P0 without using Beaver triples.
To achieve ΠBit2A, we describe the construction in Protocol 3, which requires the

communication of at most 2` bits and 1 round in the online phase.

Protocol 3: JbK← ΠBit2A(JbKB)

Offline:

1. Pj for j ∈ {1, 2} and P0 together sample 〈λA
b 〉j ∈R Z2` using FRand.

2. P0 locally computes u = 〈λA
b 〉1 · 〈λ

A
b 〉2;

3. The parties generate JuK← FShare(P0, u).
4. The parties locally compute JλA

b K = J〈λA
b 〉1K+ J〈λA

b 〉2K− 2JuK.

Online:

1. P1 and P2 locally generate JmA
b K← FShare(P1, P2, mA

b ).
2. The parties compute JvK← FMul(JmA

b K, JλA
b K).

3. The parties locally compute JbK = JmA
b K+ JλA

b K− 2JvK.

4.4. Secure Comparison Protocol

Comparison is an important building block of the neural network for evaluating ReLU
activation, argmax function, and pooling layer. Fortunately, we can easily compare the
quantized values if quantized a and b have the same quantization parameter (S, Z). This
is because if α = S(a − Z) and β = S(b − Z), then α ≤ β holds if and only if a ≤ b
holds. Therefore, the key step is to compute the most significant bit (MSB) of (a− b), i.e.,
a ≤ b if and only if MSB(a − b) = 1. Letting x = a − b, we define secure comparison
functionality FMSB by giving shared value JxK and extract the Boolean shared bit JcKB such
that c = (a ≤? b) = MSB(x).

The secure comparison protocol of ABY3 [7] needs log ` rounds in the online phase. To
construct a constant-round comparison protocol, we implement ΠMSB with the three-party
GC proposed by [19].
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Let GC(u1, u2, u3) be a GC with inputs u1, u2 ∈ Z2` , u3 ∈ {0, 1}, and output a masked
bit y = MSB(u1 − u2) ⊕ u3. We treat P0 and P1 as the common garbler and P2 as the
evaluator. The circuits are generated by P0 and P1 with correlated randomness by using
FRand. Namely, both garblers hold the knowledge of GCs, including the keys and the
decoding table in clear. In our situation, the parties hold JxK := (mx, 〈λx〉1, 〈λx〉2); thus, we
can define u1 = mx − 〈λx〉1 as the input of P1, u2 = 〈λx〉2 as the input of P2, and u3 as a
random bit sampled by P0 and P1 using FRand.

Note that P0 also knows u2 and the corresponding key; hence, P0 sends the key of u2
to P2 directly without using OT. P2 evaluates the circuit to obtain y, then shares it with
ΠShare, which only requires communication of at most 2 bits. Finally, the parties remove
masked bit Ju3KB to obtain masked share JcKB = JMSB(x)KB.

As pointed out by [25], the underlying circuit can be instantiated using the depth-
optimized parallel prefix adder (PPA) of ABY3 [7]. GC can be further optimized by state-of-
the-art techniques, such as free-XOR [26] and half gates [27]. We describe the details in the
following Protocol 4, which requires the communication of at most κ`+ 2 bits and 2 rounds
in the online phase.

Protocol 4: JcKB ← ΠMSB(JxK)

Let GC(u1, u2, u3) be a garbled circuit with inputs u1, u2 ∈ Z2` , u3 ∈ {0, 1}, and
output bit y = MSB(u1 − u2)⊕ u3. Let u1 = mx − 〈λx〉1, u2 = 〈λx〉2.
Offline:

1. P0 and P1 together sample random bit u3 ∈R {0, 1} by using FRand.
2. The parties locally generate Ju3KB ← FShare(P0, P1, u3).
3. P0 and P1 together garble GC and generate its decoding table by using FRand.
4. P0 sends the key of u2, P1 sends both GC and the table, to P2.

Online:

1. P1 sends the keys of u1 to P2.
2. P2 evaluates the circuit to obtain y.
3. The parties execute JyKB ← FShare(P2, y).
4. The parties locally compute JcKB = JyKB ⊕ Ju3KB.

4.5. Secure Clamping Protocol

As pointed out by Section 2.5, when we compute the convolution of two quantized
tensors, since rounding error exists, we may obtain the result c /∈ [0, 28)Z, and hence a
clamping operation c← Clamp(c; 0, 28 − 1) should be computed [15].

Let u = (x ≤? a), then according to y = max(x, a), one has

y =

{
x, if u = 0,
a, if u = 1,

(4)

which is equivalent to the following Equation (5):

y = (1− u)x + ua = x + u(a− x). (5)

Similarly, let v = (y ≤? b), then according to z = min(y, b), one has the following
Equation (6):

z = (1− v)b + vy. (6)
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From Equations (5) and (6), one has

z = (1− v)b + v(x + u(a− x))

= b + v(x− b) + uv(a− x),
(7)

and thus the key point of the secure clamping protocol here is how to securely implement
Equation (7).

Let e = x− b and f = a− x. Note that when we implement Equation (7) with masked
secret sharing, both the shares of u and v are Boolean shares over Z2, while both the
shares of e and f are arithmetic shares over Z2` . In other words, we cannot invoke the
secure multiplication protocol directly. This can be done by converting Boolean shares
to arithmetic shares using secure conversion protocol and invoking secure multiplication
protocol.

For simplicity, we formalize the above steps to be the bit injection functionality JcK←
FBitInj(JbKB, JxK): given the Boolean shares of a bit b and the arithmetic shares of x, secure
bit injection functionality allows the parties to compute c = bx. We provide ΠBitInj in
Protocol 5, which requires the communication of at most 4` bits and 2 rounds.

Now, we can give our secure clamping protocol in the following Protocol 6. Steps
5–6 can be computed in parallel within 2 rounds. Therefore, Protocol 6 requires the
communication of at most 2κ`+ 12`+ 4 bits and 8 rounds in the online phase.

Protocol 5: JcK← ΠBitInj(JbKB, JxK)

Online:

1. The parties execute JbK← FBit2A(JbKB).
2. The parties execute JcK← FMul(JbK, JxK).

Protocol 6: JzK← ΠClamp(JxK; a, b)

The parties locally set JaK := (ma, 〈λa〉1, 〈λa〉2) = (a, 0, 0), JbK := (b, 0, 0).
Online:

1. The parties locally compute JeK = JxK− JbK and J f K = JaK− JxK.
2. The parties execute JuKB ← FMSB(JxK− JaK).
3. The parties execute JyK← FBitInj(JuKB, J f K).
4. The parties execute JvKB ← FMSB(JyK− JbK).
5. The parties execute JgK← FBitInj(JvKB, JyK).
6. The parties execute JhK← FBitInj(JvKB, JeK).
7. The parties locally compute JzK = JbK+ JgK+ JhK.

4.6. Theoretical Complexity

The total communication and round complexity of our protocols are provided in
Table 3. It is easy to see that all our protocols have constant-round communication in the
online phase.
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Table 3. The communication and round complexity of our protocols, where ` denotes the logarithm
of the ring size, and κ denotes security parameter. All communications are reported in a number
of bits.

Protocol
Offline Online

Communication Rounds Communication Rounds

ΠMul ` 1 2` 1
ΠShare 0 0 2` 1
ΠTrunc ` 1 2` 1
ΠBit2A 2` 1 2` 1
ΠMSB 5κ` 1 κ`+ 2 2
ΠBitInj — — 4` 2
ΠClamp — — 2κ`+ 12`+ 4 8

4.7. Security Analyses

This section gives proof sketches of our protocols in the real–ideal paradigm. We
present the steps of the simulator Sim for A in the stand-alone model with security under
sequential composition [28]. The proof works in the FRand-hybrid model.

Theorem 1. ΠShare securely realizes the functionality FShare in the FRand-hybrid model and
against a semi-honest adversary A, who only corrupts one single party.

Proof. Given the ideal FRand, the output of PRFs is a pseudo-random value, which can
be simulated by Sim uniformly samples random value. Note that Pi sends mx to Pj, mx is
masked by random 〈λx〉i, which is unknown to Pj; hence, corrupted Pj cannot learn any
information of x. In short, the view of A in real execution is computationally indistinguish-
able from the view of Sim in ideal execution.

Theorem 2. ΠTrunc securely realizes the functionality FTrunc in the (FRand,FShare,FMul)-
hybrid model and against a semi-honest adversary A, who only corrupts one single party.

Proof. Given ideal FRand, FShare and FMul, the correlated randomness can be simulated
by invoking FRand. Then, Sim invokes FShare to simulate step 4 in the offline phase. Finally,
Sim invokes FMul to simulate step 2 in the online phase. Note that all functionality of the
output is the random shares over Z2` , and hence the view of A in the real execution is
computationally indistinguishable from the view of Sim in the ideal execution.

Theorem 3. ΠBit2A securely realizes the functionality FBit2A in the (FRand,FShare,FMul)-
hybrid model and against a semi-honest adversary A, who only corrupts one single party.

Proof. The security of ΠBit2A can be reduced to the security of ΠShare and ΠMul, which
was proven to be secure in Theorem 1 and [19], respectively. Since we make only black-box
access to FShare and FMul, according to the sequential composition, the Bit2A protocol is
secure in the semi-honest model.

Theorem 4. ΠMSB securely realizes the functionality FMSB in the (FRand,FShare)-hybrid model
and against a semi-honest adversary A, who only corrupts one single party.

Proof. Given the ideal functionality FRand,FShare, the security of ΠMSB is trivial for P0
and P1. This is because both u1 and u2 are unknown to P0 and P1 at the same time. Because
the parties are non-colluding, we have that y is oblivious to the corrupted party, even if
both garblers have the circuit in the clear. Observe that P2 evaluates the circuit to obtain y,
masked by common random bit u3 of P0 and P1. In other words, y is uniformly random to
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P2. Therefore, the view of A in real execution is computationally indistinguishable from
the view of Sim in the ideal execution.

Theorem 5. ΠBitInj securely realizes the functionality FBitInj in the (FBit2A,FMul)-hybrid model
and against a semi-honest adversary A, who only corrupts one single party.

Proof. The security of ΠBitInj can be reduced to the security of ΠBit2A and ΠMul, which
was proven to be secure in Theorem 4 and [19], respectively. Since we make only black-box
access to FBit2A and FMul, according to sequential composition, the bit injection protocol
we proposed is secure in the semi-honest model.

Theorem 6. ΠClamp securely realizes the functionality FClamp in the (FMSB,FBitInj)-hybrid
model and against a semi-honest adversary A, who only corrupts one single party.

Proof. The security of ΠClamp can be reduced to the security of ΠMSB and ΠBitInj, which
was proven to be secure in Theorems 4 and 5, respectively. Since we make only black-box
access to FMSB and FBitInj, according to the sequential composition, our secure clamping
protocol is secure in the semi-honest model.

5. Quantized Neural Network Structure

We consider the convolutional neural network presented in Chameleon [2], which
includes a single convolution layer and two fully connected layers. The activation function
is ReLU activation. We consider its quantized variant as our QNN structure and describe it
in Figure 3. As we pointed out above, we set all data types of QNN from FP32 to INT8.

Instead of evaluating the original ReLU activation, we evaluate ReLU6 activation, as
fixed ranges are easier to quantize with high precision in different channels and a quan-
tized model with ReLU6 has less accuracy degradation [22]. Herein, ReLU6 activation is
defined as ReLU6(x) = min(max(x, 0), 6) = Clamp(x; 0, 6), which is essentially a clamp-
ing operation. It seems that we have to invoke a secure comparison protocol to evaluate
ReLU6 activation.

In fact, as pointed out by [22], we can take advantage of quantification such that
ReLU6 can be entirely fused into the computation of the inner product that precedes it.
To do so, we can directly set the quantized parameters to be S = 6/255 and Z = 0, then
α = S(a− Z) ∈ [0, 6] always holds for any a ∈ [0, 28)Z. By doing this, we can clamp the
inner product to a ∈ [0, 28)Z, meanwhile evaluating ReLU6 activation. Namely, we can
evaluate ReLU6 activation without any communication overhead.

In addition, the evaluation of the argmax function can be computed by invoking the
secure comparison protocol.

1. Convolution: input image 28× 28, window size 5× 5, stride (2, 2), output channels
5 : Z5×196 ← Z5×25 ·Z25×196.

2. ReLU Activation: computes ReLU6 for each input.
3. Fully Connected: input size 980, the output: Z100×1 ← Z100×980 ·Z980×1.
4. ReLU Activation: computes ReLU6 for each input.
5. Fully Connected: input size 100, the output: Z10×1 ← Z10×100 ·Z100×1.
6. Argmax: computes argmax as output.

Figure 3. Our QNN structure, where Z denotes the discrete interval [0, 255]Z.

6. Experimental Evaluation
6.1. Experimental Setup

We implemented our protocols with Python. All our experiments were executed on a
server over Ubuntu 20.04 LTS, which is equipped with Intel(R) Xeon(R) Gold 5222 CPU
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processor (@3.80GHz) and 32GB RAM memory with AES-NI support. Three parties were
simulated by three different terminal ports. We used the Linux traffic tools command tc
to simulate LAN and WAN. Specifically, we considered the LAN setting with 625 Mbps
bandwidth and 0.2 ms ping time, and the WAN setting with 80 Mbps bandwidth and 20 ms
ping time. Note that these parameters are close to the ones we use daily, proving that our
solution is practical.

All experiments were executed 10 times on our server to eliminate accidental errors
and reported results with the average. We set the bit-length of the shares ` = 64, the
fixed-point precision d = 13, and the security parameter κ = 128.

To simplify the experiment, we also made the following assumptions:

• We suppose that the input of the user was taken from the MNIST dataset [29], which
contains 60,000 training images and 10,000 testing images of handwritten digits. Each
image is represented as 28× 28 pixel with values between 0 and 255 in greyscale. Note
that all greyscales are stored with 8-bit integers already, which eliminates the need for
data type conversions.

• We assume that the model owner shared the quantized parameters of each layer
among all servers. In short, quantized parameters are encoded to all layers.

6.2. Experimental Results for Secure Inference

In our experiment, we compare our solution to two-party framework Chameleon [2]
and various three-party frameworks, including BANNERS [12], SecureBiNN [13] and Se-
cureQ8 [15]. Note that both Chameleon and BANNERS are not publicly available; hence,
we use their reported results directly for reference. Both BANNERS and SecureBiNN are
designed for binary neural network inference. We also compare our solution to SecureQ8,
which was also based on INT8 quantized and implemented by MP-SPDZ [30] in the same
setting. The experimental results of both LAN and WAN are reported in Table 4. All
communication is reported in MB, and runtimes are in seconds.

Table 4. Performance comparison of our solution with other frameworks for classifying a single image
from the MNIST dataset, where Top-5 accuracy means the truth label is among the first 5 outputs of
the model. (*): BANNERS and SecureQ8 were only reported in the online phase. (**): No offline phase
is required in SecureBiNN.

Framework Quantized Secret
Sharing

Top-5
Accuracy

Runtime (s) Communication
(MB)LAN WAN

Offline Online Offline Online Offline Online

Chameleon [2] FP32 ASS 99.0% 1.254 0.991 4.028 2.851 7.798 5.102
BANNERS * [12] Binary RSS 97.3% — 0.120 — — — 2.540

SecureBiNN ** [13] Binary RSS 97.2% — 0.007 — 0.440 — 0.032
SecureQ8 * [15] INT8 RSS 98.4% — 0.629 — 2.198 — 3.523

This work INT8 MSS 98.4% 1.018 0.701 3.279 1.465 5.982 3.853

The author of Chameleon [2] claims that the original network gives us accuracy of
99%. However, our experiment shows that the accuracy is less than 80% when we convert
it into a quantized variant as shown in Figure 3. Therefore, instead of reporting the Top-1
accuracy of the model, we reported its Top-5 accuracy, where the truth label is among the
first five outputs of the model. In this way, our proposed solution gives us Top-5 accuracy
of 98.4%. Note that the reported accuracy of different frameworks is only for reference
since it may depend on the model parameters. This is beyond the scope of our work.

As shown in Table 4, almost all quantized frameworks are faster than the nonquan-
tized scheme Chameleon in the same setting. The communication cost of the quantized
frameworks is also less than that of the nonquantized scheme. In addition, INT8 quantized
schemes are better than binarized schemes in terms of Top-5 accuracy, but the latter have
lower communication costs and runtimes.

Compared to Chameleon, due to the quantization technique, our protocols were
1.41 times and 1.94 times faster in the LAN and WAN settings, respectively. In addition,
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our protocols were 1.32 times lower in online communication. Compared to SecureQ8, our
scheme was 1.11 times slower in the LAN setting, but 1.5 times faster in the WAN setting.
Because our protocols have constant-round complexity, it is suitable for a low-bandwidth
and high-latency network. Note that the online communication costs of our scheme were
slightly larger than SecureQ8, as our comparison protocol is based on three-party GC,
where the decoding key is related to security parameter κ.

Our protocols also enjoy the benefit of the offline–online paradigm. Specifically, most
of the communication cost of the online phase is transferred to the offline phase, which
makes our scheme more efficient than SecureQ8 in the online phase, especially in the WAN
setting. To see this more clearly, we also plot a performance comparison of batch inferences
in Figure 4.
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This work

Figure 4. Performance comparison of our solution with SecureQ8 [15] for batch inference over WAN,
where query means the input of the user.

7. Conclusions

We proposed a series of three-party protocols based on MSS in this study. Our key
contribution is more communication-efficient building blocks for QNN inference. Our
experiment shows that our protocols are suitable for low-bandwidth and high-latency
environments, especially in the WAN network. All these blocks can also be used in other
applications as long as the underlying sharing semantics are the same as ours.

Our constant-round comparison protocol is built on GC, and although free of OT, the
online communication is related to the security parameter κ. How to construct a constant-
round secure comparison protocol such that the online communication cost is independent
of security parameters is still an open problem.

Moreover, we only consider a semi-honest adversary with Q3 structures (i.e., the
adversary corrupts no more than 1/3 parties). Achieving security against other adversary
structures with malicious adversaries will be the future work.
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Abbreviations
The following abbreviations are used in this manuscript:

MLaaS Machine Learning as a Service
QNN Quantized Neural Network
FHE Fully Homomorphic Encryption
MPC Secure Multiparty Computation
SS Secret Sharing
ASS Additive Secret Sharing
RSS Replicated Secret Sharing
MSS Masked Secret Sharing
GC Garbled Circuit
OT Oblivious Transfer
PRF Pseudo-Random Function
LAN Local Area Network
WAN Wide Area Network
FP32 32-bit Floating-Point
INT8 8-bit Integer
ReLU Rectified Linear Unit
MSB Most Significant Bit
PPA Parallel Prefix Adder

Appendix A. Correlated Randomness

In some protocols, each pair of parties needs to generate the same randomness. To reduce
communication costs and rounds of the protocol, similar to the prior works [7,8,19,20,25], we
define functionality FRand, which allows the parties to generate the same randomness.

Let F : {0, 1}κ × {0, 1}κ → R be a secure PRF known to all parties, where R is
the computation field Z2` or Z2 in this study. Suppose that each pair of parties (Pi, Pj)
holds a preshared random PRF key kij ∈R {0, 1}κ and maintains a local counter ctr as the
number of PRF invoking, where kij can be generated by using the Diffie–Hellman key
exchange protocol between Pi and Pj in a one-time setup, and PRF can be implemented by
an advanced encryption standard in counter mode [31].

To achieve FRand, ΠRand can be performed by letting Pi and Pj locally compute r ←
F(kij, ctr).
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