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Abstract: Qubits, which are the quantum counterparts of classical bits, are used as basic information
units for quantum information processing, whereas underlying physical information carriers, e.g.,
(artificial) atoms or ions, admit encoding of more complex multilevel states—qudits. Recently,
significant attention has been paid to the idea of using qudit encoding as a way for further scaling
quantum processors. In this work, we present an efficient decomposition of the generalized Toffoli
gate on five-level quantum systems—so-called ququints—that use ququints’ space as the space of
two qubits with a joint ancillary state. The basic two-qubit operation we use is a version of the
controlled-phase gate. The proposed N-qubit Toffoli gate decomposition has O(N) asymptotic
depth and does not use ancillary qubits. We then apply our results for Grover’s algorithm, where we
indicate on the sizable advantage of using the qudit-based approach with the proposed decomposition
in comparison to the standard qubit case. We expect that our results are applicable for quantum
processors based on various physical platforms, such as trapped ions, neutral atoms, protonic systems,
superconducting circuits, and others.

Keywords: qudits; ququints; Toffoli gate; qubit-to-qudit mapping; Grover’s algorithm

1. Introduction

The concept of quantum computing relies on the idea of manipulating complex (en-
tangled, many-body) quantum states in order to solve computational problems that are
beyond the capabilities of computing devices based on classical principles [1–3]. The key
problem, however, is to find or engineer a suitable physical platform that allows manipula-
tion and high-efficient control when the system is scaled. One of the basic concepts, which
is at the heart of the digital quantum computing model [4], is to present physical systems
as qubits—two-level quantum systems. The complexity of defining a general entangled
multi-qubit state is exponential in terms of the number of qubits; indeed, a system of n
entangled qubits may require up to 2n complex numbers to describe its state [5] (this is in
contrast to the classical domain, where a single string of n zeros and ones is sufficient to
describe the state of n bits). This ‘quantum complexity’ [6] can be considered as the origin
of the quantum computational advantage in solving various problems, such as simulating
quantum systems [7] and prime factorization [8].

Recent experimental progress has been demonstrated with physical platforms of vari-
ous nature including superconducting circuits [9–11], semiconductor quantum
dots [12–14], quantum light [15,16], neutral atoms [17–20], and trapped ions [21–23] (for
a review, see Ref. [24]). Such setups have been used for testing quantum computational
advantage [10,11,15,16], quantum simulation [17–19,21,22], and prototyping various quan-
tum algorithms (see e.g., Refs. [9,20,23,25]). However, the computational capabilities of
existing prototypes of quantum computing devices are substantially limited. The reason
behind this is the fact that scaling quantum systems with respect to the number of qubits
without degrading the quality of control over them remains challenging. A clear indication
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of this fact is that the fidelities of quantum gates in the case of isolated few-qubit systems
are much greater than in the case of intermediate-scale systems. Although there are no
known fundamental obstacles preventing further scaling quantum devices, this task seems
to be non-trivial. Various approaches, such as new qubit architectures (for example, see
Refs. [26–28] for a new type of the currently used superconducting transom qubits [9–11])
and computational models [29], have been investigated.

One may also note that underlying physical platforms for quantum computing—
for example, trapped ions and atoms—allow one to encode multiple computational states
using a single physical information carrier. In other words, such systems can be used for
realizing qudit-based quantum processors (d-dimensional quantum systems, d > 2; so,
the corresponding scaling of the computational space is dN). The idea of using multi-level
(or multi-state) quantum systems has been known for decades [30]. Numerous works on
quantum computing with qudits during the last decades have confirmed the promise of this
approach [31–73]. Besides quantum computing, qudit-based systems offer certain perspec-
tives in quantum teleportation [57] and quantum communications [74,75], as well as open
up opportunities for uncovering fundamental concepts of quantum mechanics [50,54,76]. It
is interesting to note that the first realization of two-qubit gates has used two qubits stored
in the degrees of freedom of a single trapped ion, i.e., with the use of a qudit [77]. One may
specifically note demonstrations of multi-qubit processors based on trapped ions [78,79],
superconducting circuits [80–82], and optical systems [72].

A central idea of qudit-based quantum information processing is finding a trade-off
between increasing complexity of controlling the system and potential advantages, for ex-
ample, in realizing quantum algorithms. Recent experimental results have demonstrated
that it is fairly straightforward to control qudit systems with d up to 7 [78,79] with high
enough fidelity using a single laser and acousto-optic modulator. There are two basic
approaches of how additional levels of quantum systems can be used. The first idea is to
use qudit for substituting ancillas [46,48,56,61,62,73,83,84], which allows decreasing the
number of physical qubits that are required for executing quantum circuits. Following
this method, the N-qubit Toffoli gate was realized with 2N − 3 qubit–qudit gates on the
photonic quantum circuit [61]. Although the reduction of the number of qubit–qudit in-
teractions is significant, the experiment configuration, which required an N-dimensional
qudit connected with N − 1 qubits, is difficult to scale with an increasing number of qubits.

Another possible approach is to consider the qudit’s space as a space of multiple
qubits [32–34,51,52]. In this consideration, a reduction in the number of operations can
be also achieved, but it depends on the mapping of qubits’ space onto qudits’ space. As
it has been noted, these approaches can be efficiently combined (this problem has been
discussed in general terms in Ref. [85]). However, practically relevant cases showing
advantages of the combinations of these approaches and their applications in realizing
quantum algorithms require additional studies.

In this work, we study a model of a ququint-based (d = 5) quantum processor that
involves the decomposition of multi-qubit systems into ququint subsystems, as well as the
use of ququints’ higher levels as ancillas. For this model, we describe possible mapping of
qubits’ space onto ququints’ space. Then, we show how one-qubit gates and the generalized
N-qubit Toffoli gate can be realized in the proposed setup. Finally, we consider how the
proposed model is applied to quantum algorithms with a large number of multi-qubit gates.
The proposed ququint-based quantum processor model allows us to implement N-qubit
gates with circuits that have O(N) asymptotic depth. We apply our results for Grover’s
algorithm, where we indicate the sizable advantage of using the qudit-based approach
with the proposed decomposition.

Our work is organized as follows. In Section 2, we consider quantum computing with
qudits. Specifically, we analyze a model of a ququint-based (d = 5) quantum processor that
involves the decomposition of multi-qubit systems into ququint subsystems, as well as the
use of ququints’ higher levels as ancillas. In Section 3, we demonstrate how one-qubit gates
and the generalized N-qubit Toffoli gate can be realized in the proposed setup. In Section 4,
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we present the qudit-based realization of Grover’s algorithm. Finally, we conclude in
Section 5.

2. Ququint Processor

There are two basic approaches for using additional resources of qudits for realizing
more efficient quantum computing. We note that the efficiency here can be understood
in two aspects. The first is that we would like to minimize the number of physical qubits
that are used to run quantum circuits. Additional complications in realizing quantum
circuits come from the fact that additional ancilla qubits are required when one would like
to implement N-qubit gates [86]. For example, efficient implementation of N-qubit Toffoli
gates is essential for Grover search [87,88]. One can then use additional levels of qudits
for substituting ancillas [46,48,56,61,62,73,83,84], which allows decreasing the number of
physical qubits required for executing quantum circuits.

Another idea is to consider the qudit’s space as a space of multiple qubits [32–34,51,52].
A reduction in the number of operations can be also achieved but it depends on the
mapping of qubits’ space onto qudits’ space. As it has been noted, these approaches can
be efficiently combined (this problem has been discussed generally in Ref. [85]). However,
practically relevant cases showing advantages of the combinations of these approaches and
their applications in realizing quantum algorithms require additional studies. Below, we
consider an important particular case for combining these approaches.

Ququint as Two Qubits and Ancillary State

Five-dimensional state space of a ququint Q can be considered as a joint space of two
qubits, a and b, accompanied with an ancillary state. The corresponding qubit-to-qudit
mapping can be represented as follows:

|0〉Q → |0〉a ⊗ |0〉b ,

|1〉Q → |0〉a ⊗ |1〉b ,

|2〉Q → |1〉a ⊗ |0〉b ,

|3〉Q → |1〉a ⊗ |1〉b ,

|4〉Q → |anc〉 ,

(1)

where |n〉Q with n = 0, . . . , 4 denotes basis states of ququint Q; |m〉a(b) with m = 0, 1
denotes computational basis states of qubit a(b), which is embedded in Q; and |anc〉
denotes the ancillary state. Below, we assume that the state |anc〉 serves only as a ‘pure’
ancilla for implementing multi-qubit gates: according to the designed decomposition, this
level is populated only during the realization of a multi-qubit gate (it is initialized in the
state |0〉 and it is also in this state at the final step of implementing quantum circuits). The
introduced representation of ququint’s space allows one to reduce the required number of
physical systems and two-qudit gates in multi-qubit gate decomposition, as we demonstrate
in the next section.

In analogy with the idea of qubit-based digital quantum computations (see above), we
assume that we can perform any desirable single-qubit unitary operation U ∈ U(2) on an
arbitrary pair of levels i and j in ququint Q. The resulting unitary operation, denoted U(i,j)

Q ,
takes the following form:

U(i,j)
Q = 〈0|U |0〉 |i〉Q 〈i|+ 〈0|U |1〉 |i〉Q 〈j|

+ 〈1|U |0〉 |j〉Q 〈i|+ 〈1|U |1〉 |j〉Q 〈j|+ 1⊥i,j,
(2)
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where 1⊥i,j stands for a projector on a three-dimensional orthogonal complement of the
subspace spanned by |i〉Q , |j〉Q. According to mapping (1), applying a single-qubit gate

U =

(
α β
γ δ

)
(3)

to qubits a and b, respectively, leads to the following single-qudit realizations:

Ua ≡ U(0,2)
Q U(1,3)

Q =


α β

α β
γ δ

γ δ
1



Ub ≡ U(0,1)
Q U(2,3)

Q =


α β
γ δ

α β
γ δ

1


(4)

(here and after all unspecified elements in matrices are zeros).
One of the main features of considering the ququint’s space as a space of two qubits

with ancillary level is the ability to implement two-qubit gates between qubits a and b
using single-ququint gates only. A controlled-phase gate between a and b can be realized
with a single-qudit operation

CZab ≡ Z
(0,3)
Q =


1

1
1
−1

1

, (5)

where Z = |0〉〈0| − |1〉〈1| is a standard Pauli matrix. We note that other realizations,
e.g., Z(1,3)

Q , are possible.
We note that any restricted, yet connected, coupling map between levels inside a qudit

is enough to implement the unitary operation on an arbitrary pair of levels [58,89]. For
example, in order to couple levels |0〉Q and |2〉Q, one can use transitions |0〉Q ↔ |1〉Q and
|1〉Q ↔ |2〉Q, even in the case where transition |0〉Q ↔ |2〉Q is forbidden due to selection
rules. Moreover, in actual existing experimental setups, transitions within a given coupling
graph can be implemented with a single laser and acousto-optic modulator [78].

As a two-ququint gate, we consider the CZ
i↔j
Q1Q2

gate, which applies phase factor −1 to
the state |ij〉Q1Q2

of two ququints Q1 and Q2:

CZ
i↔j
Q1Q2

= ∑
m,n

(−1)δi,mδj,n |m〉Q1
〈m| ⊗ |n〉Q2

〈n| . (6)

We note that this two-qudit gate can be realized via Rydberg blockade neutral
atom-based [90] qudits, and via the common quantized motion mode in an ion-based
platform [91]. On the basis of CZi↔j

Q1Q2
and U(i,j)

Q2(1)
gates, one can construct more complicated

gates, such as the CXi→k,`
Q1Q2

gate, which is defined as

CXi→k,`
Q1Q2

= H(k,`)
Q2

CZi↔`
Q1Q2

H(k,`)
Q2

, (7)
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where H = 2−1/2 ∑p,r=0,1(−1)pr |p〉 〈r| is a standard Hadamard gate (see also Figure 1).

The idea of the two-ququint CXi→k,`
Q1Q2

gate is similar to the idea of the qubit CX gate: It swaps
states |k〉Q2

and |`〉Q2
when Q1 is in the state |i〉Q1

.

i i

=

k ↔ ` `

Q1

Q2 H(k,`) H(k,`)

Figure 1. Realization of a generalized controlled inversion CXi→k,`
Q1Q2

gate via the generalized

controlled-phase CZ
i↔j
Q1Q2

and H(k,`)
Q2

gate on two ququints. On the left-hand side of the image, the

black-painted circle with white i denotes a control qudit and the control state |i〉 for the CXi→k,`
Q1Q2

gate. The corresponding target qudit is denoted by the white circle with an arrow between k and `.
The CXi→k,`

Q1Q2
gate exchanges populations between levels of the |k〉 and |`〉 states of the target qudit,

given that the control qudit is in the state |i〉. On the right-hand side of the image, the gate with
two connected black-painted circles corresponds to the controlled-phase CZi↔`

Q1Q2
operation, which

applies a phase factor −1 to the state of two ququints |i`〉Q1Q2
and leaves other states unchanged.

Single-qudit H(k,`) gates denote two-dimensional Hadamard transformations realized at levels |k〉
and |`〉 of Q2.

To conclude this section, we note that each ququint Q can be also used for embedding
a single qubit a accompanied with three ancillary levels. In this case, the qubit-to-qudit
mapping takes the form

|0〉Q → |0〉a ,

|1〉Q → |1〉a ,

|2〉Q → |anc〉 ,

|3〉Q → |anc′〉 ,

|4〉Q → |anc′′〉 ,

(8)

where |anc′〉 and |anc′′〉 denote new auxiliary levels.
We assume that each qudit can be measured in a computational basis. From the

viewpoint of embedded qubit(s), this measurement corresponds to the computational basis
measurement over one or two qubits. The correspondence is given by mapping (1) or (8).
Below, we consider both mappings (1) and (8) within decomposition of the generalized
N-qubit Toffoli gate.

3. Toffoli Gate Implementation

The generalized N-qubit Toffoli gate CN−1X(t), acting on qubits q1, . . . , qN , flips a
particular target qubit state of qt if and only if all the other N − 1 control qubits are in the
state |1〉 [86]. This gate can be realized with a ‘symmetric’ multi-controlled phase gate

CN−1Z |b1 . . . bN〉q1 ...qN
= (−1)b1 ...bN |b1 . . . bN〉q1 ...qN

, (9)

where bi = 0, 1 denotes qubit basis states. One can obtain CN−1X(t) from CN−1Z by
surrounding the target qubit t with single-qubit Hadamard gates. In what follows, we
consider a ququint-based implementation CN−1Z.

To clarify our consideration, we discuss the most simple cases of embedding qubits that
are effected by the CN−1Z gate into qudits. For even N, we consider N qubits embedded in
N/2 ququints according to mapping (1). For odd N, we consider N − 1 qubits embedded
in (N − 1)/2 ququints, and the remaining qubit embedded in an additional ququint.
Two situations are possible: (i) the additional ququint is used for storing the single Nth
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qubit only (i.e., mapping (8) is used); (ii) there exists an additional neighboring qubit,
embedded in this ququint, that is involved in the whole qubit circuit but not involved
in the decomposed CN−1Z gate (mapping (1) is used). These three cases require separate
treatments (see Table 1).

Let us start with a decomposition of the C2Z gate (N = 3). For this purpose, we embed
qubits q1 and q2 into the single ququint Q1 and consider two variants of embedding q3
into Q2. If q3 is embedded in Q2 according to mapping (8), the implementation of C2Z

reduces to realization of the CZ
(3↔1)
Q1Q2

gate, since |31〉Q1Q2
is mapped to |111〉q1q2q3

. In the
case of mapping (1) for Q2 (we assume that q2 corresponds to a in (1)), we apply two gates:
CZ3↔2

Q1Q2
and CZ3↔3

Q1Q2
. This overhead in the number of gates is due to necessity to preserve

the state of the second qubit embedded in Q2. We note that this doubling of the number of
gates meets us in every decomposition of CN−1Z with odd N and the appearance of the
neighboring qubit in the last [(N + 1)/2]th ququint.

Table 1. CN−1Z gate implementation on ququints for N = 3, . . . , 6 with CZi↔j and CXi→k,` gates
for two possible variants of mapping for the ‘bottom’ ququint. Labeling of gates is the same as in
Figure 1.

C2Z

mapping (8) for Q2

3

1

Q1

Q2

mapping (1) for Q2

3 3

2 3

Q1

Q2

C3Z

3

3

Q1

Q2

C4Z

mapping (8) for Q3

3 3

3 ↔ 4 4 3 ↔ 4

1

Q1

Q2

Q3

mapping (1) for Q3

3 3

3 ↔ 4 4 4 3 ↔ 4

2 3

Q1

Q2

Q3

C5Z

3 3

3 ↔ 4 4 3 ↔ 4

3

Q1

Q2

Q3

Following this idea, the implementation of C3Z on two ququints Q1 and Q2 is realized
via CZ3↔3

Q1Q2
gate.

To implement a five-qubit C4Z gate, we use the following trick. We put the informa-
tion about whether the four qubits q1, . . . , q4, embedded in Q1 and Q2, are in unit state
|1 . . . 1〉q1 ...q4

in the ancillary state of Q2. It can be realized by applying the CX3→3,4
Q1Q2

gate.
Then, we apply the controlled-phase rotation from the ancillary state of Q2 to the state of
q5, embedded in Q3. Depending on the type of mapping used for Q3, we apply a single
two-ququint gate CZ4↔1

Q2Q3
or two two-ququint gates CZ4↔2

Q2Q3
and CZ4↔3

Q2Q3
. Note that the
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phase factor is acquired if and only if all five qubits are initially in the unit state. At the
final step, the state Q1 and Q2 is restored to the original state by ‘uncomputation’ with
the CX3→3,4

Q1Q2
gate. One can see that the key idea of this decomposition is that we store

information about two qubits in the first four ququint levels, and the highest ququint state
|4〉 ≡ |anc〉 is used instead of an ancilla to store temporary data.

The decomposition of C4Z allows us to obtain a decomposition for the CN−1Z gate
with N ≥ 6 (see Figure 2). The key idea is the same. We apply a sequence CX3→3,4

Q1Q2
,

CX4→3,4
Q2Q3

, . . . , CX4→3,4
QN′−2QN′−1

, where N′ = N/2 for even N and N′ = (N + 1)/2 for odd N. It

brings the (N′ − 1)th qudit into the ancillary state if and only if all qubits embedded in
Q1, . . . , QN′ are in unit state. Then, we apply a controlled-phase gate CZ4↔3

QN′−1QN′
if N is

even, a controlled-phase gate CZ4↔1
QN′−1QN′

if N is odd and mapping (8) is used, or two gates

CZ4↔2
QN′−1QN′

and CZ4↔3
QN′−1QN′

if N is odd and mapping (1) is used. Finally, the ladder of CX
gates is implemented in reverse order. In the result, we obtain a circuit consisting of N − 3
or N − 2 two-ququint gates that have O(N) asymptotic depth.

3 3

3 ↔ 4 4 4 3 ↔ 4

. . . . .
.

3 ↔ 4 3 ↔ 4

Q1

Q2

QN ′−1

QN ′

odd N

mapping (8) for Q′
N

4

1

QN ′−1

QN ′

odd N

mapping (1) for Q′
N

4 4

2 3

even N

4

3

Figure 2. CN−1Z gate decomposition on ququints with CXi→k,` gates for N ≥ 6. In the central part of
the circuit, we apply a controlled-phase gate CZ4↔1

QN′−1QN′
if N is odd and mapping (8) is used, two

gates CZ4↔2
QN′−1QN′

and CZ4↔3
QN′−1QN′

if N is odd and mapping (1) is used, or a controlled-phase gate

CZ4↔3
QN′−1QN′

if N is even. Labeling of gates is the same as in Figure 1.

4. Application to Grover’s Algorithm

The method proposed in the present work to construct the generalized Toffoli gate
can be applied to any quantum algorithm that contains multi-qubit gates. A clear example
is Grover’s algorithm [87,88] for searching a ‘hidden’ bitstring ω ∈ {0, 1}n, s.t. f (ω) = 1,
where a ‘black box’ function f : {0, 1}n → {0, 1} is known to take a unit value only on
one element. Here, n is some integer value, which defines a domain for f and determines
the complexity of the problem. Grover’s algorithm typically requires O(2n/2) queries to
an oracle U f : |x〉 |t〉 7→ |x〉 | f (x)⊕ t〉, where x ∈ {0, 1}n, t ∈ {0, 1}, and ⊕ stands for an
exclusive OR (XOR) operation. Each query is followed by an n-qubit diffusion operator

D = 1− 2 |sym〉 〈sym| , (10)
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where 1 is a 2n-dimensional identity matrix and |sym〉 := 2−n/2 ∑x∈{0,1}n |x〉. Notably,
the diffusion operator can be reduced to a Cn−1Z gate surrounded by single-qubit H and
X = |0〉 〈1|+ |1〉 〈0| gates. The explicit circuit diagram for finding item ω = 10101 (n = 5)
items is shown in Figure 3.

|0〉 H H X X H

|0〉 H X X H X X H

|0〉 H H X X H

|0〉 H X X H X X H

|0〉 H H X X H

|1〉 H

4 times

Diffusion operatorOracle

Figure 3. Grover’s algorithm for search item ω = 10, 101 over 25 = 32 items. Each of the four
iterations has two multiply-controlled gates: one in the oracle and one in the diffusion operator. Both
these multiply-controlled gates can be efficiently decomposed into two-qudit gates with ququints.

To examine the efficiency of the proposed decomposition, we compute a two-particle
gates count for Grover’s algorithm implementations with several approaches for the de-
composition of multi-qubit gates, where by ‘two-particle gate’ we mean a gate between two
physical systems, which are used as qudits. This term is convenient to use as we further
compare the total amount of operations between physical systems with different number
of levels in the implementation of Grover’s algorithm. For the comparison, we chose three
approaches to the decomposition of multi-qubit gates: qubit-based decomposition with
additional ancillary qubits [36]; qutrit-based decomposition, where higher levels of qutrits
act as ancillas [73,92]; and the ququint-based decomposition that is proposed above.

For all described decomposition methods, two-qudit gate counts, resulting from the
implementation of Grover’s algorithm on 2 to 10 qubits, are plotted in Figure 4. We note
that the plotted data take into account an increase in the number of iterations (Grover’s
step) and an increase in the number of involved qubits.

The first considered method [36] relies on using only qubits for decomposition of
the multi-qubit gate (square symbols line in Figure 4). For this reason, to achieve linear
scaling of the required number of two-qubit gates in the decomposition, it is necessary to
use additional qubits as ancillas—namely, to decompose n-qubit controlled gate, one needs
to use n− 2 additional physical systems. Using them, the number of required two-qubit
gates to implement the n-qubit gate is equal to 12n− 23.
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2 3 4 5 6 7 8 9 10
n

100

101

102

103

Nu
m

be
r o

f t
wo

-p
ar

tic
le

 g
at

es

d = 2
d = 3
d = 5

Figure 4. Two-qudit gate counts for implementations of n-qubit Grover’s algorithm (n is from 2 to 10)
with the qubit-based decomposition method [36], which requires n− 2 ancillary qubits for n-qubit
gate decomposition and has linear scaling; qutrit-based decomposition method [73]; and the proposed
ququint-based decomposition method. Plotted data take into account an increase in the number of
Grover’s steps in quantum circuits with an increase in the number of involved qubits.

Qutrit-based decomposition [73,92] provides a significantly lower constant in a linear
scaling of the required number of two-particle gates in the n-qubit gate decomposition
(circle symbols in Figure 4). There is no need to use additional physical qubits within this
decomposition, owing to the presence of the third level in qutrit and its use as an ancillary
state. The main idea behind qutrit-based decomposition is to ‘check’ the states of each
pair of qubit sequentially, leaving the second qutrit in the pair in state |1〉 if and only if
both qutrits are in the state |1〉. Then, if this condition is satisfied, required controlled
operation (CZ or CX) is applied to the last pair of qutrits. It can be seen that the circuit
of this decomposition has a V-ladder-like architecture and consists of 2n− 3 two-particle
gates for the n-qubit gate.

The third decomposition, which is considered for comparison, is the proposed
ququint-based decomposition in this paper (triangle symbols in Figure 4). As discussed
earlier, the main feature of this method is that the reduction in the number of required
two-particle gates is provided by embedding two qubits in a single ququint together with
the use of the highest level in ququint as an ancillary state. Such a combined approach to
the use of ququints’ space makes the constant in the linear scaling number of two-particle
gates even lower than in qutrit-based decomposition.

As we can see from Figure 4, the use of ququints allows us to reduce the number
of two-qudit gates in the implementation of Grover’s algorithm by a thousand times
compared to its only-qubit implementation if the number of items for search is greater than
n = 8. However, on a small number of required qubits, the ququint-based method and
the method from Ref. [92] have almost the same efficiency. The reason for this is that the
contribution from information compression from two qubits into one physical ququint
grows with the number of required qubits in the algorithm. For this reason, the ququint-
based decomposition of multi-qubit gates is optimal for algorithms with a sufficiently large
(n > 4) number of required qubits.
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5. Conclusions and Outlook

We have demonstrated that a sizable reduction in the number of gates in the quantum
circuit can be achieved by considering the ququint’s space as two qubits and a joint ancillary
state. We have presented a new decomposition of the generalized N-qubit Toffoli gate
that uses no additional ancillary qubits and requires a linear number of two-particle gates.
The new decomposition can be exploited in algorithms with multi-qubit gates and error
correction schemes to increase the total circuit fidelity. We demonstrate its efficiency
on the Grover’s search algorithm, which is a good illustrative example since it requires
multi-qubit gates in both parts of an oracle and the diffusion operator of the algorithm. The
crucial point is that the resulting number of two-particle gates required for implementing
its circuit with ququints appears considerably smaller than the one in a straightforward
qubit-based implementation.

In the current contribution, we have considered a general theoretical approach, leaving
a detailed design for particular physical platforms for future works. Here, we only sketch
the way it can be achieved. First, one has to consider a particular coupling map between
levels in given qudits. A decomposition of single-qudit gates down to operations on
allowed transitions has to be applied [78,89]. Second, a transformation of an employed
two-qudit controlled-phase gate on particular native two-qudit operations is required; this
can be realized via single-qudit gates.

Although manipulating with additional levels of qudits faces additional experimental
problems, recent works (see, e.g., Refs. [72,78–81]) have shown dramatic progress in increas-
ing quality of operations with qudits based on various physical platforms. Both single-qudit
and two-qudit gates nowadays have achieved fidelities, which are comparable with fideli-
ties demonstrated on two-level systems. We believe that combining these experimental
achievements with the presented approach for decreasing the number of two-particle gates
can significantly improve the resulting quality of quantum algorithms implementation.

We also note that in order to extend our approach for three qubits embedded with a sin-
gle ancillary level into a single qudit, one requires qudits of dimension d = 23 + 1 = 9. This
is above the typical dimensionality of currently considered qudit-based platforms [78–81].
Investigation of qudits with d ≥ 9 together with possible accompanying practical challenges
is an important promising topic for further research.
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