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Abstract: Statistical Topology emerged as topological aspects continue to gain importance in many
areas of physics. It is most desirable to study topological invariants and their statistics in schematic
models that facilitate the identification of universalities. Here, the statistics of winding numbers
and of winding number densities are addressed. An introduction is given for readers with little
background knowledge. Results that my collaborators and I obtained in two recent works on proper
random matrix models for the chiral unitary and symplectic cases are reviewed, avoiding a technically
detailed discussion. There is a special focus on the mapping of topological problems to spectral ones
as well as on the first glimpse of universality.
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1. Introductory Remarks

Statistical Topology aims at combining, in a generalizing form, topological questions
appearing in physics with the powerful concepts of Random Matrix Theory (RMT) which
is capable of describing spectral statistics in a huge number of systems, stemming from
different areas of physics and beyond. The focus in this work is exclusively on winding
numbers and associated statistical quantities studied in the framework of a random ma-
trix model; other topological invariants, such as the Chern numbers, which are also of
considerable interest, are not discussed. The long-term aim is to study the emergence of
universalities whose identification and usage is always, in all branches of statistical physics,
the most rewarding enterprise. I have two goals. First, I want to present an introduction to
Statistical Topology, restricted to statistical problems which are related to winding numbers,
for readers without a pertinent background. Neither physics expert jargon, nor heavy
mathematics and mathematical physics terminology are used. Second, I want to review
and summarize results that my collaborators and I obtained in two recent studies [1,2].
We calculated for a chiral unitary random matrix model correlators of winding number
densities and the winding number distribution. We also computed generators for these
correlators in a chiral unitary and a chiral symplectic random matrix model. Furthermore,
we made first steps towards finding universalities.

The paper is organized as follows: In Section 2, the salient features of winding num-
bers and chiral symmetry are presented. In Section 3, a schematic model with the necessary
mathematical setup is formulated. Results are reviewed in Section 4, discussion and conclu-
sions are given in Section 5.

2. Winding Numbers and Chirality

After briefly revisiting the occurrence of winding numbers in complex analysis in
Section 2.1, the Kitaev chain is discussed in Section 2.2 and the statistical ansatz is motivated
in Section 2.3. The research is placed in the framework of Quantum Chromodynamics
(QCD) and Condensed Matter Physics in Section 2.4, summarizing the corresponding
remarks in Refs. [1,2].
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2.1. A Simple Topological Invariant in Complex Analysis

The winding number is a topological concept encountered in complex analysis. Before
discussing applications in physics, we briefly sketch the mathematical background. The
winding number W = W(zi) counts how many times a point zi in the complex plane C is
encircled by a closed contour γ, where counterclockwise or clockwise give a positive or a
negative contribution, respectively. An example is shown in Figure 1, we have W(z1) = 0,
W(z2) = 1 and W(z3) = 2. Obviously, the winding number W(zi) is a topological constant
or, in physics terminology, a quantum number. It is invariant under all deformations of γ
that do not cross the point zi in question. In particular, the winding number is always a
positive or negative integer, W ∈ Z. It may be written as the contour integral

W(zi) =
1

2πi

∮
γ

dζ

ζ − zi
. (1)

One easily establishes the link to Cauchy’s argument principle: Consider a meromorphic
function f (z) and a closed contour Γ, encircling some zeros and poles of f (z) in the complex
plane C as shown in the example in Figure 1. The integral along this contour Γ over the
logarithmic derivative of f (z) yields the difference of the number NZ of zeros and the
number NP of poles, hence

1
2πi

∮
Γ

f ′(z)
f (z)

dz = NZ − NP . (2)

The close relation to the winding number is found by making the change of variable
ζ = f (z) and in accordance with the contour, Γ→ f (Γ),

NZ − NP =
1

2πi

∮
Γ

f ′(z)
f (z)

dz =
1

2πi

∮
f (Γ)

dζ

ζ
= W(0) . (3)

We conclude that NZ − NP is the winding number W(0) of the closed contour f (Γ) around
the origin z = 0. As, from now on, all winding numbers will refer to the origin, we drop
the argument and simply write W.

z

z

z

1

2

3

γ poles zeros

Γ

Figure 1. Left: Three points zi, i = 1, 2, 3 in the complex plane C and a closed contour γ. Right: A
closed contour Γ encircling zeros and poles of a meromorphic function f (z).

2.2. Kitaev Chain and Winding Numbers

To illustrate the occurrence of topological invariants in physics, we look at the Kitaev
chain [3,4] as a prominent example. It consists of spinless electrons with next-neighbor
hopping and superconductive pairing. The Hamiltonian reads, in a slightly simplified form
sufficient for the present discussion,
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Ĥ = ∑
n

(
t
(

ĉ†
n ĉn+1 + ĉ†

n+1 ĉn

)
+ µĉ†

n ĉn +
∆
2

(
ĉ†

n+1 ĉ†
n + ĉn ĉn+1

))
, (4)

where ĉn and ĉ†
n are annihilation and creation operators, respectively, at position n on

the chain. Moreover, µ and ∆ are chemical and pairing potentials and t is the hopping
strength. The Hamiltonian may be reformulated in terms of Majorana fermions whose
number is twice that of the electrons. Remarkably, depending on the parameters, there are
two possibilities, as schematically depicted in Figure 2. Either all Majorana fermions are
paired or, at the ends of the chain, two of them are unpaired [5]. In the former case, the
chain is in a normal or trivial superconducting phase, in the latter, in a topological one.
This aspect deserves further discussion.

Figure 2. Kitaev chain, electrons as larger open circles (red), Majorana fermions as small dots (green)
with the pairing indicated by connecting lines (green). Top: All Majorana fermions are paired, normal
or trivial superconducting phase. Bottom: Unpaired Majorana fermions at the ends of the chain,
topological superconducting phase.

In Fourier space, the Kitaev chain corresponds to the Bloch–Bogolyubov–de Gennes
Hamiltonian matrix H(k). It is a crucial that this 2× 2 matrix satisfies chiral symmetry,

{H(k), C} = 0 with C =
[

1 0
0 −1

]
. (5)

The matrix C is the chiral operator in its proper basis and { , } is the anticommutator. It is
then possible to write the Hamiltonian matrix in the form

H(k) = ~d(k) ·~σ with ~d(k) = (0, ∆ sin k, µ + 2t cos k) . (6)

Hence, using the three-component vector ~σ of the 2 × 2 Pauli matrices, H(k) is found
to be a scalar product with all physics encoded in the vector ~d(k) that depends on the
wave number k and the three parameters µ, ∆ and t. Importantly, the first component is
zero, dx = 0. This restriction to effectively only two dimensions can be shown to be a
consequence of chiral symmetry (5).

To see how topology enters, we notice that the vector ~d(k) describes an ellipse with
parameter k on the curve, µ determines the position of its center, ∆ and t determine its
shape. In Figure 3, we depict ~d(k) for fixed values of µ = 1, ∆ = 1 and three different values
t = 0.25, 0.5, 1 with the corresponding energy dispersion relation E(k). If the origin of the
(y, z) plane is included in the closed contour that the ellipse describes, its winding number
is one, W = 1. If not, the winding number is zero, W = 0. These are two topologically
separated scenarios, reflecting the distinctly different role of the Majorana fermions in the
top and bottom parts of Figure 2. For W = 0, the superconducting phase is the normal or
trivial one, while it is topological for W = 1. A special situation occurs if the ellipse just
touches the x axis, the band gap disappears, marking the phase transition point.
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Figure 3. Ellipses described by~d(k) (left) and corresponding dispersion relations E(k) (right).
Top: t = 0.25, normal superconducting phase, W = 0. Center: t = 0.5, phase transition point.
Bottom: t = 1, topological superconducting phase, W = 1. Courtesy of Nico Hahn.

2.3. Chirality, Random Winding Numbers and Modelling Aspects

When studying such topological invariants in statistical physics, the closed contour
might be a random quantity, for example, generated by a proper ensemble of Hamiltonians.
In the case of the Kitaev chain, this ensemble may be realized by choosing the parameters µ,
∆ and t from probability distributions. Hence, the contour can be different for a particular
choice, i.e., it becomes random, and the winding number W will be random as well. In
general, the dynamics of a system under consideration, described by the Hamiltonian,
and the distributions of its parameters will determine the distribution P(W). Are there
universalities when comparing different systems? If yes, in which quantities do these
universalities manifest? In the distributions P(W) on their original scales or on some scales
which make these systems comparable? These are the guiding questions for our research.
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Universalities are best identified in random schematic systems that only contain the most
basic ingredients needed for the relevant physics, in the present case for the occurence of
winding numbers. Random Matrix Theory (RMT) [6,7] is known to be a powerful concept in
this spirit when studying universalities in spectral correlations as well as in the correlations
of parametric level motion [8,9]. The chiral symmetry (5) and, thus, the restriction to two
dimensions are essential for the interpretation of the two superconducting phases in the
Kitaev chain in terms of the winding number. Hence, when setting up a schematic random
matrix model, we need to employ chirality.

2.4. Connections to Quantum Chromodynamics and Condensed Matter Physics

In Quantum Chromodynamics, the chiral symmetry of the Dirac operator is broken
spontaneously as well as explicitly by the quark masses. The chiral condensate is the order
parameter of the phase transition that occurs at a high temperature and that restores chiral
symmetry, which is related to the confinement–deconfinement transition. To investigate
statistical properties of lattice gauge calculations, chiral RMT [10–17] is remarkably success-
ful. As in the original RMT, presence or absence of time-reversal invariance combined with
spin-rotation symmetries results in three classes of chiral random matrices: orthogonal, uni-
tary and symplectic. It was then shown that altogether ten RMT symmetry classes [18–22]
exist, referred to as the tenfold way. The three original and the three chiral ones comprise
six of these ten classes, the remaining four emerge when particle-hole symmetry is also
considered, see Refs. [23,24]. In condensed matter physics, chiral symmetry is realized by
sublattice symmetry (see early work in Ref. [25]) or as a combination of time reversal and
particle-hole symmetry [24].

In the terminology of condensed matter physics, the winding number comes in as
characterization of translationally invariant one-dimensional chiral systems that are gapped
at the centre of the spectrum. The winding number is the integer topological index with
respect to the bundle of negative-energy bands. A non-zero winding number W indicates
the topologically non-trivial situation with |W| modes at each boundary [26–29]. The
winding number differs for different realization of the disorder, i.e., it becomes random.
Our research on the winding number was inspired by studies of systems with energy bands
in two dimensions, allowing for a topological classification by the (first) Chern number. A
random matrix model [30,31] revealed a Gaussian distribution of Chern numbers with a
universal covariance.

Another intriguing direction might be the application of Statistical Topology to classical
wave phenomena such as microwaves or acoustics and, furthermore, to photonics where
topological issues are already in focus [32].

3. Formulation of the Problem and Mathematical Setup

After introducing chiral random matrix ensembles with a parameter dependence in
Section 3.1, the statistical quantities of interest are defined in Section 3.2. In Section 3.3, a cru-
cial step for all of our mathematical investigations is presented, namely, the mapping of the
topological problem addressed to a spectral one which greatly facilitates the computations.

3.1. Chiral Random Matrix Ensembles with Parametric Dependence

We derived results [1,2] for the chiral unitary and the chiral symplectic symmetry
classes labeled AIII and CII, respectively, see Ref. [18]. The latter case is mathematically
much more demanding than the former, but not as involved as the orthogonal case, labeled
BDI. Only very recently have we been able to solve it, this will be published elsewhere.
The cases BDI and CII describe time-reversal invariant systems, while this invariance
does not exist in the case AIII. We refer to the matrices as Hamiltonians H, as most of the
present application of winding numbers seem to stem from Condensed Matter Physics.
The matrices H are complex Hermitean or quaternion real, i.e., self-adjoint, with even
dimension βN × βN where we employ the Dyson indices β = 2 and β = 4 for AIII and CII.
Chiral symmetry manifests in the relation
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{C, H} = 0 (7)

where in the chiral basis

C =
[

11βN/2 0
0 −11βN/2

]
. (8)

The Hamiltonians thus take the block off-diagonal form

H =

[
0 K

K† 0

]
, (9)

where the βN/2× βN/2 matrices K have no further symmetries. We draw the matrices
H from the chiral Gaussian Unitary, respectively, Symplectic Ensembles (chGUE, chGSE).
To study questions of topology, we give these random matrices a parametric dependence
K = K(p) and thus, H = H(p), where the real variable p lies on the unit circle. The winding
number corresponding to these Hamiltonians is then [33,34]

W =
1

2πi

2π∫
0

w(p) dp , (10)

with the winding number density

w(p) =
d

dp
ln det K(p) =

1
det K(p)

d
dp

det K(p) . (11)

Cauchy’s argument principle applies to the integral (10), provided det K is a non-zero
analytic function of p, see Section 2.1 and particularly, Equation (3).

To produce explicit results, we choose a particular realization of the parameter depen-
dence. With two smooth and 2π periodic scalar functions a(p) and b(p), we set

K(p) = a(p)K1 + b(p)K2 , (12)

where the matrices K1 and K2 have dimensions βN/2× βN/2. The associated Hamiltonians

H(p) = a(p)H1 + b(p)H2 with Hm =

[
0 Km

K†
m 0

]
, m = 1, 2 , (13)

define parametric combinations of either two chGUE’s or two chGSE’s. Averages over
these combined ensembles have to be performed. It is convenient to introduce the vector

v(p) = (a(p), b(p)) ∈ C2 . (14)

Time-reversal invariance imposes the condition v∗(p) = v(−p) in the chiral symplectic
case CII.

3.2. Statistical Quantities Considered

Considering k different points pi, i = 1, . . . , k, on the unit circle, we are interested in
the k-point correlators of winding number densities

C(β,N)
k (p1, . . . , pk) = 〈w(p1) · · ·w(pk)〉 (15)

The precise meaning of the angular brackets indicating the ensemble average will be
given later on. In the chiral unitary case AIII, we computed these correlators directly [1],
see Section 4.1. As, first, this approach becomes forbiddingly complicated in the chiral
symplectic case CII, and, second, results in cumbersome expressions for larger k, we
calculated the generators
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Z(β,N)
k|l (q, p) =

〈
∏l

j=1 det K(pj)

∏k
j=1 det K(qj)

〉
(16)

for two sets of variables p1, . . . , pl and q1, . . . , qk in Ref. [2], see Section 4.4. Only the case
k = l is needed, but the more general definition (16) for k and l being different has technical
advantages. We notice that k and l are the numbers of determinants in denominator and
numerator, respectively. The k-fold derivative

C(β,N)
k (p1, . . . , pk) =

∂k

∏k
j=1 ∂pj

Z(β,N)
k|k (q, p)

∣∣∣∣∣
q=p

(17)

of the generator (16) for k = l at q = p yields the correlator (15). Anticipating the later
discussion, we emphasize that the generators for both Dyson indices β = 2, 4 will exhibit
a remarkably clear structure [2] which is an important reason to address them here. It is
worth mentioning that the correlators (15) and the generators (16) are very different from
those for the parametric level motion considered in Refs. [8,9].

Furthermore, we also computed the distribution of winding numbers P(W) in the
chiral unitary case AIII [1], see Section 4.2.

3.3. Mapping a Topological to a Spectral Problem

At first sight, the computation of the correlators (15) and the generators (16) appears as
a formidable task, requiring the development of completely new techniques in RMT. Luckily,
one can establish a link between the topological problem set up above and spectral problems
in RMT for which a wealth of literature exists. This amounts to a tremendous simplification,
even though the calculations to be performed are still involved and quite demanding,
particularly in the chiral symplectic case. The key observation is that a combination of
the two matrices K1 and K2 in Equation (12) encodes all the statistical information needed.
Pulling out K1, say, one has

K(p) = a(p)K1 + b(p)K2 = b(p)K1

(
κ(p)11βN/2 + K−1

1 K2

)
(18)

with the ratio

κ(p) =
a(p)
b(p)

. (19)

Since the winding number density (11) is the derivative of the logarithm

ln det K(p) = ln det K1 + βN ln b(p) + ln det
(

κ(p) + K−1
1 K2

)
, (20)

the first term ln det K1 does not contribute and, remarkably, only the combination Y = K−1
1 K2

is relevant. Using Equation (18), the generators acquire the form

Z(β,N)
k|k (q, p) =

(
k

∏
j=1

b(pj)

b(qj)

)βN〈 k

∏
j=1

det(κ(pj)11βN/2 + Y)
det(κ(qj)11βN/2 + Y)

〉
, (21)

which as well only contains the matrix Y.
The task to be solved is the derivation of the probability density for the random

matrices Y = K−1
1 K2 from the independent Gaussian distributions for the random matrices

K1 and K2. Once again, luckily, the results are known as spherical [35,36] ensembles and
their probability densities read explicitly

G̃(β)(Y) =
1

πβN2/2

N

∏
j=1

(β(N + j)/2− 1)!
(βj/2− 1)!

1

det2N
(

11βN/2 + YY†
) . (22)
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These ensembles are referred to as complex spherical and quaternion spherical for β = 2, 4.
In the complex case, the probability density (22) can be reduced to a joint probability density
of the N complex eigenvalues z = diag (z1, . . . , zN) of Y and reads

G(2)(z) =
1

c(2)
|∆N(z)|2

N

∏
j=1

1
(1 + |zj|2)N+1 (23)

with the the Vandermonde determinant

∆N(z) = ∏
j<l

(zj − zl) . (24)

In the quaternion case, however, each eigenvalue zj of Y has a complex conjugate z∗j ,
which is also an eigenvalue. The corresponding joint probability density of the eigenvalues
z = diag (z1, z∗1 , z2, z∗2 , . . . , zN , z∗N) is given by

G(4)(z) =
1

c(4)
∆2N(z)

N

∏
j=1

zj − z∗j
(1 + |zj|2)2N+2 . (25)

The normalization constants are

c(β) =

(
βπ

2

)N
N!

N

∏
j=1

B
(

βj
2

,
β(N + 1− j)

2

)
, (26)

where B(x, y) is Euler’s Beta function. The question whether the integrals to be calculated
are well-defined for β = 4 arises, but the answer is affirmative [2]. Hence, the ensemble
average over a function f (z) to be performed amounts to carrying out the integral

〈 f (z)〉 =
∫
C

d[z1] · · ·
∫
C

d[zN ] G(β)(z) f (z) (27)

over all complex eigenvalues. Hence, by reducing the two chiral ensembles to a single
spherical one for either β, all information of the topological problem is contained in the
determinants det(κ(p)11βN/2 + Y) or their derivatives. Most advantageously, this is equiv-
alent to a spectral problem where Y and κ(p) formally play the roles of a (complex or
quaternion) “Hamiltonian” and of the corresponding “energy”, respectively.

4. Results

The correlators for the unitary case are addressed in Section 4.1, the distribution is
given in in Section 4.2. Aspects of universality are discussed in Section 4.3. The generators
in the chiral unitary and symplectic cases are presented in Section 4.4.

4.1. Winding Number Correlators in the Chiral Unitary Case

In Ref. [1], we calculated the winding number correlators C(2,N)
k (p1, . . . , pk) as defined

in Equation (15) in the unitary case directly. We chose

a(p) = cos p and b(p) = sin p . (28)

Using Equations (11) and (20) as well as the complex eigenvalues of Y, one has

w(p) = N cot p + y(p) with y(p) = − 1
sin2 p

N

∑
n=1

1
cot p + zn

. (29)

Only the k-fold products of y(p) have to be ensemble averaged with the joint probability
density (23), the presence of the inconvenient term N cot p implies that the correlator
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C(2,N)
k (p1, . . . , pk) of the k winding number densities w(pj) becomes a combinatorial sum

of the y(pj) correlators. Furthermore, the latter themselves turn out to be rather involved

combinatorial expressions. Eventually, C(2,N)
k (p1, . . . , pk) is found to be a combinatorial

sum of determinants with the entries

Lnml(ql) =
(−1)m−nπ

qm−n+1
l

B(m, N −m + 1)

{
um(N, q2

l ) m ≥ n
−vm(N, q2

l ) m < n
(30)

with the properly normalized incomplete Beta functions

um(N, q2
l ) =

2
B(m, N −m + 1)

ql∫
0

dρ
ρ2m−1

(1 + ρ2)N+1

vm(N, q2
l ) =

2
B(m, N −m + 1)

∞∫
ql

dρ
ρ2m−1

(1 + ρ2)N+1 (31)

that satisfy um(N, q2
l ) + vm(N, q2

l ) = 1. Even though B(m, N − m + 1) drops out in the
Lnml(ql), this normalization has advantages, see Ref. [1]. The first two correlators read

C(2,N)
1 (p1) = 0

C(2,N)
2 (p1, p2) = −1− cos2N(p1 − p2)

1− cos2(p1 − p2)
. (32)

The at-first-sight surprising vanishing of the averaged winding number density is actually
quite natural, as the winding number W must have a symmetric distribution with vanishing
first moment. The integral of C(2,N)

1 (p1) over p1 is this first moment.

4.2. Winding Number Distribution

In Ref. [1], we also computed the winding number distribution P(W) in the uni-
tary case for the choice (28). Using Cauchy’s argument principle, we derive the discrete
probability distribution

P(W) = r
(

W + N
2

)(
N

(W + N)/2

)
(33)

on the integers W between −N and +N for arbitrary, finite matrix dimension N. Here,
r(m) is the probability that m eigenvalues are inside the unit circle and the remaining ones
outside which may be written as

r(m) =
∫

|z1|<1

d[z1] · · ·
∫

|zm |<1

d[zm]
∫

|zm+1|>1

d[zm+1] · · ·
∫

|zN |>1

d[zN ] G(2)(z) . (34)

Calculating the integrals yields

r(m) =
1

N! ∑
ω∈SN

(
m

∏
i=1

uω(i)(N, 1)

)(
N

∏
i=m+1

vω(i)(N, 1)

)
, (35)

in terms of the functions (31). The combinatorial factor in Formula (33) takes into account
the permutation invariance of the eigenvalues inside, respectively, outside, the unit circle.
The sum runs over all permutations, SN is the permutation group.
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4.3. Aspects of Universality

The quest for universality is twofold, first, there is the question of whether the same
statistical effects, distributions or scalings, etc, can be identified in empirical or experimental
data of different physical systems. Second, there is the theoretical and mathematical side
concerned with often schematic models and their ability to describe or even predict the
results from data analysis. In the case of spectral correlations, universal statistics is found
on the local scale of the mean level spacing, i.e., universalities are revealed after a rescaling
of the energies, referred to as unfolding. The unfolded correlators of, on the one hand,
RMT for infinite level number and of, on the other hand, numerous physical systems of
very different nature with large number of levels coincide, see the discussion in Refs. [6,7].
The theoretical and mathematical challenge is non-trivial as it amounts to showing that a
most general class of probability densities for the random matrices yields after unfolding
the same statistical quantities. Put differently, it suffices to consider Gaussians because the
resulting statistics is, always after unfolding, universal.

In the case of statistical topology, universality is of equally high importance, but it
appears to be considerably more complicated. Already, on the theoretical and mathematical
side, there are several natural questions to be posed: First, is there an unfolding scale
comparable to the local mean level spacing and how is it related to the scale of the level
velocity as in the parametric correlations [8,9,37]? Second, which probability densities for
the random matrices yield in the model set up in Section 3.1 the same statistics? Third,
what are the conditions on the functions a(p) and b(p) or, more precisely, the combined
conditions on these functions and the probability densities that yield in the model universal
statistics? Fourth, is it possible to find universal statistics for models more general than the
one in Section 3.1?

In Ref. [1], we started addressing these issues in the unitary case for the choice (28). Of
course, this limits our discussion, a future fully fledged investigation ought to also consider
the impact of different choices for these functions. Guided by unfolding in spectral statistics,
we rescaled the arguments pi in the correlation functions C(2,N)

k (p1, . . . , pk) according to

ψi = Nα pi . (36)

The power α should be positive because we want to zoom into the parametric dependence
in the limit N → ∞. Consider the two-point function (32) and the limit

lim
N→∞

C(2,N)
2

(
ψ1

Nα
,

ψ2

Nα

)
dψ1

Nα

dψ2

Nα
= f (α)2 (ψ1, ψ2)dψ1dψ2 (37)

defining the function f (α)2 , if existing. A straightforward calculation yields

f (α)2 (ψ1, ψ2) =


− 1

(ψ1 − ψ2)
2 α < 1

2

−1− exp(−(ψ1 − ψ2)
2)

(ψ1 − ψ2)
2 α = 1

2

0 α > 1
2

. (38)

We notice C(2,N)
2 (p1, p1) = −1, see Equation (32), implying that ψ1 6= ψ2 when taking the

limit for arbitrary α. The result (38) reveals different regimes, the one for α = 1/2 involves
the same scale as in Refs. [8,9]. Figure 4 shows results for two values of α and various
values of N, the unfolded two-point function approaches the limit (38) when N increases.
We conjectured that the function f (α)2 (ψ1, ψ2) is universal [1].
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0 1

-20

0

0 6

-1

0

Figure 4. Unfolded two-point function after the rescaling (36) for different values of N (blue). In
(a), we used N = 5, 10, 20, 50, 100, 150, 200, 300, 1000 and α = 1/6, in (b) N = 2, 5, 7, 10, 15, 20, 50, 100
and α = 1/2. For comparison, the limit (37) is presented (red). Taken from Ref. [1].

In Ref. [1], we also showed that the winding number distribution (33) becomes Gaus-
sian for large N. More precisely, its second moment behaves like 〈W2〉 ∼

√
N, suggesting

an unfolding of the form W/N1/4, i.e., different from the rescaling above. It then follows
that P(W) approaches a Gaussian with variance 2

√
N/π for large N.

4.4. Generators in the Chiral Unitary and Symplectic Cases

We computed the generators (16), respectively, (21) exactly for β = 2 and β = 4 in
Ref. [2]. To this end, we used the method proposed some years ago in Refs. [38,39]. It
identifies and employs, in ordinary space, supersymmetric structures deeply rooted in
the ensemble averages. As there is no mapping performed of the ensemble averages to
superspace, the method is often referred to, jokingly, but not deceptively, as “supersym-
metry without supersymmetry”. In the chiral unitary case β = 2, we found a ratio of
two determinants,



Entropy 2023, 25, 383 12 of 14

Z(2,N)
k|k (q, p) =

det

[
1

vT(qm)σ2v(pn)

(
v†(qm)v(pn)

v†(qm)v(qm)

)N]
1≤m,n≤k

det
[

1
vT(qm)σ2v(pn)

]
1≤m,n≤k

, (39)

where σ2 is the second 2× 2 Pauli matrix and v(pn) is the vector defined in Equation (14).
In the chiral symplectic case β = 4, we arrived at a ratio of a Pfaffian and a determinant,

Z(4,N)
k|k (q, p) =

Pf
[

K̂1(pm, pn) K̂2(pm, qn)

−K̂2(pn, qm) K̂3(qm, qn)

]
1≤m,n≤k

det
[

1
ivT(qm)σ2v(pn)

]
1≤m,n≤k

. (40)

The three kernel functions K̂l(pm, pn) , l = 1, 2, 3 are quite complicated and can be found
explicitly in Ref. [2]. Considering the complexity of the problem and of its mathematical
structure, these are remarkably compact results, even in the chiral symplectic case. This
compactness is the reason why we present these results here. Their form is intimately
connected with the mapping of the topological to a spectral problem discussed in Section 3.3
because such determinant and Pfaffian expressions are ubiquitous for the generators in
spectral statistics. Importantly, this carries over, at least for the model considered, to the
generators for the correlators of winding number densities.

5. Discussion and Conclusions

Statistical Topology is an emerging branch in statistical physics, with connections
to various branches of mathematics. It is triggered by the identification of topological
questions in many areas of physics, ranging from quantum mechanics and quantum
field theory over semiclassics to QCD and Condendsed Matter Physics. First, I tried to
give an introduction to winding number statistics for newcomers who do not have any
background, avoiding usage of expert jargon and of burying the key ideas under the
adavanced terminology developed in mathematics and mathematical physics. Second, I
reviewed results that my collaborators and I obtained in two recent works. We studied
winding numbers and associated statistical quantities in a random matrix model. There
are, of course, also other topological invariants of considerable interest in physics, most
notably, the Chern numbers.

I presented our first, probably awkward, steps towards looking at universal behavior.
In my opinion, the most fascinating challenge for the future is the further study of universal-
ity in statistical topology, more precisely, of both of its aspects, the experimental–empirical
as well as the theoretical–mathematical one.
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The following abbreviations are used in this manuscript:

RMT Random Matrix Theory
QCD Quantum Chromodynamics
chGUE chiral Gaussian Unitary Ensemble
chGSE chiral Gaussian Symplectic Ensemble
SN permutation group of N objects
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