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Abstract

:

Recently, advances in detection and re-identification techniques have significantly boosted tracking-by-detection-based multi-pedestrian tracking (MPT) methods and made MPT a great success in most easy scenes. Several very recent works point out that the two-step scheme of first detection and then tracking is problematic and propose using the bounding box regression head of an object detector to realize data association. In this tracking-by-regression paradigm, the regressor directly predicts each pedestrian’s location in the current frame according to its previous position. However, when the scene is crowded and pedestrians are close to each other, the small and partially occluded targets are easily missed. In this paper, we follow this pattern and design a hierarchical association strategy to obtain better performance in crowded scenes. To be specific, at the first association, the regressor is used to estimate the positions of obvious pedestrians. At the second association, we employ a history-aware mask to filter out the already occupied regions implicitly and look carefully at the remaining regions to find out the ignored pedestrians during the first association. We integrate the hierarchical association in a learning framework and directly infer the occluded and small pedestrians in an end-to-end way. We conduct extensive pedestrian tracking experiments on three public pedestrian tracking benchmarks from less crowded to crowded scenes, demonstrating the proposed strategy’s effectiveness in crowded scenes.
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1. Introduction


Multiple pedestrian tracking (MPT) is a fundamental task which supports many computer vision applications, such as video synopsis, autonomous driving, and intelligent surveillance. The goal of MPT is to generate trajectories of all pedestrians in a video. In the past few years, the tracking-by-detection paradigm [1,2] has dominated this field and achieved great success. This paradigm consists of two separate steps. First, it applies an existing object detector to localize the pedestrians in each video frame with bounding boxes. Second, an association model is designed to link the bounding boxes into complete trajectories using motion or appearance cues. Benefiting from the advance of detection [3,4,5] and re-identification (Re-ID) techniques, the tracking-by-detection-based MPT methods have witnessed great success in easy scenes [6,7,8].



However, such tracking-by-detection MPT methods treat detection and data association as separate steps. As a result, this separate two-step scheme has to face at least two disadvantageous aspects [4,9,10,11]. On the one hand, the biased or false positives easily misguide the tracking process and are hard to rectify. On the other hand, obstacles are posed by the association cues. Many methods [6,12,13] assign detections to tracklets based on appearance similarities for which a separate re-identification neural network is required, making the reference process of tracking complicated. To train the re-identification network, large person re-identification datasets are needed. Moreover, extracting the discriminative features from the heavily occluded pedestrians in crowded scenes is hard.



To overcome these defects, we propose a hierarchical association strategy to improve the tracker’s robustness to occlusion and boost the overall tracking performance. Inspired by the idea of Divide and Conquer, we handle targets of varying difficulty hierarchically. The obvious pedestrians are dealt with at the first association and the obscure or partially occluded ones at the second association. At the first association, to make full use of a strong correlation between consecutive video frames, we follow the tracking-by-regression paradigm proposed by Bergmann et al. [11] which exploits the regression head of a two-stage detector, Faster R-CNN [3], to propagate positions of active trajectories from frame t − 1 to frame t. Then, with the spatial–temporal information provided by the first association, a history-aware mask is constructed to assist the localization of partially occluded pedestrians and small-looking ones. Those refined detections will be assigned to inactive tracks or initialized as new ones. Figure 1 briefly illustrates the difference between the classical tracking-by-detection methods, the tracking-by-regression methods and the proposed hierarchical tracking framework. Moreover, by careful design, our method exploits a simple linear motion model to update positions of inactive trajectories for trajectory rebirth, without the need to train an additional re-identification model to provide appearance information. Our method is simple and achieves competitive performance in many challenging scenes.



We conduct extensive analysis of the proposed tracker on the most widely used multi-pedestrian tracking datasets. The results show the superiority of our approach, especially in severely crowded scenarios.



In summary, the main contributions of our work could be listed as:




	
We follow the tracking-by-regression pattern and propose a hierarchical strategy for online multiple pedestrian tracking, especially for crowded scenes. By our deliberate design, the proposed method successfully locates and tracks many small and partially occluded objects.



	
We seamlessly incorporate the hierarchical strategy into our tracking framework and capture spatial–temporal cues by constructing a history-aware mask. Thus, we can directly infer both obvious and partially occluded pedestrians.



	
Pedestrian tracking experiments on three public multi-pedestrian tracking datasets, from less crowded scenes to very crowded: MOT16 [14], MOT17 [14], and MOT20 [15], show the effectiveness of the proposed method.








This paper is organized as follows: Section 2 presents the review of related works. Section 3 describes the proposed MPT framework with hierarchical association strategy. The effectiveness of the proposed method is validated by experiment results on three standard benchmarks in Section 4. Finally, a summary is provided in Section 5.




2. Related Work


2.1. Tracking-by-Detection


In the past few years, the tracking-by-detection paradigm has been the prevailing solution to MPT. In this context, the tracking methods can be categorized into offline [16,17,18,19] and online methods [7,20,21,22,23]. Online systems handle video streams to produce trajectories only taking advantage of information up to the current frame. Offline methods, however, can use the whole video sequence as input and process the video frames in a batch. Generally speaking, the online methods have an advantage in time critical-scenes, while offline methods perform better. In this paper, the proposed tracking system follows the online paradigm. SORT [1] uses a linear velocity motion model, namely the Kalman filter [24], to approximate the inter-frame offsets of pedestrians. It then capitalizes on bounding box geometry between neighbor frames to construct an assignment cost matrix and realizes the association by a Hungarian algorithm [25]. Wojke et al. [6] came up with an extension of SORT that integrates appearance information extracted by a pre-trained convolutional neural network (CNN) to improve the tracking performances in scenes with missing detections and occlusion. In order to obtain more robust tracking results, many works [7,8] explore more complex optimization algorithms. Recently, some works have utilized deep learning models to improve data association or to manage the trajectory status [26,27]. Kieritz et al. [28] leveraged a deep multilayer perceptron to guide the tracking process; however, only a fixed number of targets can be processed through time. Furthermore, the deep affinity network (DAN) [2] extracts features of detected objects from selective layers of a VGG-like backbone in a pair of frames and performs exhaustive pairing permutations of features in two consecutive frames to calculate an association matrix. DAN predefines the maximum number of targets that appear in a frame, which cannot work efficiently with the indefinite number of targets among video frames. Liu et al. [29] proposed a graph similarity module to model the relations among pedestrians to acquire more robust affinity information. These mentioned works achieve great success in easy scenes, while few of them explicitly explore tracking issues in crowded scenarios.




2.2. New MPT Directions


Several very recent works explore novel MPT paradigms. The joint detection and embedding (JDE) paradigm obtains detections and corresponding appearance representation from a single network. Wang et al. [30] introduced a neural network, which jointly realizes a detection task and an ReID task, yielding detected pedestrians and corresponding ReID features. As successors of this method, FairMOT [10] and CSTrack [31] obtain better performances by balancing the fairness of detection and Re-ID feature extraction. The joint detection and tracking (JDT) paradigm adds a tracking branch to a one-stage object detector to obtain pedestrian motion information between two consecutive frames. CenterTrack [4], a representative work of this kind, takes two continuous frames and detections of a previous frame as input, obtaining detections and trajectories’ offsets for the current frame. TraDeS [32] improves tracking performance of CenterTrack by using tracking cues to assist detection and in return benefit tracking. By sharing most of the calculation between object detection and association cues extraction, these one-shot methods achieve superior performance. Nonetheless, the training of these neural networks needs extra datasets and more carefully refined annotations. Tracktor [11] realizes data association by predicting the corresponding spatial location of tracks in the next frame with the help of a regression head of a detector. Because of this, the tracking-by-regression paradigm needs no track annotations, and it is easy to be transferred to new scenes and has been utilized by some methods [29,33,34,35]. However, this method cannot obtain decent results in challenging scenes. The regression process of active tracks may stagnate when pedestrians occlude each other, and the process needs a separate re-identification model to reactivate. The re-identification feature offered by the Re-ID model may be undiscriminating due to heavy occlusion. Our method follows the tracking-by-regression paradigm; the occluded pedestrians can be associated with corresponding tracklets by the proposed hierarchical association strategy which only uses spatial information.




2.3. Tracking in Crowded Scenes


It is hard for object detectors to accurately localize pedestrians when they are not fully visible. Appearance features of pedestrians are often used to associate tracklets and pedestrians, which may fail in crowded scenes due to the undiscriminating features extracted from occluded pedestrians. Gao et al. [36] proposed two models to handle two different types of occlusions, namely, an attention-based appearance model for inter-object occlusion and a scene structure model for obstacle occlusion. TADAM [33] jointly optimizes position estimation and re-identification feature association with mutual benefits, obtaining better performance in heavily occluded scenes. ArTIST [35] utilizes a stochastic autoregressive motion model to both associate tracklets with detections and retrieve inactive tracks. Tokmakov et al. [37] proposed a model which extends CenterTrack [4] with a recurrent memory module. With the help of a synthetic dataset, it can estimate pedestrians’ location when they are fully occluded. Tarasha et al. [38] proposed an online method that forecasts the positions of occluded pedestrians, exploiting depth information from an off-the-shelf monocular depth estimator to handle potential occlusions.



In this paper, we follow the tracking-by-regression paradigm. Different from prior works for partially occluded or small-looking pedestrians, we design a hierarchical association strategy only exploiting spatial information to highlight them in crowded scenes without complex models or additional training data. At the first association, the salient pedestrians are tracked. Then, with assistance from the first association, the partially occluded and small pedestrians are found and assigned to tracklets or initialized as new trajectories at the second association. A simple linear motion model is used to update the positions of inactive tracks for reactivation.





3. Proposed Method


We build our model on top of the promising regression-based tracker, Tracktor [11], which propagates spatial locations of active trajectories by the regression head of a two-stage detector. However, this succinct mechanism may fail in challenging scenes, such as motion blur or heavy occlusion. Moreover, a separate re-identification neural network is needed to recover the inactive tracks. We push for progress in tracking pedestrians in these complex scenes by proposing a hierarchical association strategy that follows the divide and conquer idea: The first association for obvious targets and the second for difficult ones, as indicated in Figure 2. Moreover, a simple spatial matching is used to retrieve inactive tracks with the help of a linear motion model instead of a separate re-identification model. It is worth noting that our method does not require any tracking-specific training or sophisticated optimization at inference time, making it easy to transfer to new scenarios where only detection data are available.



3.1. Problem Formulation


Given a video sequence   I = {  I 1  ,  I 2  , ⋯ }   and corresponding detections   D = {  D 1  ,  D 2  , ⋯ }  , where provided detections of frame j is    D j  =  {  b j 1  ,  b j 2  , ⋯ }   , the task of multiple pedestrian tracking is to produce a trajectory set   T = {  T 1  ,  T 2  , ⋯ }  . We denote a trajectory   T i   as a list of ordered bounding boxes    T i  =  {  b   t 1   i  ,  b   t 2   i  , ⋯ }   ; each pedestrian    b t i  =  ( x , y , w , h )    is described by the top left corner image coordinates, width and height, and t is the timestamp of the video frame.




3.2. Network Architecture


We build our method upon a two-stage object detector, faster R-CNN, which consists of two major components, a region proposal network (RPN) and a region-based detection network. Faster R-CNN takes a video frame    I t  ∈  R  3 × H × W     as input and produces feature map    f t  = B  (  I t  )    by the backbone network   B ( · )  . We build our tracker by adding an extra input branch on the backbone of faster R-CNN, a history-aware fusing block, which takes a history-aware mask    H t  ∈  R  1 × H × W     as input, as shown in Figure 3.



The resolution of the history-aware mask is the same as the input image. To maintain consistency, we build the history-aware mask for both stages of hierarchical association; even the history-aware mask does not provide any information at the first association. The build process is as follows: in the first stage of data association, the value of every pixel in the history-aware mask is set to 0. In the second stage of data association, we construct the history-aware mask based on the aligned boxes of active tracks in frame   I t  , which are derived from the first stage of data association. Suppose the aligned boxes set of active trajectories in frame   I t   is    B t  a l i g n   =   (  x k  ,  y k  ,  w k  ,  h k  )   k = 1  n   . The history-aware mask for the second stage is constructed as follows:


   H t  =  ∑  k = 1    |   B t  a l i g n    |    1 ,  x k  ≤ x ≤  x k  +  w k  ,  y k  ≤ y ≤  y k  +  h k  .  



(1)







Therefore, the value of each pixel for the history-aware mask equals the number of aligned boxes that cover the pixel. The history-aware mask is processed by the fusing block, a convolution layer. Then, the extracted history feature map is added with the activation of the first convolution layer of the backbone of faster R-CNN. In our case, the convolution layer that processes the history mask has 64 filters with kernel size 3 and stride 2. In order to enable the network with the ability to detect difficult pedestrians in challenging scenes, we train the model only with detection annotations in an end-to-end way. During the training process, inspired by IterDet [39], we randomly split the ground truth detection bounding box set   B  g t    of frame t into two subsets   B  h i s    and   B  r e d i s    with    B  h i s   ∪  B  r e d i s   =  B  g t     and    B  h i s   ∩  B  r e d i s   = ∅  . We consider the aligned boxes set as   B  h i s    in the first stage of data association and employ it to construct the history-aware mask   H t  . We regard   B  r e d i s    as samples to force the network to discover difficult pedestrians that are missed in the first stage. Consequently, a well-trained network has the ability to find out the missing pedestrians given already found pedestrians. Moreover, this training method provides an additional source of data augmentation by different splits of   B  g t   . The loss function for the network is defined as follows:


  L  ( c ,  c ^  , b ,  b ^  )  =  L  c l s    ( c ,  c ^  )  +  L  r e g    ( b ,  b ^  )  .  



(2)




where   c ^   and    b ^  =  { x , y , w , h }    are the predicted confidence score and bounding box geometry, and c and b are the corresponding labels. The learning objective of training consists of two loss functions, namely, the object classification loss   L  c l s   , and the bounding box regression loss   L  r e g   . The classification loss   L  c l s    is formulated as a cross-entropy loss and the regression loss   L  r e g    as a smooth L1 loss.




3.3. Inference Algorithm


In the beginning, our method initializes tracks    B  0   t r k   =  B 0    using the set of public detections at frame   t = 0  . The overview of the hierarchical data association strategy is shown in Figure 2.



3.3.1. First Association


As indicated with red arrows in Figure 2, the first stage data association for active trajectories is achieved by the regression head of the network. Specifically, the network takes current frame   I t  , the bounding boxes   B  t − 1   t r k    of active tracks in frame   I  t − 1    and the blank history-aware mask as input, among which   B  t − 1   t r k    are the proposals to the RoIAlign layer [40], the regression head returns the potential locations   B  t   a l i g n    and corresponding confidence scores   s  t   a l i g n    in current frame t.



Consequently, the identity index   {  k 1  ,  k 2  , ⋯ ,  k n  ∣  ≤  k 1  ,  k 2  , ⋯ ,  k n  ≤ N }   of active tracks is inherited from frame   t − 1  . If confidence scores in   s  t   a l i g n    are lower than a threshold   δ  a c t i v e   , it indicates that the corresponding tracks are potentially disappeared or occluded and should be set inactive.




3.3.2. Second Association


The emergence of new trajectories and the re-emergence of inactive ones occur gradually, during which the pedestrians are partially occluded and and some appear small. It is difficult to extract useful semantic information from these occluded and small targets, making them easily overlooked at the first association. In order to improve the tracking robustness to these targets, we exploit the second data association, as indicated by the green arrows in Figure 2. At the second stage, we construct the history-aware mask according to the aligned bounding boxes   B t  a l i g n    of active tracks. At this time, the network takes the current image   I t   and the constructed history-aware mask   H t   as input. To make a fair comparison with other tracking methods in the widely recognized datasets, we also use the public detections as the proposals to the RoIAlign pooling layer as shown in Figure 3. By our setting, the head of the network returns the overlooked targets   D t   as indicated in Figure 2 with green arrows. They are preferentially associated with the trajectories which turned inactive at first association based on spatial similarity. Then, the remaining pedestrians are assigned to tracks set as inactive previous to the current frame or initialised as new tracks. Only when the confidence score of a detection from   D t   is larger than a threshold   γ  n e w   , will the detection be assigned to an inactive trajectory or initialize as a new one. To associate new detections with inactive trajectories, instead of using a re-identification model to acquire appearance cues for the association, we use a linear motion model (LMM) to update their positions for spatial matching based on IoU.



The whole tracking process is shown in Algorithm 1. Like many previous works [1,6,10,11,30], a trajectory is abandoned if it is not assigned with new detections for consecutive N frames.






	Algorithm 1 The proposed tracker.



	Input: Video sequence   I =   {  I t  }   t = 0   N − 1     of frame   I t   at time t and public detection set   D =   {  D t  }   t = 0   N − 1     of detections   D t   for frame   I t  .



	Output: Trajectory set   T =   {  T k  }   k = 0  M   , with    T k   = {    b   t 1  k  ,   b   t 2  k  , ⋯ ,   b   t M  k   | 0 ≤  t 1  , ⋯ ,  t M  ≤ N − 1 }    as a list of ordered object bounding boxes     b   t i  k  =  ( x , y , w , h )   .



	
	1:

	
  T ,  T  a c t i v e   ← ∅  




	2:

	
for   I t  ,  D t    in zip(  I , D  ) do




	3:

	
    if   t = = 0   then




	4:

	
        Initialize the active trajectory set   T  a c t i v e    with   D t  ;




	5:

	
    else




	6:

	
        // Estimate new positions of inactive tracks




	7:

	
          T ←   LMM( T )




	8:

	
            B   a l i g n   ,   S   a l i g n   ,  T  a c t i v e _ r e m a i n   ← ∅  




	9:

	
           H  m a s k   ←   Mask_construction(∅)




	10:

	
        F ← Backbone(  I t  ,   H  m a s k   )




	11:

	
        // First association




	12:

	
        for    T k  ∈  T  a c t i v e     do




	13:

	
               b   t − 1  k  ←  T k   [ − 1 ]   




	14:

	
               b  t k  ,  s t k  ←   Detector.RoI_head(F,    b   t − 1  k  )




	15:

	
           if    s t k  <  δ  a c t i v e     then




	16:

	
                  T  a c t i v e   ←  T  a c t i v e   ∖  T k   




	17:

	
                  T  a c t i v e _ r e m a i n   ←  T  a c t i v e _ r e m a i n   ∪  {  T k  }   




	18:

	
           else




	19:

	
                   B   a l i g n   ←   B   a l i g n   ∪  {   b  t k  }   




	20:

	
                   S   a l i g n   ←   S   a l i g n   ∪  {  s t k  }   




	21:

	
           end if




	22:

	
        end for




	23:

	
           H  m a s k   ←   Mask_construction(   B   a l i g n   )




	24:

	
        F ← Backbone(  I t  ,   H  m a s k   )




	25:

	
           B t  ,  S t  ←   Detector.RoI_head(F,   D t  )




	26:

	
        // Second association




	27:

	
        Associate   T  a c t i v e _ r e m a i n    and   B t   using IoU distance




	28:

	
           T  a c t i v e _ r e _ r e m a i n   ←   remaining tracks from   T  a c t i v e _ r e m a i n   




	29:

	
           B  t _ r e m a i n   ,  S  t _ r e m a i n   ←   remaining detections from    B t  ,  S  t _ r e m a i n    




	30:

	
          T ← T ∪  T  a c t i v e _ r e _ r e m a i n    




	31:

	
        Associate T and   B  t _ r e m a i n    using IoU distance




	32:

	
           B  t _ r e s t   ,  S  t _ r e s t   ←   remaining detections from    B  t _ r e m a i n   ,  S  t _ r e m a i n    




	33:

	
        for    d t  ,  s t    in zip(   B  t _ r e s t   ,  S  t _ r e s t    )    do




	34:

	
           if    s t  >  γ  n e w     then




	35:

	
                  T j  ← ∅  




	36:

	
                  T j  ←  T j  ∪  {  d t  }   




	37:

	
                  T  a c t i v e   ←  T  a c t i v e   ∪  {  T j  }   




	38:

	
           end if




	39:

	
        end for




	40:

	
    end if




	41:

	
end for




	42:

	
  T ← T ∪  T  a c t i v e    

















4. Experiments


In this section, we test the tracking performance of the proposed method on the commonly used datasets in the MOT field. Comparing our method with the latest published MOT approaches indicates that our method establishes a new state of the art, especially in complex scenes where occluded pedestrians and small looking ones occur frequently.



4.1. Datasets and Evaluation Metrics


We conduct experiments on the MOTChallenge benchmarks (https://motchallenge.net/, accessed on 20 December 2022), including MOT16, MOT17 and MOT20. The video sequences in these datasets are taken by static or moving cameras in real scenes under various weather conditions, viewpoints and illumination. The MOT16 benchmark contains 7 annotated training videos and 7 testing videos with DPM detection results provided. The MOT17 includes the same sequences as MOT16 with more accurate annotations. The public detection of MOT17 are obtained by three object detectors with increasing performance, DPM [41], faster R-CNN [3], and SDP [42]. The MOT20 benchmark is the latest released datasets, consisting of eight video sequences taken in very crowded scenes, among which four sequences are for training and four sequences for testing. The MOT20 provides faster R-CNN [3] detection results.



In order to evaluate the performance of our proposed approach quantitatively, we adopt the CLEAR MOT (multiple object tracking) metrics [43], i.e., the multiple object tracking accuracy (MOTA) and the multiple object tracking precision (MOTP) that fuse three sources of errors: false positives (FP), false negatives (FN) and the identity switches (IDS). The IDF1 Score metric is utilized to quantify the identity preservation ability.



We perform all experiments with the public detections provided by MOTChallenge to make a fair comparison with other advanced tracking approaches. Just like previous works, Tracktor [11] and TADAM [33], our method initializes a new trajectory only with a public detection bounding box, and we consider our method as public.




4.2. Implementation Details


4.2.1. Training


We employ ResNet50 [44] with a feature pyramid network (FPN) [45] pretrained on ImageNet [46] as the backbone of the proposed network. We train two separate models for MOT16/MOT17 and MOT20 following previous works [4,10,11,30] since there are significant gaps between them. We train the proposed model only with detection annotations.



In the training process, we use stochastic gradient descent (SGD) with momentum = 0.9 and weightdecay = e−4 as optimizer. We train our detector for 12 epochs on a single RTX 2080Ti GPU on MOT17 with provided faster R-CNN detections and 24 epochs on MOT20, with a batch size of 2. Moreover, the learning rate is initialized to 0.02 and divided by 10 after the 8th and 11th epochs for training on MOT17 and divided by 10 after the 16th and 22nd epochs for training on MOT20.




4.2.2. Inference


As stated earlier, the inference of our method is determined by two parameters: The confidence score threshold δactive at the first association and the confidence score threshold γnew at the second association. We empirically set δactive = 0.5 and γnew = 0.5 to perform experiments on all benchmarks.





4.3. Benchmark Evaluation


We evaluate our method on the test sets of MOT16, MOT17 and MOT20 with the public detections provided by the official MOTChallenge and compared with other advanced methods. To better demonstrate the performance of our model, we list both offline and online trackers. For a fair comparison, our method is only compared with online methods published with peer reviews.



As shown by the results in Table 1, Table 2 and Table 3, our method attains state-of-the-art results on three widely used benchmarks without complex post-processing or optimization. Thanks to the proposed hierarchical association strategy and history-aware fusing block, our method has the ability to track the partially occluded pedestrians and the small-looking ones, proved by the excellent false negative results. By alleviating the tracking problem of hard pedestrians, performance improves in many aspects. On the one hand, our methods yield excellent performance in false negatives. This means that our tracker tracks as many pedestrians as possible, usually those that are partially obscured or appear smaller; on the other hand, generally, there exist more FN than FP and IDs. With the significant reduction of FN, the MOTA metric (MOTA is defined as   1 −  ∑ t   ( F  N t  + F  P t  + I D  s t  )  /  ∑ t  G  T t   ) is improved directly. As a result, our method outperforms other competing trackers by a noteworthy margin for the metric of MOTA.



Table 3 contains the test results on the most challenging MOT20 benchmark, which includes video frame sequences from known and unknown scenes, in which the mean pedestrian density reaches 246 per frame, which is 10 times higher than in MOT16 as well as MOT17. It is seen that the proposed method achieves the best performance among the online methods, including the previous work Tracktor++v2 (+7.3 MOTA) and state-of-the-art TADAM [33] (+3.3 MOTA). Our method outperforms the second best tracker by 3.7 IDF1 on MOT20. It is worth noting that even though our approach does not exploit a separate re-identification neural network to assist data association, our method obtains the best IDF1, proving the superiority of our method in maintaining the identity of pedestrians.



Qualitative results of our method on the MOT20 test set are illustrated in Figure 4. The bounding box colors and the unique identity number on the top left of the bounding boxes indicate the obtained trajectories. It can be clearly found in the figure that our tracker realizes a decent performance in the extremely crowded scenes. The superior results on the unknown scene, MOT20-06 and MOT20-08, indicate that our model has good generalization capability.




4.4. Ablation Studies


In this section, to make a deep quantitative analysis of the proposed algorithm. We conduct ablative experiments on the very crowded datasets: MOT17 and MOT20. Because the dataset only provides a training set and a test set, we split each video sequence in training set in half, the first half for training and the last for validation.



Effectiveness of the hierarchical association strategy. In this section, we explore the effectiveness of the proposed hierarchical association strategy. We use the previous work, Tracktor [11], as a contrast in Table 4. The w/o His in Table 4 signifies the implementation of the proposed tracker without using spatial–temporal information. To use it our experiment, we set the pixel values of the history-aware mask to be zeros in both the first and second association. Without the information of active trajectories, the obvious pedestrians will be detected; just like Tracktor, we add an NMS step to suppress detections which overlap active tracks. The w/o His obtains a 0.6 percentage point improvement compared with Tracktor from 70.6% MOTA to 71.2% MOTA. At the second association, the tracker uses the public detections as proposals for the RoIAlign layer, and with the help of the history-aware mask, the partially occluded pedestrians and the small-looking ones will not be missed. The history-aware fusing block in the proposed model implicitly excludes the already tracked pedestrians in the first association, and thus makes our tracker focus on the remaining difficult pedestrians. To confirm the effectiveness of the history-aware fusing block in finding difficult pedestrians in the second association, we construct a history-aware mask as a definition by Equation (1) and observe that the full model realizes a further 1.3 percentage point improvement from 71.2% to 72.5% compared with w/o His.



Effects of motion models. We conducted an ablation study of the motion model in our method on the MOT17 validation dataset, which contains video sequences with different motion information captured by surveillance cameras, in-vehicle cameras and handheld cameras. At first, a camera motion compensation (CMC) model is exploited to align trajectories with the current frame. Then, before the second association, a linear motion model (LMM) is applied to update positions of inactive trajectories where we assume pedestrians move in a constant velocity. As shown in Table 5, both CMC and LMM improve the overall tracking performance. This combination achieved the best overall tracking performance, with a 4.3 and 12.3 percentage point improvement in MOTA and IDF1, respectively, compared to the case without the motion models. Therefore, we employ both CMC and LMM. We keep the parameter settings of CMC in Tracktor [11]. To estimate the position of an inactive track in the frame t, we calculate its velocity by averaging the offsets of bounding box centers in the last L frames. As indicated in Figure 5, at L = 9, our method yields the best IDF1. With the increase of L, MOTA is better. The estimated velocity is more accurate with more bounding boxes of a track considered. Considering MOTA and IDF1 together, we set L = 9.



Influence of number of frames retaining inactive tracks. In this subsection, we study the impact of the number of frames retaining inactive tracks on performance. The proposed method focuses on improving local tracking performance just like Tracktor [11]. However, after pedestrians occlude each other, a pedestrian can be visible again. This is common in crowded scenes in MOT20. To combat this, we keep a trajectory for N frames until it fails to associate with a corresponding target. As illustrated in Figure 6, the tracking performance increases with N, especially IDF1 that focuses on the temporal consistency of trajectories. This indicates our tracker can track pedestrians beyond a few consecutive frames. The improvement stops around N = 20; we set N = 20. In future work, we will explore improving our tracker to track through longer occlusions.




4.5. Analysis


At this part, we make a deep analysis of the proposed method in the crowded scenes. We compare our method with the previous work, Tracktor++v2 [11], on the very crowded MOT20 to validate the superiority of our method in tracking the partially occluded pedestrians and the small-looking ones. Since the ground-truth data of the MOTChallenge test sets are not publicly available, we conduct our analysis on the MOT20 training set. We explicitly analyze two difficulties for tracking in crowded scenes, namely tracking partially visible pedestrians and the ones looking small. Figure 7 and Figure 8 report the ratio of tracked pedestrians with respect to pedestrian visibility and size, respectively. For simplicity, we define pedestrian visibility as the ratio between non-occluded area and total area of a pedestrian. As shown in Figure 7, when pedestrian visibility >50%, both trackers perform well. As the pedestrian visibility decreases, the advantages of our proposed method gradually emerge. Obvious objects are detected and tracked at the first association, while hard objects (small or partially occluded) are successfully detected and tracked with the help of history-aware masks at the second association. Therefore, our method significantly outperforms Tracktor when the pedestrian visibility is below 0.3. For the pedestrian size, we consider the scale of a pedestrian is proportional to its height; therefore, we report the tracked pedestrians percentage with respect to pedestrian height. Here, we only consider objects whose visibility is larger than 0.9. As shown in Figure 8, our method yields better performance. This proves that our method is more advantageous in detecting and tracking small objects.





5. Conclusions


In this paper, we propose a simple yet effective method for improving the performance of multiple pedestrian tracking in crowded scenes. The core of our method is the hierarchical association strategy, where the salient objects are directly matched with active trajectories at the first association; the occluded and small ones are progressively identified with the help of spatial cues offered by a history-aware mask at the second association. Moreover, we demonstrate the superior performance of our method in challenging scenarios. We expect our work to inspire future work to pay more attention to the crowded, challenging scenes.
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Figure 1. The associations of: (a) tracking-by-detection; (b) tracking-by-regression; and (c) our hierarchical association strategy, for two overlapping pedestrians tracking. In (a), the prior detection is directly used to match the same pedestrian; however, the tracking is biased, and another pedestrian is wrongly tracked in the occluded scene. For (b), although the regression head directly infers the position of the front pedestrian without the assistance of an additional detector (the red arrow), the back pedestrian is not detected. (c) The proposed hierarchical tracking strategy first regresses the front pedestrian (red bounding box), then filters it out implicitly with the learned history-aware mask (white region) to highlight the occluded pedestrian behind. The found pedestrians can further be employed to re-identify inactive tracks (green line) or initialize as a new trajectory for subsequent tracking. 
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Figure 2. Overview of the proposed hierarchical association strategy for multiple pedestrian tracking. The proposed method consists of two main flows clearly illustrated in red and green, respectively. In the flow of the first association (red), the positions of existing tracks in the t-th frame are estimated by the regression head of the detector, according to their previous positions   B  t − 1   t r k    in the frame t − 1. In the second flow (green), with the regressed positions   B t  a l i g n   , a history-aware mask is constructed to assist the detector at this time in highlighting the unmasked regions and further finding the ignored small and occluded pedestrians (the rediscovered small and occluded pedestrian IDs are 6 and 7). The rediscovered targets are used to recover inactive tracks or initialize new tracks. In this way, both obvious pedestrians and obscure ones are assigned to corresponding trajectories (the blue arrow). 
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Figure 3. Network architecture of the second association. The network takes a video frame and history-aware mask as input, and the public detections as proposals for the RoIAlign layer. The fusing block is marked in deep green. 
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Figure 4. Qualitative results on all four test sequences of the MOT20 benchmark. The datasets are captured in very crowded scenarios in which pedestrians seriously occlude each other with severe variation of illumination. Especially, the MOT20-06 and MOT20-08 are captured in the newly introduced scene that is not included in the training data: (a) MOT20-04; (b) MOT20-06; (c) MOT20-07; (d) MOT20-08. 
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Figure 5. Different number of previous frames: We show the effect of using different numbers L of previous frames in a linear motion model on tracking performance. 
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Figure 6. Effect of parameter N. If a track is set to inactive, it retains only consecutive N-frames. 
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Figure 7. Illustration of the ratio of tracked pedestrians with respect to visibility on the MOT20 training set. The transparent yellow bars indicate the ground-truth distribution of visibility. 
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Figure 8. Illustration of the ratio of tracked pedestrians with respect to pedestrian size on the MOT20 training set. The transparent yellow bars indicate the ground-truth distribution of sizes. 
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Table 1. Results on the MOT16 test datasets. The best and second best results are indicated by bold and underlined numbers, respectively. The arrow ↑ indicates higher values are favored. The arrow ↓ implies low optimal metric values.
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	Method
	Type
	MOTA ↑
	IDF1 ↑
	FP ↓
	FN ↓
	IDs ↓





	FWT [47]
	offline
	47.8
	44.3
	8886
	85,487
	852



	GCRA [27]
	offline
	48.2
	48.6
	5104
	88,586
	821



	LMP [7]
	offline
	48.8
	51.3
	6654
	86,245
	481



	HCC [48]
	offline
	49.3
	50.7
	5333
	86,795
	391



	CRFTrack [17]
	offline
	50.3
	54.4
	7148
	82,746
	702



	TPM [18]
	offline
	51.3
	47.9
	2701
	85,504
	420



	MPNTrack [49]
	offline
	58.6
	61.7
	4949
	70,252
	354



	LPC_MOT [50]
	offline
	58.8
	67.6
	6167
	68,432
	435



	JCSTD [51]
	online
	47.4
	41.1
	8076
	86,638
	1266



	MOTDT [7]
	online
	47.6
	50.9
	9253
	85,431
	792



	KCF16 [52]
	online
	48.8
	47.2
	5875
	86,567
	906



	PV [53]
	online
	50.4
	47.5
	2600
	86,780
	702



	Tracktor [11]
	online
	54.4
	52.5
	3280
	79,149
	682



	TrctrD16 [54]
	online
	54.8
	53.4
	2955
	78,765
	645



	Tracktor++v2 [11]
	online
	56.2
	54.9
	2394
	76,844
	617



	GSM [29]
	online
	57.0
	58.2
	4332
	73,573
	475



	TADAM [33]
	online
	59.1
	59.5
	2540
	71,542
	529



	Ours
	online
	59.7
	53.3
	3437
	69,227
	885
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Table 2. Results on the MOT17 test datasets. The best and second best results are indicated by bold and underlined numbers, respectively. The arrow ↑ indicates higher values are favored. The arrow ↓ implies low optimal metric values.
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	Method
	Type
	MOTA ↑
	IDF1 ↑
	FP ↓
	FN ↓
	IDs ↓





	jCC [55]
	offline
	51.2
	54.5
	25,937
	247,822
	1802



	FWT [47]
	offline
	51.3
	47.6
	24,101
	247,921
	2648



	eTC17 [12]
	offline
	51.9
	50.8
	31,572
	232,659
	3050



	JBNOT [16]
	offline
	52.6
	50.8
	31,572
	232,659
	3050



	CRF_TRA [17]
	offline
	53.1
	53.7
	27,194
	234,991
	2518



	TPM [18]
	offline
	54.2
	52.6
	13,739
	242,730
	1824



	MPNTrack [49]
	offline
	58.8
	61.7
	17,413
	213,594
	1185



	LPC_MOT [50]
	offline
	59.0
	66.8
	23,102
	206,948
	1122



	DASOT17 [56]
	online
	49.5
	51.8
	33,640
	247,370
	4142



	MTDF17 [20]
	online
	49.6
	45.2
	37,124
	241,768
	5567



	YOONKJ17 [21]
	online
	51.4
	54.0
	29,051
	243,202
	2118



	MOTDT17 [7]
	online
	50.9
	52.7
	24,069
	250,768
	2474



	FAMnet [22]
	online
	52.0
	48.7
	14,138
	253,616
	3072



	Tracktor [11]
	online
	53.5
	52.3
	12,201
	248,047
	2072



	Tracktor++v2 [11]
	online
	56.3
	55.1
	8866
	235,449
	1987



	GSM [29]
	online
	56.4
	57.8
	14,379
	230,174
	1485



	TADAM [33]
	online
	59.7
	58.7
	9676
	216,029
	1930



	Ours
	online
	60.6
	54.3
	10,494
	208,861
	2956
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Table 3. Results on the MOT20 test datasets. Note that the methods marked by * are submitted on CVPR2019 Challenge in which the video sequences are similar to MOT20 with very minor correction. The best and second best results are indicated by bold and underlined numbers, respectively. The arrow ↑ indicates higher values are favored. The arrow ↓ implies low optimal metric values.
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	Method
	Type
	MOTA ↑
	IDF1 ↑
	FP ↓
	FN ↓
	IDs ↓





	IOU_19 * [57]
	offline
	35.8
	25.7
	24,427
	319,696
	15,676



	V_IOU * [58]
	offline
	46.7
	46.0
	33,776
	261,964
	2589



	MPNTrack [49]
	offline
	57.6
	59.1
	16,953
	201,384
	1210



	LPC_MOT [50]
	offline
	56.3
	62.5
	11,726
	213,056
	1562



	SORT20 [1]
	online
	42.7
	45.1
	27,521
	264,694
	4470



	DD_TAMA19 * [59]
	online
	47.6
	48.7
	38,194
	252,934
	2437



	MLT [60]
	online
	48.9
	54.6
	45,660
	246,803
	2187



	Tracktor * [11]
	online
	51.3
	47.6
	16,263
	253,680
	2584



	Tracktor++v2 [11]
	online
	52.6
	52.7
	6930
	236,680
	1648



	TADAM [33]
	online
	56.6
	51.6
	39,407
	182,520
	2690



	Ours
	online
	59.9
	55.3
	12,458
	192,846
	2353
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Table 4. We investigate how spatial–temporal cues improve tracking performances and show the superior performance of our hierarchical association strategy; w/o His denotes the proposed model exploits the blank history-aware mask in both associations. Best in bold.
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	Method
	MOTA ↑
	IDF1 ↑
	FP ↓
	FN ↓
	IDs ↓





	Tracktor [11]
	70.6
	65.4
	3652
	175,955
	1441



	w/o His
	71.2
	64.9
	2906
	172,471
	1703



	Full model
	72.5
	65.0
	3736
	163,418
	2062
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Table 5. Ablation studies on motion models on the MOT17 validation set. The best result in each metric is marked in bold.
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	Method
	MOTA ↑
	IDF1 ↑
	FP ↓
	FN ↓
	IDs ↓





	w/o CMC & LMM
	58.0
	51.7
	11,223
	48,090
	2658



	w/o LMM
	61.4
	59.5
	12,309
	47,349
	2682



	w/o CMC
	59.6
	54.3
	11,259
	48,066
	2514



	Full model
	62.3
	63.0
	12,180
	47,349
	2682
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