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Abstract: In this paper, a quantity that describes a response of a system’s eigenstates to a very
small perturbation of physical relevance is studied as a measure for characterizing crossover from
integrable to chaotic quantum systems. It is computed from the distribution of very small, rescaled
components of perturbed eigenfunctions on the unperturbed basis. Physically, it gives a relative
measure to prohibition of level transitions induced by the perturbation. Making use of this measure,
numerical simulations in the so-called Lipkin-Meshkov-Glick model show in a clear way that the
whole integrability-chaos transition region is divided into three subregions: a nearly integrable
regime, a nearly chaotic regime, and a crossover regime.
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1. Introduction

In the past near half century, a large number of topics have been studied in the field
of quantum chaos and a huge amount of knowledge about properties of quantum chaotic
systems has been accumulated (see, e.g., [1,2]). However, this field is far from being fully
explored. For example, although the spectral statistics of quantum chaotic systems have
been studied well [3–9], not so much is known about wave functions, particularly about
statistical properties of energy eigenfunctions (EFs) as expansions of energy eigenstates in
certain bases.

As is well known, in classical mechanics, chaos refers to trajectory sensitivity to initial
conditions, characterized by positive (maximum) Lyapunov exponents.The percentage
of phase space, which is occupied by chaotic trajectories, supplies a useful quantitative
measure in the study of crossover from integrability to chaos, at least for systems in a
two-dimensional configuration space. However, the story is much more complicated with
quantum systems and the route (from integrability) to quantum chaos is far from being
fully understood.

Quantitative characterization of crossover from quantum integrability to quantum
chaos is a topic that is of importance in many aspects. Indeed, without a deep understand-
ing of mechanisms that may lead to a break down of integrability, it is unimaginable that a
complete understanding of quantum chaos may be achieved; and, it is usually believed that
quantum chaos may play a crucial role in establishing a sound foundation for quantum
statistical mechanics and for understanding thermalization processes [10–16]. Many quanti-
ties have been studied for the characterization; loosely speaking, they may be classified into
three classes: spectral statistics (see, e.g., Refs. [2–4,17–21]), statistical properties of EFs (see,
e.g., Refs. [14,22–33]), and time evolution properties (see, e.g., Refs. [34–45]). Unfortunately,
none of them is as satisfactory as the above-mentioned measure in the classical case.

Regarding spectral statistics, the nearest-level-spacing distribution P(s) is often stud-
ied. Its shape is close to the Poison distribution e−s in generic integrable systems [17], while,
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is close to the Wigner-Dyson distribution PW(s) = π
2 s exp(−π

4 s2) in quantum chaotic
systems, the latter of which is almost identical to the prediction of random matrix theory
(RMT) (for systems with the time-reversal symmetry) [2–4]. Among possible interpolations
between Poison and Wigner-Dyson distributions [18–21], the most often studied one is the
so-called Brody distribution [18], characterized by a Brody parameter β, with β = 0 for
integrable systems and β = 1 for chaotic ones. Unfortunately, physical meaning of the
Brody parameter is still unclear; in other words, it is regarded merely as a fitting parameter.

Properties of EFs may also be used for characterizing the crossover from quantum
integrability to quantum chaos. To compute such properties, usually one needs to take a
specific basis, which may be chosen for some physical reason or based on some mathemati-
cal consideration [14,25–31]. Recently, two methods were proposed [32,33], which employ
intrinsic bases of the systems studied, namely, the eigenbases of their Hamiltonians. The
first method makes use of the so-called adiabatic gauge potential (AGP) [32], describing
the rate of deformation of eigenstates under infinitesimal perturbation. It was proposed
that scaling behavior of the norm of AGP with system size may be used as an indicator for
the integrability-chaos crossover. This indicator is basically qualitative and its validity is
not completely clear.

The second method also studies the response of eigenstates to small perturbation,
but, by making use of the distribution of rescaled components of perturbed states on the
unperturbed basis [33]. This distribution has a Gaussian form in quantum chaotic systems,
a phenomenon which may be traced back to the so-called Berry’s conjecture [22–24,30];
while, it deviates notably from the Gaussian form in quantum integrable systems. This
method uses the difference between the distribution of rescaled components and the
Gaussian distribution for the purpose of characterizing the integrability-chaos crossover.
It suffers from two shortcomings: (i) Although the above-mentioned difference gives a
quantitative measure to the distance to chaos, it is irrelevant to integrability; and, (ii) its
physical meaning is not directly clear.

In this paper, we go further along the direction of the second method discussed above
and make improvements. Specifically, we are to show that the value of the distribution of
rescaled components at the origin point is a good candidate, i.e., it is of physical relevance
and supplies a measure for characterizing the whole process from integrability to chaos.

The paper is organized as follows. A preliminary discussion is found in Section 2,
about the class of systems to be studied, requirements of the type of perturbation to be
employed, and some details of the two previous works mentioned above. The proposed
measure for integrability-chaos crossover is discussed in Section 3 and its illustration in a
model is given in Section 4. Finally, conclusions and discussions are given in Section 5.

2. Preliminary Discussions

In this section, we first discuss basic properties of the systems to be studied (Section 2.1),
and then discuss properties of the perturbation to be considered (Section 2.2). Finally, we
briefly recall basic contents of the two methods mentioned above, which use intrinsic bases
for characterizing crossover from integrable to chaotic quantum systems (Section 2.3).

2.1. Perturbed and Unperturbed Systems

We study the response of Hamiltonian eigenstates to small perturbation. The un-
perturbed Hamiltonian is denoted by H0(λ), with a running parameter λ, such that it is
integrable at λ = 0 and is chaotic at λ in some region around 1. We use |k(λ)〉 to indicate
eigenstates of H0(λ), with eigenenergies E0

k(λ) in the increasing energy order,

H0(λ)|k(λ)〉 = E0
k(λ)|k(λ)〉. (1)

Sometimes, when there is no risk of causing confusion, for brevity, the λ-dependence of H0

and of its eigenstates is not written explicitly.
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The perturbed Hamiltonian is written as

H = H0(λ) + εV, (2)

where λ-dependence is not written explicitly, where ε is a very small parameter and V
represents a perturbation operator. Eigenstates of H are denoted by |α〉,

H|α〉 = Eα|α〉, (3)

with the eigenenergies Eα also in the increasing energy order. Components of the EF of a
perturbed state |α〉 on the unperturbed basis are written as

Cαk = 〈k|α〉. (4)

We assume that the Hilbert space is sufficiently large for meaningful statistical analysis of
properties of EFs. For the simplicity in discussion, we consider only systems with the time-
reversal symmetry, such that the components Cαk are real numbers. (It is straightforward to
generalize results to be given below to the generic case without the time-reversal symmetry.)

We are to discuss properties of the distribution of rescaled Cαk, denoted by C̃αk,

C̃αk :=
Cαk√
〈|Cαk|2〉

, (5)

where 〈|Cαk|2〉 indicates the average shape of EFs. We indicate this distribution by g(C̃).
When computing 〈|Cαk|2〉, special attention should be paid to big components of the EFs.
For example, for a chaotic system H0(λ), at a sufficiently small parameter ε, usually each
perturbed state |α〉 has one big component of Cαk; its value is close to 1, while other
components of Cαk are much smaller, proportional to ε or smaller as predicted by the
perturbation theory. In this case, clearly, if the biggest component is included, it usually
makes 〈|Cαk|2〉 not smooth. Hence, in the computation of 〈|Cαk|2〉, the biggest components
of Cαk should not be included and, consistently, they are not included in the distribution
g(C̃), either.

Moreover, an average may be taken over those perturbed states that lie within a
narrow energy shell, denoted by Γα, which is centered at Eα and has a small width δe. To
summarize, we write

〈|Cαk|2〉 =
1

∑′Eβ∈Γα
1 ∑

Eβ∈Γα

′|Cβk|2, (6)

where
Γα = [Eα − δe/2, Eα + δe/2] (7)

and the prime over ∑ means that big components are excluded. (see Section 3.2 for further
discussions on big components to be excluded in computations performed in integrable
systems)

2.2. Properties of the Perturbation V

Physically, a prominent difference between a quantum integrable system and a quan-
tum chaotic system lies in that the former has at least two independent good quantum
numbers, while, the latter has only one which is related to the Hamiltonian. Due to this
difference, at least to a certain type of perturbation, the response of an integrable system
should be different from that of a chaotic system. Hence, in principle, response to perturba-
tion may be used for the purpose of characterizing the integrability-chaos crossover. In this
section, we discuss a type of perturbation V that may be used for this purpose.

It may be useful to provide a little discussion, in comparison with a purely mathe-
matical viewpoint by which an operator V on an arbitrary basis is represented by a matrix
with only one restriction — hermiticity. In fact, as is known, if no further restriction is
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imposed to the form of the matrix of V, there may exist some matrix of V, for which the
components Cαk in an integrable system may show behaviors qualitatively similar to those
in a chaotic system (see, e.g., Ref. [46]). Hence, for the purpose of “detecting” the difference
between integrable and chaotic systems, a purely mathematical viewpoint is not enough. In
other words, physical considerations should be taken into account, which may give certain
restriction to the perturbation V.

To further analyze the above-discussed point, we discuss from the perspective of
dynamic groups underlying models studied. Here, a group is called a dynamic group
underlying a model, if the model Hamiltonian is a function of generators of the group. (A
dynamic group is not necessarily a symmetry group. In other words, it is unnecessary for
the model Hamiltonian to possess any symmetry related to the dynamic group.) We note
that most physical models of realistic interest have some underlying dynamic Lie groups.
Usually, generators of the dynamic group may take the form of raising and lowering
operators, which we indicate as K†

η and Kη , respectively, with a label η. For example, for an
oscillator in a one-dimensional configuration space, the so-called Weyl-Heisenberg group
is the underlying dynamic group, where generators as raising and lowering operators are
given by well-known combinations of the position x and momentum p.

On the integrable side of H0(λ) with λ = 0, two different cases should be treated
differently: interacting and noninteracting integrable systems. Let us first discuss a nonin-
teracting integrable system, whose Hamiltonian H0(0) depends separately on generators
of different degrees of freedom. Since there is no interplay between different degrees
of freedom, usually the integrable states |k(0)〉 may be obtained by multiplying raising
operators on certain “vacuum state” denoted by |0〉, i.e.,

|k(0)〉 = ∏
η

(
K†

η

)mη
|0〉, (8)

where mη are nonnegative integers. Usually, the integers mη are, or are related to, good
quantum numbers in the state |k(0)〉. On the basis of {|k(0)〉}, elements of V are written as

〈k′(0)|V|k(0)〉 = ∏
ηη′
〈0|
(

Kη′

)m′
η′V
(

K†
η

)mη
|0〉. (9)

One useful observation is that, for many types of perturbation V of physical interest,
the matrix of V with elements given in Equation (9) has an interesting feature; i.e., it is
sparse in the sense of possessing many zero elements of 〈k′(0)|V|k(0)〉. As one example,
one may consider perturbations that are controllable and describable in laboratories. Such
a perturbation V is usually represented by some simple function of {K†

η , Kη} (at least not
a complicated function) and, as a result, Equation (9) predicts a sparse matrix of V. As
another example, one may consider a perturbation V, which may bring a limited change to
the good quantum numbers mη for most of the states |k(0)〉. In this case, one also finds a
sparse structure of the matrix of 〈k′(0)|V|k(0)〉.

Then, we discuss an interacting integrable system, for which generators of different
degrees of freedom interplay in the Hamiltonian H0(0). In such system, the states |k(0)〉
are superpositions of product terms as given on the right-hand side of Equation (8). In
this case, the simplicity of the function V(K†

η , Kη) does not guarantee a sparse structure
of the matrix of 〈k′(0)|V|k(0)〉. While, for a perturbation V, which may bring a limited
change to good quantum numbers of the states |k(0)〉 (usually not the integers mη), one
still finds a sparse structure of the matrix of 〈k′(0)|V|k(0)〉. (Mathematically, the simplest
example of this type of operator V is written as V = |k1(0)〉〈k2(0)|+ |k2(0)〉〈k1(0)| with
some fixed values of k1 and k2. Usually, to construct such an operator of physical interest is
a model-dependent matter.)

On the chaotic side of H0(λ) with λ around 1, one finds a different story. To be specific
in this discussion, let us consider a system that possesses a classical counterpart. To obtain
an estimate, one may make use of Berry’s conjecture as a semiclassical prediction [22–24,30].
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We first discuss H0(λ) of λ ∼ 1, with respect to a noninteracting integrable system
H0(0). Without loss of generality, we assume that the eigenstates |k(0)〉 in Equation (8) are
also eigenstates of action. According to a version of Berry’s conjecture given on an action
basis [30], the components 〈k(0)|k(λ)〉 have the following expression,

〈k(0)|k(λ)〉 ∝ Ωk(0)k(λ)Rk(0)k(λ), (10)

where Rk(0)k(λ) are Gaussian random variables (with mean zero and a normal distribution)
and Ωk(0)k(λ) indicates the so-called classical analog of the average shape of eigenfunctions,
which is given by the overlap of the classical energy surface of E0

k(λ) and a classical torus
corresponding to the action given by mη . On the basis of |k(λ)〉, elements of V are written as

〈k′(λ)|V|k(λ)〉
= ∑

k(0),k′(0)
〈k′(λ)|k′(0)〉〈k′(0)|V|k(0)〉〈k(0)|k(λ)〉 (11)

Making use of Equations (9) and (10), one finds that, at least for E0
k′(λ) not far from E0

k(λ),
the elements 〈k′(λ)|V|k(λ)〉 are typically nonzero. Hence, the matrix of V on the chaotic
basis {|k(λ)〉} has a structure, which is qualitatively different from the previously discussed
sparse structure of V on the integrable basis {|k(0)〉}.

Next, we discuss H0(λ) of λ ∼ 1, with respect to an interacting integrable system.
In this case, the integrable states |k(0)〉 are superpositions of the action states. As a con-
sequence, the components 〈k(0)|k(λ)〉 have an expression, which is more complicated
than the right-hand side of Equation (10) for the noninteracting case. This implies that the
elements 〈k′(λ)|V|k(λ)〉 should be also typically nonzero at least for E0

k′(λ) not far from
E0

k(λ). Moreover, this is also true, even for a perturbation V that brings a limited change
to good quantum numbers of the states |k(0)〉. Hence, as well, the matrix of V on the
chaotic basis {|k(λ)〉} has a structure, which is qualitatively different from the previously
discussed sparse structure of V on the integrable basis {|k(0)〉}.

To summarize, for a certain perturbation V, its matrix has a sparse structure on an
integrable basis, while it does not have a similar structure on a chaotic basis. In Section
3, we are to focus on this type of perturbation V and use it to propose a quantity for
characterizing integrability-chaos crossover.

2.3. Two Previously Studied Methods

In this section, we briefly recall basic contents of the two previously studied methods
mentioned in the introduction, in which intrinsic bases are employed for characterizing
integrability-chaos crossover.

The first method makes use of the AGP, which describes variation of eigenstates under
infinitesimal change of the parameter λ. More exactly, denoted by Aλ, the AGP generates
an adiabatic evolution of the eigenstates,

Aλ|k(λ)〉 = i∂λ|k(λ)〉. (12)

Its offdiagonal elements satisfy

〈k|Aλ|l〉 = −
i

E0
k(λ)− E0

l (λ)
〈k|∂λ H0(λ)|l〉 (13)

with k 6= l; while, its diagonal elements may be set zero due to the freedom in choosing
phases of the eigenstates, i.e., 〈k|Aλ|k〉 = 0 for all |k〉. (In Pandey et al. [32], to avoid a
problem that may be caused by degeneracy of the spectrum of H0(λ), on the right-hand

side of Equation (13), the term 1
E0

k−E0
l

is replaced by E0
k−E0

l
(E0

k−E0
l )

2+µ2 with some small energy

cutoff µ.) The Frobenius norm, also called Hilbert–Schmidt norm, of the AGP operator
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is written as (This norm is equal to the sum of the so-called fidelity susceptibility of the
eigenstates |k(λ)〉 [47,48].)

‖Aλ‖2 = ∑
k,l
|〈k|Aλ|l〉|2. (14)

It was proposed in Pandey et al. [32] that exponential scaling behavior of the AGP
norm with respect to the particle number N of a many-body quantum system may be
used as an indicator of quantum chaos, with polynomial behavior expected for integrable
systems. For systems satisfying the so-called eigenstate thermalization hypothesis (ETH)
(see Equation (24) to be given below), it is not difficult to check that the AGP norm indeed
scales exponentially with the system size. However, the reverse statement is not supported
by any analytical analysis and this makes the above proposal questionable as a criterion for
quantum chaos. In fact, according to numerical simulations given in Pandey et al. [32] in
an XXZ chain, the integrability-chaos crossover region predicted by the above-discussed
proposal is much lower than that obtained by an ordinary method of employing spectral
statistics, by at least one order of magnitude.

In the second method, the difference between the distribution g(C̃) and the Gaussian
distribution is used as a measure for the distance to quantum chaos [33]. Quantitatively,
the difference is written as ∆EF =

∫ ∣∣∣I(C̃)− IG(C̃)
∣∣∣dC̃, where I(C̃) is the cumulative distri-

bution of g(C̃) and IG is the cumulative distribution for the Gaussian distribution of

gG(C̃) =
1√
2π

exp(−C̃2/2). (15)

This difference is expected to be small in quantum chaotic systems, and large in
integrable systems (see the next section for detailed discussions).

Numerical simulations performed in a three-orbital Lipkin-Meshkov-Glick (LMG)
model [49] show that the quantity ∆EF behaves consistently with ∆W in the regime of
integrability-chaos crossover [33]. Here, ∆W indicates the difference between the nearest-
level-spacing distribution P(s) and the Wigner distribution PW(s), as a measure for the
distance to chaos; more precisely,

∆W =
∫
|I(s)− IW(s)|ds, (16)

where “I” also indicate the corresponding cumulative distributions. It was found that
integrability is manifested by large values of ∆EF, which are due to high peaks of g(C̃) at
C̃ = 0.

Finally, let us give a brief comparison of the two methods discussed above. The physics
lying behind them are in fact related. This point is seen quite clearly, in the special case that
H0(λ) = H0(0) + λV. In this case, ∂λ H0(λ) = V and the AGP elements in Equation (13)
are directly related to the components Cαk divided by ε, which are predicted by a first-order
perturbation theory [see Equation (19) to be given below].

Meanwhile, the two methods have important differences. First, the second method in
fact employs the rescaled components C̃αk in Equation (5). Without the rescaling procedure,
the distribution of components would not be close to a Gaussian form in quantum chaotic
systems. Second, it is not the AGP norm itself that is employed as a measure for integrability-
chaos crossover, but it is the AGP scaling behavior with respect to system size. This implies
that the first method does not supply a measure for characterizing the whole crossover
region, though it might be used for detecting some “crossover point”, if in existence.

3. g(0) as a Crossover Measure

In this section, going further along the direction of the second method discussed
above, we propose that g(C̃ = 0) may be used as a measure for characterizing integrability-
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chaos crossover. Specifically, we discuss its physical meaning in Section 3.1 and discuss its
detailed properties in Section 3.2.

3.1. A Physical Meaning of g(0)

We first consider a generic case, in which the unperturbed Hamiltonian H0(λ) pos-
sesses a nondegenerate spectrum. In this case, under a sufficiently small ε, the perturbed
states |α〉may be approximated by their first-order perturbation expansions. For a given
state |α〉, we use kα to indicate the label k for which E0

k is the closest to Eα. Clearly, Cαkα
' 1.

Then, one writes
|α〉 ' |α(0)〉+ |α(1)〉, (17)

where |α(0)〉 = |kα〉 and

|α(1)〉 = ∑
k 6=kα

εVkkα

E0
kα
− E0

k
|k〉. (18)

From Equation (18), one sees that

Cαk '
εVkkα

E0
kα
− E0

k
for k 6= kα. (19)

To see a physical meaning of g(0), let us discuss the probability of transition from an
arbitrary state |k0〉 (as an initial state |ψ(t = 0)〉) to an arbitrary state |k〉 (k 6= k0) under a
perturbation εV, which is given by |〈k|ψ(t)〉|2. It is easy to find that

〈k|ψ(t)〉 = 〈k|e−iHt|k0〉 = ∑
α

Cαk0 Cαke−iEαt. (20)

Since Cαk ' 1 for k = kα, one further obtains that

〈k|ψ(t)〉 ' Cα1k0 e−iEα1 t + Cα2ke−iEα2 t, (21)

where α1 is determined by the relation of kα1 = k and α2 by the relation of kα2 = k0.
According to Equation (21), the smallness of the components Cα1k0 and Cα2k, if compared
with other unperturbed states, has a clear physical meaning; that is, it implies relative
prohibition of the quantum transition from |k0〉 to |k〉. However, a problem is met with
quantitative characterization for this, because all the components Cαk of k 6= kα go to zero
in the limit of ε→ 0.

To circumvent the above-discussed problem, instead, we consider the rescaled com-
ponents C̃αk in Equation (5), which remain finite in the limit of ε → 0. Making use of
perturbation theory, it is not difficult to find that the two components Cα1k0 and Cα2k, which
are related to the same unperturbed energy difference of (E0

k − E0
k0
), should have similar

absolute values on average, i.e., 〈|Cα1k0 |
2〉 ' 〈|Cα2k|2〉. Then, Equation (21) is written as

〈k|ψ(t)〉√
〈|Cα1k0 |2〉

' C̃α1k0 e−iEα1 t + C̃α2ke−iEα2 t. (22)

Thus, relative smallness of the rescaled components C̃α1k0 and C̃α2k implies relative small-
ness of the transition probability divided by the average shape of EFs.

From the above discussions, one sees that high population of small rescaled com-
ponents usually implies strong prohibition of quantum transition. Quantitatively, the
population is characterized by the value of the distribution g(C̃) at C̃ = 0, namely, by g(0).

Next, we discuss the special case, in which H0(λ) possesses a degenerate spectrum.
In this case, for a given unperturbed state |k〉, the components Cαk of those perturbed states
|α〉, whose energies Eα are close to E0

k , may be large. We use Sk to denote the set of the
indices α of these perturbed states. For a nondegenerate level E0

k , the set Sk in fact contains
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one label α only, such as in the case of nondegenerate spectrum discussed above; while,
for a degenerate level, the number of elements of Sk is usually equal to the degeneracy. In
most cases, k and k0 do not belong to a same degenerate level (Study of the case, in which k
and k0 belong to a same degenerate level, is hard and is beyond the scope of perturbative
analysis.) and Equation (20) gives that

〈k|ψ(t)〉 ' ∑
α1∈Sk

Cα1k0 e−iEα1 t + ∑
α2∈Sk0

Cα2ke−iEα2 t. (23)

Again, relative smallness of Cα1k0 and Cα2k implies relative prohibition of the transition
of |k0〉 → |k〉. By definition, one may require that the average shape 〈|Cαk′ |2〉 should
change slowly (or remains a constant) within one degenerate subspace. Then, such as in the
nondegenerate case discussed above, one still finds that 〈|Cα1k0 |

2〉 ' 〈|Cα2k|2〉 and obtains
an equation similar to Equation (23).

When the unperturbed spectrum has a weak degeneracy such that each set Sk contains
a small number of elements, the effect induced by the degeneracy is small. Then, according
to discussions given above, still, relative smallness of the rescaled components usually
implies relative smallness of the transition probability divided by the average shape of EFs.
Furthermore, as a result, high population of small rescaled components is related to strong
prohibition of quantum transition.

In the rare case that the degeneracy is very high such that the set Sk contains a large
number of elements, the situation is more complicated in the quantitative aspect. In fact, the
perturbation is extremely strong within each degenerate subspace and this may suppress
the number of very small components C̃αk. Nevertheless, qualitatively, high population
of small rescaled components is still related to strong prohibition of quantum transition.
(Here, we do not discuss the very special case, in which the spectrum of H0(0) is completely
degenerate. In this case, it is unnecessary for g(C̃) to be extraordinarily large at C̃ = 0.)

Summarizing the above discussions, we obtain the following result, i.e., the value of
g(0) gives a relative measure to the extent of prohibition of quantum transition induced by
the perturbation εV. Usually, larger value of g(0) may be related to stronger prohibition;
while, this expectation may be valid only qualitatively for highly degenerate levels [50].
(As is known, certain elements of the AGP may also be related to transition probability
amplitudes. However, the norm of AGP does not show this feature in a direct way.)

3.2. g(0) in Systems from Integrable and Chaotic

In this section, we discuss properties of g(0) in chaotic and integrable systems.
First, we discuss H0(λ) as a quantum chaotic system, which satisfies the

ETH [13,24,51–56]. (see Ref. [57] for a semiclassical proof of ETH.) Technically, the ETH is
written as an ansatz for a special structure of the matrix of an observable O on the energy
basis, i.e.,

Okk′ = f (ek)δkk′ + g(ek, ek′)rkk′ , (24)

where f (e) and g(e, e′) are smooth functions of their variables, rkk′ = r∗k′k are independent
random variables with normal distribution (zero mean and unit variance), and g−2 scales
as the density of states ρdos with the system size. Under a perturbation V that satisfies the
ETH ansatz in Equation (24) and under a very small ε such that Equation (19) is valid, it is
easy to compute the average shape of EFs from Equation (19), obtaining that

〈|Cαk|2〉 '
ε g(ek, ekα

)

|E0
kα
− E0

k |
. (25)

Then, noting the randomness of rkk′ , one sees that the distribution of these rescaled com-
ponents should have a Gaussian form, as illustrated numerically in Ref. [33]. Hence,
g(0) = 1/

√
2π ≈ 0.4 [cf. Equation (15)] in quantum chaotic systems.
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Next, we discuss the integrable case, namely H0(0). As discussed previously, we
consider only those perturbations V, whose matrix [Vkk′ ] in the integrable basis {|k(0)〉}
has a sparse structure, with many zero elements. To figure out properties of g(0) under
a very small ε, let us consider an arbitrary perturbed state |α〉. We need to discuss two
cases separately, as done below, depending on whether the unperturbed level, which is the
closest to Eα, is degenerate or not:

1. In the case that the level is nondegenerate, Equation (19) is valid. Then, clearly, the
sparse structure of [Vkk′ ] implies that the distribution g(C̃) should have a high peak at
C̃ = 0, with g(0)� 1.

2. In the case of a degenerate level, let us use |kη
α〉 (with η = 1, 2, . . .) to indicate those

states |k〉 that correspond to this unperturbed level. It is straightforward to generalize
the perturbative treatment given in the above section and obtain an equation similar
to Equation (19), but, for k 6= kη

α (∀η). Then, one reaches a similar conclusion that the
distribution g(C̃) should have a high peak at C̃ = 0, usually with g(0)� 1.

It is useful to give further discussions on the computation of the average shape 〈|Cαk|2〉
in the degenerate case. There are two methods that may be adopted. The first method
is to exclude all the components Cαk for the degenerate subspace, i.e., for k = kη

α. This
method, though favorable analytically, may face the following subtle problem in numerical
simulations, which is induced by the fact that the parameter ε always has some lower
bound in numerical computations, i.e., there may exist nearly degenerate levels, which are
effectively degenerate in numerical simulations with a finite ε.

To avoid the above-discussed subtleness in numerical simulations, one may adopt
a second method, though it is not so attractive analytically. This method excludes only
those components that satisfy |Cαk|2 > Λb, where Λb is some (adjusting) parameter that is
introduced for obtaining a smooth average shape of EFs. (Meaningful results should be
insensitive to the exact value of Λb within a reasonable region. We checked this point in our
numerical simulations to be discussed later.) When the degeneracy is low, there is usually
only a small difference between the values of g(0) obtained by the two methods. While,
the difference may be large when the degeneracy is high, with the former value usually
being larger than the latter.

In fact, the above-discussed differences corresponding to different situations with
degeneracy is not crucial for our purpose here. What is of practical importance is that, in
all the cases, the distributions g(C̃) show high peaks at C̃ = 0, which is the characteristic
feature of integrability. Moreover, we recall that, as discussed in the above section, high
degeneracy may increase the difficulty in quantitative evaluation of g(0). For these reasons,
in characterizing integrability-chaos crossover, the quantity g−1(0) may be practically
better than g(0). In fact, most of the indefiniteness, if not all of them, are restrained in
g−1(0). The quantity g−1(0) is expected to satisfy g−1(0) '

√
2π for chaotic systems,

while, is small for integrable systems. (The exact value of the smallness of g−1(0) is not so
important in distinguishing between integrability and chaos, though it may be informative
for other purposes).

Based on the above discussions, loosely speaking, one may expect the following picture
for behaviors of the quantity g−1(0) in an integrability-chaos crossover. At λ = 0, one
expects that g−1(0) ≈ 0, except for the case of very high degeneracy. With λ increasing from
0, the EFs of |k(λ)〉 on the integrable basis {|k(0)〉} become more and more complicated.
As a consequence, some previously very small elements Vkk′ become nonnegligible and,
then, as predicted by Equation (19), more and more rescaled components may obtain
nonnegligible values. This implies that, with increasing λ, g−1(0) should increase, until it
reaches a saturation value of

√
2π, which corresponds to quantum chaos.

4. Numerical Simulations

In this section, we present numerical simulations that have been performed in a
three-orbital Lipkin-Meshkov-Glick (LMG) model [49,58], illustrating g(0) as a measure for
characterizing the integrability-chaos crossover.
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4.1. The model

The LMG model consists of Ω fermions, which may occupy three single-particle energy
states labeled by s = 0, 1, 2. We use ηs to denote the energy of the s-th single-particle state
and, for brevity, we set η0 = 0. In this paper, we are interested in the collective motion of
this model, for which the dimension of the Hilbert space is 1

2 (Ω + 1)(Ω + 2). The classical
counterpart of this collective motion has a two-dimensional configuration space.

The Hamiltonian of the model is constructed from the following operators Krs,

Krs =
Ω

∑
γ=1

a†
rγasγ, r, s = 0, 1, 2, (26)

where a†
rγ and arγ are fermionic creation and annihilation operators obeying the usual anti-

commutation relations. The operators Kss in fact represent the particle-number operators
for single-particle states s, while, Ksr with s 6= r are level raising/lowering operators. The
Hamiltonian is written as

H0(λ) = η1K11 + η2K22 + λV, (27)

where

V =
4

∑
t=1

µtV(t). (28)

In Equation (28), µt are parameters and

V(1) = K10K10 + K01K01, (29a)

V(2) = K20K20 + K02K02, (29b)

V(3) = K21K20 + K02K12, (29c)

V(4) = K12K10 + K01K21. (29d)

For symmetric states in the collective motion, the operators Krs may be written in terms of
bosonic creation and annihilation operators denoted by b†

s and bs [59],

Krs = b†
r bs, (30a)

Kr0 = K†
0r = b†

r

√
Ω− b†

1b1 − b†
2b2, (30b)

for r, s = 1, 2.
The classical counterpart may be obtained by making use of the following transformation,

b†
s =

√
Ω
2
(qs − ips), bs =

√
Ω
2
(qs + ips). (31)

It is easy to verify that qr and ps obey the following commutation relation,

[qr, ps] =
i

Ω
δrs. (32)

Thus, 1/Ω plays the role of an effective Planck constant, h̄eff =
1
Ω , and the classical limit of

the model is obtained by letting Ω→ ∞. In the classical Hamiltonian, parameters take the
form of ηcl

s = ηsΩ and µcl
t = µtΩ2. Quantum systems corresponding to the same values of

ηcl
s and µcl

t share a common classical counterpart.
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4.2. Numerical Results

As is well known, on the integrable side, a model may behave differently under
different winding numbers, particularly, at rational and irrational values. In the LMG
model, the winding number is given by the ratio of η1/η2. in our numerical simulations, we
have studied the crossovers starting from several integrable Hamiltonians, corresponding
to different values of η1 and η2. We have the freedom of keeping η1 and η2 in the order
of magnitude of 1. Specifically, we have studied two rational values of η1/η2 and two
irrational ones: (η1, η2) = (1, 2), (1, 3), (

√
3, 2) and (

√
5− 1, 2).

On the chaotic side, parameters in V are chosen such that this observable has essentially
the same classical limit as that studied in Ref. [30]; specifically, µ1 = 0.0077625, µ2 =
0.008775, µ3 = 0.0095625, and µ4 = 0.0082125. Other parameters used in our simulations
are ε = 10−4 for small perturbation and the total particle number Ω = 200, for which
the dimension of the Hilbert space is 20301. Under these parameters, the mean value
of |εVkk′ | of nonzero elements of V in the integrable basis is about 2.6× 10−3, obviously
smaller than the mean level spacing which is about 10−2, satisfying the requirement of
weak perturbation.

In the computation of the average shape 〈|Cαk|2〉 (Equation (6)), we adopted the second
method discussed previously, with Λb = 0.1; i.e., all big components with |Cαk|2 ≥ 0.1
were excluded. The width δe was adjusted such that each window Γα includes 16 levels.
In the computation of g(0), for each system H0(λ), 2000 perturbed states |α〉 lying in the
middle energy region were used, and for each |α〉, 2000 components C̃αk with E0

k around Eα

were used.
Numerical results are shown in Figures 1–4 for the four pairs of (η1, η2) mentioned

above, respectively. It is seen that the g−1(0)-plots in all the four figures show a same
pattern of behavior from integrability to chaos. Furthermore, this pattern is much simpler
than those of g(0), as explained previously due to the fact that the difference among big
values of g(0) is restrained in g−1(0). For the sake of comparison with standard spectral-
statistics analysis, we also plot the quantity ∆W in Equation (16) as a measure for the
distance to chaos. Furthermore, moreover, we plot the following quantity as a measure for
the distance to integrability, i.e.,

∆P =
∫
|I(s)− e−s|ds, (33)

where e−s is the Poison distribution expected for the nearest-level-spacing distribution in
generic integrable systems.
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Figure 1. Variation of g−1(0) (upper panel), and g(0) (lower panel) versus λ (solid squares connected
by dashed lines) for η1 = 1, η2 = 2. Other parameters: µ1 = 0.0077625, µ2 = 0.008775, µ3 =

0.0095625, µ4 = 0.0082125, Ω = 200, and ε = 10−4. For comparison, variation of ∆W in Equation (16)
(empty circles connected by dotted line (red)) and of ∆P in Equation (33) (stars connected by dotted
line (blue)) are also plotted.

Figure 2. Similar to Figure 1, but for η1 = 1 and η2 = 3.
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Figure 3. Similar to Figure 1, but for η1 =
√

3 and η2 = 2.

Figure 4. Similar to Figure 1, but for η1 =
√

5− 1 and η2 = 2.

As is known, the parameter region (0, 1) for a integrability-chaos crossover may
usually be divided into three subregions: a nearly integrable regime, a nearly chaotic
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regime, and a crossover regime. A merit of the quantity g−1(0) is that it shows this division
in a very clear way, the details of which we discuss below.

1. A nearly integrable regime, in which the value of g−1(0) is close to 0. In this regime,
the perturbation-induced transition is strongly prohibited between many of the un-
perturbed states.

2. A nearly chaotic regime, in which g−1(0) ≈
√

2π. In this regime, the perturbation-
induced transition is not prohibited in a statistical sense.

3. An intermediate (cross-over) regime, in which g−1(0) increases “rapidly”, approxi-
mately from 0 to 2.5.

Specifically, in the case of (η1, η2) = (1, 2), as seen in the upper panel of Figure 1, the
above-discussed three regimes occupy approximately the three subregions of
(0, 0.22), (0.5, 1) and (0.22, 0.5), respectively. In this figure, the point of λ = 0 looks quite
special, because the value of g−1(0) at λ = 0 is not small, but, about 0.5. (One should note
that, although the value of g(0) at λ = 0 in this figure is not very large, about 2, it is still
obviously larger than the value expected for chaotic systems, the latter of which is about
0.4.) This phenomenon is due to the high degeneracy of the spectrum of the integrable
system H0(0) with (η1, η2) = (1, 2). In fact, with Λb = 0.1, most of the components Cαk of
|k〉 lying in highly degenerated subspaces were included in the computation of g(0) and,
since the perturbation is effectively extremely strong within each degenerate subspace, the
number of very small components in them is not large. Please note that this phenomenon
disappears with a little increase of λ, which destroys the degeneracy, and as a result the
value of g−1(0) becomes quite small, as seen in the figure.

In Figure 2, with (η1, η2) = (1, 3), the three regimes are seen clearly, too, approximately
occupying (0, 0.46), (0.74, 1), and (0.46, 0.74), respectively. In this figure, the value of g−1(0)
at λ = 0 is not very small, either, about 0.18. This value is smaller than that in Figure 1,
because the degeneracy in the system with (η1, η2) = (1, 3) is not as high as that in the case
of (η1, η2) = (1, 2). Consistently, in Figures 3 and 4, the values of g−1(0) are already small
at λ = 0 for integrable systems H0(0) possessing nondegenerate spectra.

In the lower panels of the four figures, it is seen that the g(0)-plots show rich behaviors
in the nearly integrable regime. In the case with rational ratios η1/η2 (Figures 1 and 2),
g(0) is relatively small at λ = 0 (corresponding to the above-discussed relatively large
values of g−1(0)) and increases immediately with a little increase of λ. For irrational ratios
η1/η2 (Figures 3 and 4), although g(0) are already not small at λ = 0, they also undergo
immediate rapid increase with a little increase of λ.

Correspondingly, from the g(0)-plots, one also sees three subregions in each figure
— nearly integrable, intermediate (crossover), and nearly chaotic. In Figures 1, 2, and 4,
the intermediate subregions are close to those obtained from the level-statistics properties
(∆W). However, notable differences between them are seen in Figures 3, showing the
information supplied by g(0) for the crossover is not always in quantitative agreement
with that obtained from the level statistics. We are not able to provide further discussion on
such a difference, nor on rich behaviors of g(0) on the integrable side, because as discussed
previously, further analytical study is needed for a deeper understanding of them.

5. Conclusions

In this paper, a measure has been proposed for characterizing integrability-chaos
crossover for a big class of quantum models of practical interest, which possess underlying
dynamic Lie groups. To compute this measure, a very small perturbation (εV) of physical
relevance is applied to the studied system and components of perturbed states on the
unperturbed basis are rescaled with respect to the average shape of eigenfunctions. The
measure is given by g(0), the value of the distribution of rescaled components at the
origin point, or, practically by g−1(0). In a relative sense, g(0) has the physical meaning of
describing the extent of prohibition of εV-induced transitions between unperturbed states.

As is known, the whole parameter region of integrability-chaos crossover may usually
be divided into three subregions: a nearly integrable regime, a nearly chaotic regime, and a
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crossover regime. Different measures employed usually give divisions with some differ-
ences. Numerical simulations performed in the LMG model, which possesses a classical
counterpart in a two-dimensional configuration space, show that the behavior of 1/g(0)
gives such a division in quite a clear way. The division is in qualitative consistency with
that obtained from spectral statistics, but not always quantitatively. Future investigations
are needed for analytical understanding of the difference.

In principle, the proposed measure may be used in both cases with a noninteracting
integrable system and with an interacting integrable system. In this paper, numerical
simulations are given only in a simple model of the former type. In future, it would be of
interest to see its application to models of the latter type, which might be more complicated
than the former type. Moreover, application of the proposed measure to many-body
systems, particularly on the nearly integrable side, may be an interesting topic for future
study, too.
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