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Abstract: This paper proposes an encryption scheme for high pixel density images. Based on the ap-
plication of the quantum random walk algorithm, the long short-term memory (LSTM) can effectively
solve the problem of low efficiency of the quantum random walk algorithm in generating large-scale
pseudorandom matrices, and further improve the statistical properties of the pseudorandom matrices
required for encryption. The LSTM is then divided into columns and fed into the LSTM in order for
training. Due to the randomness of the input matrix, the LSTM cannot be trained effectively, so the
output matrix is predicted to be highly random. The LSTM prediction matrix of the same size as the
key matrix is generated based on the pixel density of the image to be encrypted, which can effectively
complete the encryption of the image. In the statistical performance test, the proposed encryption
scheme achieves an average information entropy of 7.9992, an average number of pixels changed
rate (NPCR) of 99.6231%, an average uniform average change intensity (UACI) of 33.6029%, and an
average correlation of 0.0032. Finally, various noise simulation tests are also conducted to verify its
robustness in real-world applications where common noise and attack interference are encountered.

Keywords: image encryption; high pixel density; neural networks; quantum random walk

1. Introduction

With the rapid development of Internet technology, more and more high-value data
and information is being transmitted over the Internet, and therefore the security of data
transmission is becoming more and more important. While ordinary data can be hidden
and protected by classical encryption schemes such as DES [1] and AES [2], the information
contained in an RGB image is represented by the pixel values. Because of the strong correlation
between the neighbouring pixel values of RGB images and the amount of information stored
in images, classical encryption schemes are often unable to achieve good encryption of image
information, so the encryption of image information is separated from classical data encryption
and becomes a separate research direction, focusing on image specific encryption schemes
from the data information characteristics of images [3–8]. One very promising direction is
the application of neural networks to image encryption. This is because cryptography places
particular emphasis on the introduction of nonlinear transformations, which is a distinctive
feature of neural networks, and, in addition to this, neural networks have characteristics such
as ultra-fast parallel processing and operate in matrix form, all of which are extremely well
suited to the field of image encryption, making neural networks increasingly interesting in
the field of image encryption [9–11].

The LSTM [12] is a special type of recurrent neural network (RNN) [13] that uses
the ’inner loop’ of a neural network to preserve the contextual information of a time
series, allowing the use of past signal data to infer an understanding of the current signal.
Theoretically, RNN can retain information from any moment in time. However, in practice,
the transfer of information tends to decay over long time intervals, and the effectiveness of
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the information is greatly reduced after a certain period of time. As a result, RNN is not
well equipped to deal with the problem of long-term information dependence, resulting in
a tendency to rely only on the most recent input information for inference. To overcome
this problem, LSTM is proposed to solve the long-term dependency problem. In contrast to
RNN, remembering the content of earlier moments is its default behaviour. Therefore, it
does not require a significant cost specifically and works better.

Quantum computing is a new computing mode that follows the laws of quantum mechan-
ics to regulate quantum information units for computing [14]. Quantum algorithm [15–18] is
an algorithm based on quantum computation. By using the unique behavior of quantum
mechanics, such as superposition, entanglement, and interference, some algorithms have
achieved exponential acceleration compared with classical algorithms [17,19]. Quantum ran-
dom walk (QW) is a quantum algorithm, which was first proposed by Aharonov et al. [20],
including continuous time QW [21] and discrete time QW [22]. Compared with the classical
random walk, the algorithm has a significant improvement in computational efficiency, and
its time complexity is reduced from O(n2) to O(n). On the basis of one-dimensional QW,
Baryshnikov et al. studied the difference between two-dimensional and one-dimensional co-
ordinate space, and expounded the advantages and unique properties of two-dimensional
QW [23]. Although QW is a quantum algorithm, its probability matrix can be solved by
classical computers, and the algorithm complexity is still O(n), which makes QW be able to
be applied in classical computers in advance.

Both LSTM and QW have applications in image encryption. He et al. [24] proposed an
OF-LSTMS that replaces the matrix operation in LSTM with an XOR operation to obtain an
encrypted image after a single forward propagation. Yang et al. [25] studied the properties
of one-dimensional QW and applied it to quantum image encryption for the first time.
Abd et al. [26] analyzed the statistical properties of the probability distribution matrix
of two-dimensional quantum walks and applied it to image encryption; Ma et al. [27]
combined the discrete cosine transform (DCT) [28] and the probability matrix of alternating
quantum walks (AQW) for image encryption, etc.

Although QW probability matrices have been widely used in the field of image en-
cryption, they still have shortcomings and are too inefficient when dealing with high pixel
images. The time complexity of the one-dimensional AQW probability matrix is O(n), and the
computational complexity of the AQW probability matrix is O(n2), which is still polynomial
in time complexity, but the time consumed to generate the QW probability matrix is unaccept-
able in practical applications to encrypt high pixel value images. At the same time, we also
found that the statistical properties required for the encryption of the QW probability matrix
are not satisfactory, so when QW is used for encryption, other algorithms are often used to
improve the encryption, e.g., Ma used a discrete cosine transform algorithm to perform further
dislocation encryption in the DCT domain after applying QW to confuse the pixel values.
This does not increase the encryption efficiency too much, but the use of separate algorithms
for the scrambling and obfuscation phases nullifies the advantage of having an infinite key
matrix for the QW, as it can only participate in one of the scrambling and obfuscation phases,
and the two phases are independent of each other.

In order to optimize the statistical properties of the QW probability matrix and its
performance on high pixel precision image encryption for better encryption, we propose
an image encryption scheme that combines neural networks with quantum algorithms. By
combining the QW with the LSTM, the initial matrix is generated using the QW probability
matrix, and after training through the LSTM, a suitable prediction matrix is output as
the key matrix for encryption according to the required pixel accuracy of the image to be
encrypted. We show that this combination can improve the efficiency of the key matrix gen-
eration, and at the same time, because the QW probability matrix has strong randomness,
the LSTM can not effectively find its pattern to predict, so the generated prediction matrix
is also disordered, and has better statistical properties than the QW probability matrix
for encryption, which can be better used as a key matrix for encryption. Section 2 of this
paper presents the basics related to encryption schemes, including the study and analysis
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of LSTM and AQW. Section 3 presents specific encryption schemes. Section 4 presents
the simulation and theoretical analysis of this paper for detecting the effectiveness of the
encryption scheme and lists the comparison of similar schemes to the encryption scheme
proposed in this paper. Section 5 concludes the work in this paper and also provides an
outlook on the subsequent work. The most critical module of the LSTM is the cell state,
which is represented by Ct, the current state at the current moment, and is generated by the
state Ct−1 at the previous moment together with the signal input xt at the current moment,
while Ct will continue to be passed to the next moment together with xt+1 to generate Ct+1.

2. Related Work and Background Knowledge
2.1. Long Short-Term Memory

LSTM is a type of Recurrent Neural Network (RNN) that has been widely used in
various applications, such as speech recognition, natural language processing, and time
series prediction. Unlike traditional RNNs, LSTMs have an internal memory cell that
enables them to maintain information over a longer period of time, making them well-
suited for tasks that require modeling sequential data with long-term dependencies.

The core component of an LSTM unit is its memory cell, which is responsible for
maintaining information over a long period of time. The memory cell is controlled by three
types of gates: the input gate, the forget gate, and the output gate. The input gate controls
the flow of new information into the memory cell, the forget gate controls the amount of
information retained from the previous time step, and the output gate controls the flow of
information out of the memory cell and into the hidden state of the LSTM unit.

The LSTM architecture is derived from the equations that govern the behavior of the
gates and the memory cell. At each time step, the input, forget, and output gates are computed
using a sigmoid activation function, while the memory cell is updated using a tanh activation
function. The equations governing the behavior of the LSTM unit are given by:

it = σ(Wixxt + Wihht−1 + bi) (1)

ft = σ(W f xxt + W f hht−1 + b f ) (2)

ot = σ(Woxxt + Wohht−1 + bo) (3)

ct = ft � ct−1 + it � tanh(Wcxxt + Wchht−1 + bc) (4)

ht = ot � tanh(ct) (5)

where xt is the input at time step t, ht−1 is the hidden state at the previous time step, it, ft,
and ot are the input, forget, and output gates at time step t, ct is the memory cell at time step t,
and σ and tanh are the sigmoid and hyperbolic tangent activation functions, respectively.

The LSTM architecture has proven to be highly effective in various applications, due
to its ability to capture long-term dependencies and selectively forget or retain information.
The equations presented here provide a foundation for understanding the behavior of
LSTMs and for developing new models that incorporate LSTM units.

The chain structure diagram of the LSTM is shown in Figure 1, which illustrates the
chain relationship between the three adjacent substructures and the composition of each
LSTM substructure.

Figure 1. Chain model for LSTM.



Entropy 2023, 25, 353 4 of 15

2.2. Quantum Random Walk

This paper is based on the theory of discrete-time QW. The discrete-time QW consists of
four main elements: the walker, the coins carried by the walker, the coin toss, and the walk rule.

The Hilbert space Ĥ of a one-dimensional discrete-time QW tensor consists of the
walker position space Hw and the coin space HΓ: Ĥ = Hw ⊗ HΓ. In a QW, each step of the
walk is determined by a unique coin flip operator Γ:

Γ =

(
cos β sin β
sin β − cos β

)
(6)

After the coin toss is completed, the movement of the walker is specified by the
conditional displacement operator Si: Si|x̂〉 =

∣∣x̂ + (−1)Γ
∣∣, Γ ∈ 0, 1 The |x̂〉(x̂ ∈ Z) in

the above equation forms the base vector of the walker’s position space; the two base
vectors |0〉, |1〉 form the coin space. We specify: when the coin state is |0〉, the walker is
manipulated to move one unit in the forward direction; when the coin state is |1〉, the
walker is manipulated to move one unit in the reverse direction.

In the AQW used in this paper, the walker controlled by the coin operator alternates
between two arbitrarily chosen vertical directions x̃ and ỹ, and the walking operator Û for
the whole QW process can be described as:

Û = Ŝȳ(I ⊗ HΓ)Ŝx̄(I ⊗ HΓ) (7)

where Ŝỹ, Ŝẋ are the displacement operators of the walker at each point on the x̃ and ỹ axes:

Ŝỹ =
N

∑̃
x,ỹ

(|x̃, (ỹ + 1) mod v, 0〉〈x̃, ỹ, 0|)

+
N

∑̃
x,ỹ

(|x̃, (ỹ− 1) mod v, 1〉〈x̃, ỹ, 1|)

Ŝẋ =
N

∑̃
x,y

(|(x̃ + 1) mod v, ỹ, 0〉〈x̃, ỹ, 0|)

+
N

∑̃
x,ỹ

(|(x̃− 1) mod v, ỹ, 1〉〈x̃, ỹ, 1|)

(8)

where v indicates the prescribed walking boundary.
Suppose the initial moment: The walker’s location is

(
0x̃, 0ỹ

)
, and the coin is in the

superposition state HΓ = cos α|0〉+ sin α|1〉; then, the initial moment system state is:

|ψ0〉 = |ϕ0〉w ⊗ (cos α|0〉+ sin α|1〉)Γ (9)

The system state after a T walk can be expressed as:

|ψT〉 = ÛT |ψ0〉 (10)

3. Algorithm Description
3.1. The Encryption Process
3.1.1. Preparation of Quantum Random Walk Probability Distribution Matrix

The data of the corresponding element in the matrix are the probability P(δ, ϑ, T) of
the walker appearing at the coordinates

(
δx, ϑy

)
of the location, as can be deduced from

the above:
P(δ, ϑ, T) =

∣∣∣〈δ, ϑ, 0
∣∣∣ÛT

∣∣∣ψ0

〉∣∣∣2 + ∣∣∣〈δ, ϑ, 1
∣∣∣ÛT

∣∣∣ψ0

〉∣∣∣2(δx, ϑy
)

(11)
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The resulting probability distribution matrix M and its four sub-matrices M1, M2, M3, M4
after equiproportional partitioning are as follows:

M =

 P11 . . . P1n
...

. . .
...

P11 · · · Pnn


M1 =


P11 . . . P1 n

2
...

. . .
...

Pn
2
· · · Pn

2
1
2

M2 =


P1 n

2
. . . P1n

...
. . .

...
Pn

2
n
2
· · · Pn

2 n


M3 =


Pn

2 1 · · · Pn
2

n
2

...
. . .

...
Pn1 · · · Pn n

2

M4 =


Pn

2
· · · Pn

2
n
2

...
. . .

...
Pn

2 n · · · pnn



(12)

We set the walker to be at the center of the Hilbert space Ĥ tensed by Hw and Hc, so
the four submatrices M1, M2, M3, M4 are centrosymmetric about the point Pn

2
in the final

generation. To prevent the LSTM from learning the rule such that the statistical performance
of the final generated key matrix is degraded, in this paper, only M̂ = M1 is chosen as the
required initial pseudo-random number matrix to participate in the encryption.

3.1.2. Preparing the Encryption Key Matrix

Step 1: Ensure the reproducibility of the LSTM across devices. (i) Fix the random
seeds of each dependency library so that each function is called with the same initial value
and random value each time it is trained by the LSTM. (ii) Presetting the dropout function
in the LSTM to 0, i.e., not dropping any nodes of the neural network, to ensure that the
network model is fixed each time. (iii) Fixed platforms as well as devices, taking the current
mainstream pytroch framework as an example, which still cannot guarantee the accuracy
of model reproduction under different CPU and GPU pairings, and also requires CUDA
environment variable configuration, etc. in order to further reduce uncertainty.

Step 2: Generate the LSTM input vector. Divide M̂ by column:
P11 . . . P1 n

2
...

. . .
...

Pn
2 1 · · · Pn

2
1
2

→ (
ϕ1, ϕ2, . . . ϕ n

2−1, ϕ n
2

)
(13)

M̂ ′ is obtained by Min-Max normalization of M̂:(
ϕ1, ϕ2, . . . ϕ n

2−1, ϕ n
2

)
−→

(
ξ1, ξ2, . . . ξ j . . . ξ n

2

)
(14)

ξi is the vector to be input.
Step 3: Generate the key matrix required for encryption. Input the vectors ξi in matrix

M̂ ′′ into the LSTM in order for training, and set the LSTM prediction quantity as γ2 to
obtain the prediction matrix M̂ ′′′:

M̂ ′′′ =

 v11 . . . v1γ
...

. . .
...

vγ1 · · · vγγ

 (15)



Entropy 2023, 25, 353 6 of 15

Inverse normalization of M̂ ′′′ yields ME: v11 . . . v1γ
...

. . .
...

vγ1 · · · vγγ

 −→
 ∂11 . . . ∂1γ

...
. . .

...
∂γ1 · · · ∂γγ

 (16)

In Figure 2, we show the comparison between the predicted data and the expected values
formed from the accurate data after training the QW probability matrix as an LSTM training
matrix. Subplot a shows the trend in randomness between predicted and expected values;
subplot b shows the distribution between specific predicted and expected values.

Figure 2. LSTM generation key matrix.

3.1.3. Image Encryption

The R, G and B channels in our proposed encryption scheme are performed sepa-
rately, and our encryption algorithm is described in terms of γ× γ pixels of RGB image I
corresponding to a grey-scale map in the form of matrix M I .

Step 1: Hide the pixel information in M I by obfuscating the pixel values. Here, we
borrow the heteroskedastic algorithm to implement the obfuscation operation:

M ′I = M I ⊕ME (17)

Step 2: Generate matrix M ′E = ME, sort the index value matrix Ω of M ′E in order to
obtain Ω′, reorder the M ′I after the confusion operation according to the corresponding
position in Ω′, and achieve the dislocation of the image by destroying the relationship
between adjacent pixel values to obtain M ′′I . The schematic diagram of the dislocation
algorithm is shown in Figure 3.
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Step 2: Generate matrix M ′E = ME, sort the index value matrix Ω of M ′E in order to
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between adjacent pixel values to obtain M ′′I . The schematic diagram of the dislocation
algorithm is shown in Figure 3.

Figure 3. Encryption scheme - scrambling algorithm.

3.2. The Decryption Process
3.2.1. Preparing the Decryption Key Matrix

We use the probability distribution of the alternating quantum random walk algorithm
at each grid point as the basis for generating the random number matrix required for
encryption. The probability distribution matrix generated by the alternating quantum
random walk has been shown to possess pseudo-randomness [22], i.e., the random number
matrix M ′ = M generated twice, provided that the initial parameters including α, β, v are
the same. Since we have removed the uncertainty and randomness from the LSTM, the
M ′ is processed once according to the encryption process for M, and finally the prediction
matrix generated by the LSTM is processed to obtain MD = ME.

3.2.2. Decryption of Encrypted Image

Step 1: The encrypted image M ′′I is obtained using the inverse permutation M ′I . This
process is the inverse of the permutation operation, and the algorithm is shown in Figure 3:

Step 2: M I
′ for obfuscation reduction to obtain M I .

3.3. Encryption and Decryption Algorithm Flow Chart

We show the key steps of our proposed image encryption scheme by means of a
flowchart, including the generation of the QW probability density matrix, the process of
generating the key matrix by LSTM, and the two key steps (scrambling, confusion) of the
image encryption and decryption process using the key matrix, as shown in Figure 4.

Figure 3. Encryption scheme—scrambling algorithm.

3.2. The Decryption Process
3.2.1. Preparing the Decryption Key Matrix

We use the probability distribution of the alternating quantum random walk algorithm
at each grid point as the basis for generating the random number matrix required for
encryption. The probability distribution matrix generated by the alternating quantum
random walk has been shown to possess pseudo-randomness [22], i.e., the random number
matrix M ′ = M generated twice, provided that the initial parameters including α, β, v are
the same. Since we have removed the uncertainty and randomness from the LSTM, the
M ′ is processed once according to the encryption process for M, and finally the prediction
matrix generated by the LSTM is processed to obtain MD = ME.

3.2.2. Decryption of Encrypted Image

Step 1: The encrypted image M ′′I is obtained using the inverse permutation M ′I . This
process is the inverse of the permutation operation, and the algorithm is shown in Figure 3:

Step 2: M I
′ for obfuscation reduction to obtain M I .

3.3. Encryption and Decryption Algorithm Flow Chart

We show the key steps of our proposed image encryption scheme by means of a
flowchart, including the generation of the QW probability density matrix, the process of
generating the key matrix by LSTM, and the two key steps (scrambling, confusion) of the
image encryption and decryption process using the key matrix, as shown in Figure 4.
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Figure 4. Encryption and decryption process.

4. Simulation and Analysis

To verify the resistance of the proposed scheme, three RGB images with a pixel size of
2000 × 2000 were encrypted and decrypted according to the proposed encryption scheme,
and various statistical analyses were carried out on the encrypted images and the keys
used, including histogram analysis, correlation analysis and information entropy analysis
for the encrypted images; sensitivity analysis and key space analysis for the key matrix, etc.

4.1. Experimental Parameters and Encryption and Decryption Results

We use v = 240, α = π
23 , β = π

41 as the start parameters of the QW to prepare a QW
probability matrix of size 100× 2000, and set the prediction length of the LSTM to 2000, i.e.,
to generate a key matrix of the same size as the RGB image to be encrypted. The encryption
and decryption results are shown in Figure 5.

Figure 5. Image encryption before and after comparison.
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4.2. The Statistical Analysis
4.2.1. Correlation Analysis

Adjacent pixel correlation RAB is used to measure the degree of correlation of adja-
cent pixel values. Adjacent pixel values in RGB images often have strong correlations in
horizontal, vertical and diagonal directions. Image encryption algorithms will destroy this
correlation, and the degree of destruction can reflect the effect of encryption algorithms.
The closer RAB is to 0, the better the destruction effect is, and the more difficult it is to
obtain image information through the relationship between adjacent pixels [27].

RAB =
cov(A, B)√
D(A)

√
D(B)

(18)

where cov(A, B) is the covariance of A, B, and
√

D(A) and
√

D(B) are the standard de-
viations of A and B, respectively. In this paper, the horizontal, vertical, and diagonal
correlations of the three RGB images of Lena, Lemon, and Sakur are compared before and
after encryption. The correlation values for the three RGB images are shown in Table 1, and
the specific pixel distribution information is shown in Figures 6 and 7.

Table 1. Pixel correlation analysis data.

Image Channel Horizontal Vertical Diagonal

Red 0.8846 0.8924 0.8297
Unencrypted

(img_a) Green 0.9062 0.9146 0.8568

Blue 0.9269 0.9272 0.8905

Red 0.0006 0.0011 0.0032
Encrypted
(img_a) Green 0.0032 0.0027 0.0021

Blue 0.0041 0.0016 0.0022

Red 0.9930 0.9944 0.9869
Unencrypted

(img_b) Green 0.9940 0.9949 0.9897

Blue 0.9927 0.9939 0.9876

Red 0.0022 0.0011 0.0023
Encrypted
(img_b) Green 0.0021 0.0025 0.0014

Blue 0.0009 0.0041 0.0013

Figure 6. Comparison of correlation before and after img_a encryption.
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Figure 7. Comparison of correlation before and after img_b encryption.

4.2.2. Histogram Analysis

The histogram provides a visual representation of the statistical data of the pixel
values in an RGB image. The histogram of a normal image usually has a distinct statistical
pattern, and to resist statistical attacks [25], the histogram of an encrypted image must be
as uniform and smooth as possible. The more such criteria are met, the more uniform the
pixel distribution is, the less statistical information the image displays, the less information
can be accurately predicted, and the more secure the image encryption scheme is [15]. In
this paper, the histograms of the RGB three channels of Lena, Lemon, and Sakura images
are analyzed separately, and the specific histograms are shown in Figures 8 and 9.

Figure 8. Comparison of histogram before and after img_a encryption.
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Figure 9. Comparison of histogram before and after img_b encryption.

4.2.3. Information Entropy Analysis

Information entropy H was proposed by Shannon, the father of information theory, to
describe the uncertainty of the occurrence of each possible event of the information source.
The pixel values of RGB images range from 0 to 255, so the information entropy H ≤ 8.
The closer the entropy value is to 8, the more information it carries and the more resistant it
is to statistical attacks [11]. The formula for this is as follows:

H(m) = −
N−1

∑
i=0

P(mi) log2 P(mi) (19)

where mi is the grey scale value and P(xi) is the probability of mi occurrence. This paper
analyzes the information entropy of the R, G, and B channels of the three different RGB
images of Lena, Lemon, and Sakura. The relevant data are shown in Table 2.

Table 2. Entropy analysis.

Image Channel Image Entropy (bit)

Red 7.9991
Encrypted (img_a) Green 7.9996

Blue 7.9989

Red 7.9992
Encrypted (img_b) Green 7.9992

Blue 7.9994

4.2.4. Key Sensitivity Analysis

An effective key sensitivity means that a slight change in the key information will result
in a significant change in the encrypted image. The ideal values of NPCR and UACI are
99.61% and 33.46%, respectively [29]. Higher calculated values of NPCI and UACI of an
encryption scheme indicate that the encryption scheme is more resistant to differential attacks:

Γ(i, j) = f (x) =

{
1, if C1(i, j) 6= C2(i, j)
0, otherwise

(20)

NPCR =
∑i,j Γ(i, j)
J×R

× 100% (21)
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UACI =
1

J×R

[
∑
i,j

C1(i, j)− C2(i, j)
255

]
× 100% (22)

where ,=,R are the length and width of the encrypted image, Γ(i, j) is the above equation,
and C1, C2 are the images after encryption with different keys.

In this paper, the key sensitivity of the R, G and B channels of the RGB images of Lena,
Lemon, and Sakura were analyzed separately, and the relevant data are shown in Table 3.

Table 3. Key sensitivity analysis.

Image Channel NPCR UACI

ine Red 99.6124% 33.4216%
img_a Green 99.6088% 33.3657%

Blue 99.6003% 34.2157%
ine Red 99.6419% 33.6114%

img_b Green 99.5986% 33.4268%
Blue 99.6036% 33.5762%

4.2.5. The Key Space

The key space refers to the set of all possible keys used to generate the key and deter-
mines whether the encryption scheme can resist a brute-force attack. Cryptosystems with a
key space size of 2128 are effective in resisting brute force attacks. The key space calculation
for the scheme proposed in this paper is based on quantum effects. Since in quantum
theory the position of a particle in a defined space is not deterministic, each position has
its probability of existence, only with different probabilities, and this probability can be
changed by specifying the size of the space for a QW and the initial walking direction and
forward direction. As the walk direction takes values from 0 to 2π and the QW is extremely
sensitive to accuracy, the change in probability is infinite as the accuracy of the computer
increases, i.e., the key space established based on the QW is infinite.

4.2.6. Explicit Attack

• Known plaintext attack: The attacker can recover the key by obtaining the decrypted
image and comparing it with the ciphertext image. Since the algorithm in this paper
has a good diffusion effect, the difficulty of obtaining the key by this method is close to
that of a direct brute force attack, so the encryption scheme in this paper can effectively
resist known plaintext attacks.

• Selective plaintext attack: Assuming that the attacker has gained access to the en-
crypted machine, he can select an arbitrary number of plaintexts for the encryption
algorithm under attack to encrypt and obtain the corresponding ciphertexts. The
attacker’s goal is to gain some information about the encryption algorithm through
this process that will allow the attacker to more effectively crack messages encrypted
by the same encryption algorithm (and associated key) in the future. In the worst case,
the attacker can simply obtain the key used for decryption. This scheme is commonly
used against public key encryption schemes. The keys in this scheme are not universal,
i.e., they are changed periodically, even differently each time, making it impossible for
an attacker to obtain valid information.

4.2.7. Time Complexity Analysis

The time complexity analysis of an encryption scheme is an important indicator to
evaluate the excellence of an encryption scheme, which will directly affect the encryption
efficiency. The time consumption of our proposed scheme consists of two parts, one is
the time required to generate the key matrix, and the other is the completion of the image
encryption by the key matrix. Although the efficiency of generating the pseudo-random
number matrix is important, it is not part of the time complexity of the encryption scheme
as it is decoupled from the image encryption process. The encryption time complexity
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of our proposed scheme consists of a combination of pixel obfuscation and scrambling.
The time complexity of this process is O(n2 + nlog n), as the time consumed by matrix
permutation is O(n2). In summary, the encryption time complexity of our proposed scheme
is O(2n2 + nlog n).

4.2.8. Noise Robustness Testing

During the transmission of image information over the network, information may
be lost or misplaced due to packet loss, malicious attacks, and so on. We simulate the
continuous loss of image information due to network fluctuations using Gaussian noise
and pretzel noise. A malicious attack was simulated using partial block replacement of the
encrypted image. Figure 10 shows the decrypted image of the Lena encrypted image with
the addition of Gaussian noise, pretzel noise and a clipping attack.

Figure 10. Comparison of histogram before and after img_b encryption.

4.3. Comparison of Encryption Schemes

In this section, we analyze and compare the use of QW alone, the encryption scheme
proposed in this paper, and similar work in recent years in terms of the important measures
of average relevance, information entropy, average NPCR, average UACI, and key space
size to resist brute-force cracking, the data of which are presented in Table 4.

Table 4. The comparison in this article is for reference only as the images used in the different
solutions are different and have different pixels. As the pixel sizes vary in each scenario, we have
used the largest pixel images from their scenarios for comparison and selected their average values
as a reference.

Scheme NPCR (%) UACI (%) Correlation Entropy (bit) KeySpace

QW 93.14 32.36 0.0149 7.9947 >2128

our 99.6109 33.6024 0.0032 7.9992 >2128

[3] 99.6127 33.4471 0.0013 >2128

[4] 99.6336 33.4636 0.0026 7.9937 >2128

[5] 99.6326 33.4022 0041 7.9973 >2128

5. Conclusions

We propose a more efficient encryption scheme for the current lack of encryption
schemes for high pixel images in the field of image encryption. The probability density
matrix generated by the quantum random walk is trained by exploiting the memory
learning capability of the LSTM and the nonlinear nature of the quantum random walk. It
can take advantage of the nearly infinite key space brought by the quantum random walk
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algorithm, and also solve the shortcomings of the low generation efficiency of the quantum
random walk itself. At the same time, both the permutation and obfuscation processes of
our scheme make use of the key space of the quantum random walk, avoiding the shortage
of key space in a particular process.
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