
Citation: Hsu, F.-S.; Su, Z.-J.; Kao, Y.;

Tsai, S.-W.; Lin, Y.-C.; Tu, P.-H.; Gong,

C.-S.A.; Chen, C.-C. Lightweight

Deep Neural Network Embedded

with Stochastic Variational Inference

Loss Function for Fast Detection of

Human Postures. Entropy 2023, 25,

336. https://doi.org/10.3390/

e25020336

Academic Editors: Nadia Kanwal

and Mohammad Samar Ansari

Received: 17 January 2023

Revised: 7 February 2023

Accepted: 9 February 2023

Published: 11 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Lightweight Deep Neural Network Embedded with Stochastic
Variational Inference Loss Function for Fast Detection of
Human Postures
Feng-Shuo Hsu 1,2, Zi-Jun Su 1,3, Yamin Kao 1, Sen-Wei Tsai 4, Ying-Chao Lin 5, Po-Hsun Tu 6,
Cihun-Siyong Alex Gong 7 and Chien-Chang Chen 1,*

1 Bio-Microsystems Integration Laboratory, Department of Biomedical Sciences and Engineering,
National Central University, Taoyuan 320317, Taiwan

2 Department of Psychiatry, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation,
Taichung 427213, Taiwan

3 Department of Computer Science, College of Computer Science, National Yang Ming Chiao Tung University,
Hsinchu 30093, Taiwan

4 Department of Physical Medicine and Rehabilitation, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical
Foundation, Taichung 427213, Taiwan

5 Department of Neurological Institute, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation,
Taichung 427213, Taiwan

6 Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33304, Taiwan
7 Department of Electrical Engineering, College of Engineering, Chang Gung University,

Taoyuan 33302, Taiwan
* Correspondence: gettgod@ncu.edu.tw

Abstract: Fusing object detection techniques and stochastic variational inference, we proposed a new
scheme for lightweight neural network models, which could simultaneously reduce model sizes
and raise the inference speed. This technique was then applied in fast human posture identification.
The integer-arithmetic-only algorithm and the feature pyramid network were adopted to reduce the
computational complexity in training and to capture features of small objects, respectively. Features
of sequential human motion frames (i.e., the centroid coordinates of bounding boxes) were extracted
by the self-attention mechanism. With the techniques of Bayesian neural network and stochastic
variational inference, human postures could be promptly classified by fast resolving of the Gaussian
mixture model for human posture classification. The model took instant centroid features as inputs
and indicated possible human postures in the probabilistic maps. Our model had better overall
performance than the baseline model ResNet in mean average precision (32.5 vs. 34.6), inference
speed (27 vs. 48 milliseconds), and model size (46.2 vs. 227.8 MB). The model could also alert a
suspected human falling event about 0.66 s in advance.

Keywords: bayesian neural networks; gaussian mixture model; human posture identification;
integer-arithmetic-only; lightweight neural networks; self-attention; stochastic variational inference

1. Introduction

Timely detection of human fall events is vital in various care environments. Cur-
rent technologies of fall detection include wearable devices [1,2], environmental sensing
schemes [3], and vision-based methods [3–9]. The inconvenience of wearing sensors im-
pedes relevant advances [4] and promotes the development of contactless smart sensors.
Thus, vision-based methods have become mainstream. Skeleton-based [6,9] and image-
based [3–5,7,8] posture detections are two primary strategies. Nevertheless, the high-cost
apparatus for constructing human skeleton images hinders its development [3,4]. Image-
based approaches employing deep neural networks with high structural complexities and
computational costs require significant inference time and may jeopardize the detection
performance of fall incidents.
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Single-shot multi-box detector (SSD) is a one-stage approach for object predictions
using multi-bounding boxes [10–12]. Compared to the YOLO series [13,14] or the two-stage
method Faster-RCNN [15], SSD has a significantly higher speed of instant inspection. How-
ever, the conventional SSD employs VGG16 as its backbone [10], and the architecture still
requires extensive model training and prolongs the inference time. Provided the heavy
communication loads within the configuration of modern deep convolutional neural net-
works and unsatisfactory speed, lightweight neural networks emerged and have become
the leading technique [16,17]. Among the lightweight neural networks, MobileNet adopts
depth- and point-wise separable convolutional layers to decrease computational complex-
ity and parameters [18–21]. MobileNetV2 adds layers of inverted residuals and linear
bottlenecks, for which the feature extraction and data transmission occur in the high- and
low-dimensional spaces, respectively [22,23]. With linear bottleneck layers as activations,
MobileNetV2 further reduces parameters and computational costs. SqueezeNet [24] and
deep compression [25] also open an avenue for model compression by effectively assigning
1 × 1 kernels (a point-wise-like layer structure) to replace the conventional ones. Integrat-
ing the architectures of depth-wise separable convolutions and ResNet bottleneck [23],
the operation of channel shuffle proposed by ShuffleNet compresses the computational
costs while preserving feature information [19]. ShuffleNet V2 [26] further verifies that the
reduction in convolutional branches and the replacement of element-wise operations by
layer concatenation could significantly raise the computational performance. Distinct from
techniques of simplifying neural network architectures or optimizing computational proce-
dures, the quantization training method of integer-arithmetic-only (IAO) algorithm [27,28]
provides an alternative to reduce model sizes and accelerate inference by controlling weight
bit-widths of convolutional kernels and activation functions. This algorithm also highlights
that sophisticated deep convolutional neural networks are impractical baseline architectures
because of overusing internal parameters and manually assigning channels in each layer.
Under the demand of importing lightweight neural networks, utilizing quantization-aware
training [27] in deep neural networks benefits inference performance.

With the combination of a lite SSD network, IAO algorithm, and lightweight neural
networks, we established a new framework with much less model structural complexity
and better inference capability. To compare the ability of different lightweight neural
networks in terms of model size and inference speed, we employed them as backbones of
the lite SSD network. In addition, to efficiently reinforce the capability of identifying objects
with diverse scales, we embedded the feature pyramid network (FPN) [29] into the lite
SSD network to extract local information. Moreover, the self-attention mechanism [30,31]
and the residual blocks of ResNet [23] were adopted to process sequential bounding boxes
(BBoxs) generated by the lite SSD network for parallelly extracting weighted centroid
features of human postures at each time point. These feature maps then became inputs of
the variational inference Gaussian mixture model [32] and backpropagation for further clas-
sification analysis. Therefore, based on the integrations of these techniques, this framework
achieved a fast human posture classification with small model sizes and high inference
speed. The key contributions of our study as listed as follows:

• Decreasing model sizes while increasing mean average precisions and inference speeds;
• Incorporating the self-attention mechanism for human posture prediction and data

point clustering;
• Using a loss function constructed by Bayesian stochastic variational inference with the

distributions rather than the coordinates of data points to reduce the computational
complexity significantly and raise tolerance to outliers;

• Providing the probabilistic map to predict falling incidents in a timely manner;
• Validating that the types and observing directions of sensors for data acquisition would

not affect the accuracy of the probabilistic map exhibition, i.e., highly compatible with
various environments.

In the Materials and Methods section, we describe the datasets, data preprocessing
operations, and the compositions of the neural network, including the backbone models
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and the baseline. We also explain how the proposed framework reduced computational
complexity and detected small-size objects. A specific loss function is developed based on
the theoretical foundation of Bayesian stochastic variational inference. By incorporating
the self-attention mechanism and the backpropagation, the framework updates the loss
function’s statistical parameters according to the detected information. In Results and
Discussion section, the performance comparison of the backbone models for fast object
detection and prediction is exhibited. The model with the best performance is selected for
our framework. The generalization capabilities of the loss function under different devices
and environments are also demonstrated. Finally, we propose a probabilistic map for the
prediction of human postures. In Conclusion section, we summarize the achievements of
the proposed framework and the future recommendations.

2. Materials and Methods

Figure 1 illustrates the proposed framework and experimental procedures. For data
preprocessing in part (a), we adopted the MS COCO dataset [33] and applied binary
transform and data augmentation, including affine transformations, RGB correction, and
intensity correction. For object detection in part (b), the input images were standardized
before being sent into the lite SSD network with FPN and IAO using MobileNet, ShuffleNet,
or SqueezeNet as the backbone. ResNet was also used as the baseline for comparison. For
posture prediction in part (c), the locations and speeds of the extracted BBox centroids were
the input features of the self-attention block. The feature vectors carrying centroids and
clustering properties then delineated in the probabilistic map of human postures estimated
by the Bayesian-based model.
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Figure 1. The proposed framework, including (a) data preprocessing using the MS COCO dataset for
training and the ImageNet [34] for data augmentation, (b) establishment of a lite SSD network for
fast human detection, and (c) the integration of statistic learning and self-attention mechanism for
human posture prediction and clustering.

2.1. Establishment of Binary Format and Data Augmentation

The MS COCO, Pascal VOC2012 [35], and ImageNet [34] are open-access datasets
extensively utilized for object detection. Among these, the MS COCO has the most de-
tectable objects (i.e., BBox numbers) and the most balanced object sizes (equal portions of
small, middle, and large objects). Hence, the MS COCO database is more in line with the
daily environment and thus can achieve a better effect on deep learning model training on
object recognition. We first transformed the labels and images into a binary data format to
facilitate the reduction in loading time and the efficiency of parallel operations. Then we
took the geometric (affine) transformations to avoid overfitting caused by the uneven distri-
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butions of image sizes and increase image content information. The affine transformations
employed to the BBoxs and the images included rotations, flipping, random cutting, and
deformations. We also randomly adjusted color brightness, saturation, hue, and contrast to
simulate different real-world environments. To avoid overexposure or underexposure of
the input images, we applied the mean values of RGB channels of the ImageNet dataset to
whiten all input images.

2.2. Design of Lite SSD Network and Model Selection

As shown in the performance of lightweight neural networks presented by Lin et al. [29],
the shallower the neural layers, the better detection of small objects, but the weaker
information on locations. Conventional networks adopt featurized image pyramids that
utilize multi-scale-fused features in training procedures to address this issue; however, it
increases the inference time. Thus, we employed FPN to locate small objects in the shallow
layers efficiently. Structurally, FPN extracts meaningful features with deep convolutional
layers and then grasps better position information through up-sampling. It then fuses
feature maps with the same size to preserve the original recognition scales. Meanwhile, to
avoid the aliasing effect occurring in up-sampling procedures, we added a convolutional
layer after the feature map fusing in the lite SSD network.

To pursue real-time object detection and implementation in lightweight neural net-
works, we considered the data-loading speed and storage size as vital factors for framework
optimization. It is because the structural complexity of a neural network affects training
efficiency and inference speed. In our experiments, we found that using FLOPs (floating-
point operations per second) to evaluate the structural complexity might not reflect the
actual inference speed. Reference [22] evidences the results. Thus, in addition to model size
and inference speed, we adopted mean average precision (mAP) estimation [13] to evaluate
the robustness of the backbones and the baseline. We also observed the performance of
quantization-aware training of the IAO algorithm in this stage.

2.3. Theoretical Foundation of Stochastic Variational Inference Gaussian Mixture Model with
Self-Attention Mechanism

As illustrated in part (c) of Figure 1, the self-attention mechanism extracts instant
centroid locations (i.e., x(t) and y(t)) and speeds (i.e., v(t)x and v(t)y ) at the time t from the

detected BBox(t). The parameters c(t)i , i = 1, 2, 3, 4 are the corresponding weights to the
instant centroid features. The symbol

⊙
represents the operation of the Hadamard product

between the vectors. The preprocessed sequential data generated vectors containing time
and position information between BBox(t) and BBox(t+20), which became feature vectors
for cluster analysis. The loss function derived from stochastic variational inference (SVI)
and the backpropagation train the parameters used in the self-attention block and statistical
distributions. Then, the results combined with the Gaussian mixture model (GMM) present
the possible states of human motions in the probabilistic map.

The Bayesian neural network uses a set of variational distributions q(z) to approximate
the posterior distributions p(z|s). The logarithmic probability density function (PDF) of a
sample ln p(s) can often be expressed as the linear combination of evidence lower bound
(ELBO) and the Kullback–Leibler divergence (KLD) [36–38]:

ln p(s) =
∫

z
q(z) ln

(
p(s, z)
q(z)

)
dz + KLD(q(z)||p(z|s)), (1)

where s and z represent sample data vectors and latent variable vectors, respectively.
The goal of the variational inference is to achieve the maximization of ELBO and the
minimization of KLD simultaneously through variational calculation under the condition
that ln p(s) is a constant. Minimizing KLD means that the variational distribution should
be similar to the posterior distribution, so that we only need to consider maximizing the
ELBO under this constraint. The convenient way to find the extremum of the ELBO is
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to introduce the mean-field theory into the variational distribution [38]. However, this
technique relies on taking all samples to update the variational distribution, computational
complexity would arise. When the posterior distribution becomes more complicated, it
also needs more iterations of variational distributions. All these operations lead to high
computational costs and structural uncertainty under the circumstances of large datasets
and complicated posterior forms [36,37].

We proposed a new technique based on the structure of stochastic variational inference
to conquer these problems. It can resolve the issue of complicated posterior form and
reduce computational costs through mini-batches. It also made the variational distribution
approach the posterior distribution by maximizing the ELBO and adapting the ELBO into
a tractable PDF:

ELBO =
∫

z q(z) ln
(

p(s,z)
q(z)

)
dz

=
∫

z q(z) ln p(s|z)dz +
∫

z q(z) ln p(z)dz−
∫

z q(z) ln q(z)dz

≈ 1
L

L
∑

l=1
ln p(s|z)−KLD(q(z)||p(z)).

(2)

The terms p(s|z) and p(z) are variational likelihood and prior distribution, respectively.
Notice that we used the discrete sampling form to replace the Monte Carlo integration in
the first term of Equation (2). The parameter L is the sampling size. To integrate this result
into the deep learning structure, we further modified the ELBO in Equation (2) as a loss
function L(s, z) so that the backpropagation could sequentially update the parameters in
the self-attention block and the GMM:

L(s, z) = −
[

1
L

L

∑
l=1

ln p(s|z)−KLD(q(z)||p(z))
]

. (3)

Equations (2) and (3) jointly show that ELBO is equivalent to the linear combination
of variational likelihoods and the KLD is constructed by variational distributions and
sample priors. Equation (3) implies that when the variational distribution q(z) and prior
distribution p(z) gradually become similar during training, the KLD would also approach
zero. Then, the logarithmic variational likelihood, the first term of Equation (3), would reach
its maximum value due to obtaining the corresponding distributions of latent variables
inputs z. Since the KLD in Equation (3) is always positive, the logarithmic variational
likelihood can be treated as the lower bound of the loss function. This equation is tractable
and has a predictable lower bound. The belonging parameter distributions also can be
updated in the training procedures. Thus, these elegant mathematical properties make it
suitable to be a loss function. In other words, the loss function established from the ELBO
in this study allows us to fuse the technique of backpropagation of deep neural networks
with the statistical learning models for more complex analyses.

The prior and variational likelihood distributions were all Gaussian in the study. The
relevant initial statistical parameters of the prior distribution p(z) were the mean value
µprior, k ∼ Normal(0, 1), the inverse covariance matrix Σ−1

prior, k ∼ Wishart(3, IK/3), and
the cluster weight αprior,k ∼ Dirchlet(2K, 2K). Then, the parameters of the variational
likelihood distribution p(s|z) were µvar, k ∼ Normal(N1, N2), Σ−1

var, k ∼Wishart(W1, W2),
and αk ∼ Dirchlet(D, D). The backpropagation updated the parameter vectors in these
distributions, namely N1, N2, W1, W2, and D. The factor k was the index of cluster number
K, and was assumed to be 2 or 3 in the SVI GMM training. Therefore, the variational
likelihood has the form:

p(s|z) = GMM ∼
K=2,3

∑
k=1

αk Normal
(
s
∣∣µvar, k, Σvar, k

)
. (4)

Please note that the proposed framework governed the training procedures and
updated the statistical parameters of kth prior distribution p(z) sequentially through
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mini-batches. The collected sequential data point distributions gradually fit the mean
value µprior, k, covariance matrix Σprior, k, and the cluster weight αprior,k of the kth prior
distribution p(z) in the training procedures. Then, those optimized statistical parameters
from prior distributions p(z) consisted of and updated the parameters of the variational
likelihood distribution p(s|z). Since this technique used only the distributions instead of
the original position of data points, it reduced the computational complexity significantly
and raised outlier tolerance. Not only could we provide the corresponding probabilistic
map without losing the inference performance, but we could also estimate the posterior
distributions p(z|s) by employing the outcome from Equation (4) directly:

p(z|s) =
αzNormal

(
s
∣∣µz, k, Σz, k

)
∑K=2,3

k=1 αk Normal
(
s
∣∣µvar, k, Σvar, k

) . (5)

the parameters αz, µz,k, and Σz, k are the cluster weight, mean value, and covariance matrix
of the data cluster constructed by the variational distribution q(z), respectively.

3. Results and Discussions
3.1. Performance Comparison of the Object Detection Models

To fairly compare and inspect the capability of the proposed framework, we employed
MoblieNet, ShuffleNet, and SqueezeNet as backbones of our lite SSD networks, in which
FPN and IAO algorithms were incorporated to enhance small object detection, reduce model
sizes, and raise the inference speed. We also adopted the ResNet as the baseline model for
performance comparison. The backbone models were the main techniques employed for
object detection, so their intrinsic performance indicated the general effectiveness. Table 1
summarizes the comparison results of these backbones incorporated with FPN and the
IAO algorithm. The overall performance of mAP, inference speed, and model size reflected
their potential of being the backbone model in the proposed framework.

Table 1. The performance comparison of backbone models.

Backbone FPN IAO mAP Inference Speed (mSec) Model Size (MB)

ResNet 24.6 48 227.8

MobileNetV1

21.2 15 74.1
X a 33.1 28 132.9

X 20.6 13 28.2
X X 32.5 27 46.2

MobileNetV2

23.0 17 174.9
X 35.6 29 320.1

X 22.7 12 94.9
X X 33.6 25 140.2

ShuffleNet V1
(Group = 4)

20.7 20 77.6 b

20.7 16 77.6 c

X 20.3 – e 34.6 d

ShuffleNet V2 21.9 18 55.1

SqueezeNet 16.5 10 16.2
a The method was employed. b Using For loop iterations. c Using GPU parallel iterations. d Using TFlite
framework. e Very poor inference speed.

ResNet, as the baseline, generated a fair mAP of 24.6 but a relatively slow speed of
48 mSec and a large model size of 227.8 MB. MobileNetV1 and MobileNetV2 had similar
mAPs (32.5 and 33.6) and inference speeds (27 and 25 mSec), but MobileNetV1 had a
much smaller model size than that of MobileNetV2 (46.2 vs. 140.2 MB). Because ShuffleNet
divided different feature map channels into different groups and operated convolutions
separately, general For loop iterations and single GPU parallel iterations were used to
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inspect its performance. Although For loop iterations and parallel convolution operations
had faster inference speeds (20 and 16 mSec), their model sizes were not small enough.
ShuffleNet did not effectively support TensorFlow Lite (TFlite) [26]; therefore, incorporating
IAO using TFlite resulted in a poor inference speed. SqueezeNet had an extremely fast
speed of 10 mSec and a tiny model size of 16.2 MB, but the worst mAP of 16.5. With the best
overall performance, MobileNetV1 was selected as the backbone of the lite SSD network.
The results listed in Table 1 also validate FPN’s contribution to improving model accuracy
and IAO’s ability to accelerate inference speed.

3.2. Object Tracking and Human Posture Classification

There were 15 healthy subjects with a mean height of 158.6 ± 14.3 cm in our study. As
shown in Figure 2, in-house-made 60 FPS (frame per second) videos were collected from
each subject using a commercial webcam and a surveillance camera. We employed only
low-resolution images in this study to achieve fast object detection. The two apparatuses
were set at different heights to simulate different data acquisition environments with the
camera at 3.1 m and the webcam at 1.6 m. The two data sources helped to validate whether
the SVI GMM could map different data types to the same probabilistic map. Subjects were
asked to rotate in place for 30 s to imitate the dizzy situation before falling onto the air
mattress with consciousness. The protocol matched the requirement of [3].
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Figure 2. The demonstration of data acquisition from (a) a surveillance camera and (b) a commercial
webcam. (b) The scene of inference performance testing, and thus there were no BBoxs on the subject.
(c) The critical dimensions of the experimental environments using a surveillance camera and a
commercial webcam.

To further explore the possible reduction in computational complexity of SVI GMM,
the accuracies of classified results were analyzed by employing the diagonal and full covari-
ances of the GMM. We initially assigned K = 2 in Equations (4) and (5) and used diagonal
covariance to simplify the computational cost. Figure 3 demonstrates the corresponding
variational likelihood map in (a) and the normalized feature map [39] in (b). The green and
blue dot grids in Figure 3b represent the warning and normal regions, respectively. The
cross markers represent the actual data points classified by the SVI GMM. Only two groups
are delineated in Figure 3a,b since K equals 2; however, unclassified data points appear
between those clusters. It implies that this dataset should have more than two groups [3,39].
Figure 4 shows the corresponding maps estimated by Equations (4) and (5) with K = 3 and
diagonal covariance. The utilization of the oversimplified GMM covariance caused bizarre
classified results. The group consisted of the unclassified data points, as those orange cross
markers depicted in Figure 3b eventually dominated the classification. It also resulted in
blurred group boundaries and reduced the maximum value in the variational likelihood
map. In other words, utilizing the diagonal covariance of GMM with K = 2 or K = 3 would
increase the uncertainty of data classification.
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To reduce the classification uncertainty and reinforce the likelihood estimation, we
eventually employed full covariance of the GMM and K = 3 in the proposed framework
for human posture classification. Figure 5 illustrates the variational likelihood map and
the corresponding normalized map in the feature space after the SVI GMM training. The
intensity of the groups in the likelihood map became more concentrated. Predicted by
the training datasets, the blue, green, and orange dot grids shown in Figure 5b indicate
the regions of normal motion, transition warning, and falling, respectively. The cross
markers represent the actual data points of normal motions, transition motions, and falling,
respectively. Then the blue, green, and orange ellipse regions are the Eigen-matrices of
the covariance of likelihoods corresponding to Figure 5a. These Eigen-matrices reflect the
uncertainty of data variations and provide the visualization of the discriminant distribu-
tions. When a falling event occurs, the data points of posture features would sequentially
distribute from the normal motion region through the transition region and then reach the
falling regions. This procedure took about 0.66 s and underwent 40 extracted BBox centroid
points. Table 2 lists the quantitative analysis of data point classification under the proposed
framework. Table 3 lists the performance comparison between state-of-the-art techniques
and the proposed framework. It should be emphasized that only the proposed framework
inferred fast enough to generate alarm warnings before a human falling event happens.

Table 2. The quantitative results of the proposed framework.

True Positive True Negative False Position False Negative

26,857 11,472 3015 1208
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Figure 5. (a) The variational likelihood map estimated by Equation (4) and (b) a normalized map
in the feature space. The colored regions in (b) exhibit the human posture classification. The arrow
depicted in (a) implies there is a transition region between these two groups.

Table 3. The performance comparison between state-of-the-art techniques and the framework.

Source Apparatus Method Accuracy Alarm Timing 1

Ref. [3] Sensor Fusion Machine Learning 0.90 +0.7 s
Ref. [4] Vision-based Method SpeedyAI, Inc. 0.89 +10 s
Ref. [6] Vision-based Method CNNs 0.98 – 2

Ref. [7] – 3D CNNs 0.99 –
This work Vision-based Method Lite SSD 0.90 −0.66 s

1 + and −: The alarm will occur after and before the human falling events, respectively. 2 –: Not available.

Figure 6 exhibits the probabilistic maps established using the SVI GMM. This method
mapped the BBox centroid points into three distinct predictive situations. Then, the SVI
GMM endowed these points with their corresponding probability values. The centroid
points were in the normal region of Figure 6a when the subject walked or stood normally.
When the detected centroid points moved into the transition region (Warning1) of Figure 6b
and migrated toward the falling region (Warning2) of Figure 6c, the system would generate
alarm warnings immediately.
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Figure 6. The demonstrations of the probabilistic maps constructed by the SVI GMM. (a) The distinct
distributions of normal motion (the blue cross markers) and other situations (the green cross markers).
(b) When the detected centroid points, as depicted by the green cross markers, were in the transition
region, the proposed framework would generate the first alarm warnings. (c) When the detected
centroid points, as depicted by the blue cross markers, were in the falling region, the proposed
framework would generate second alarm warnings.

4. Conclusions

This article provides a new framework for lightweight deep neural network modeling,
and it meets the demand for fast classifying of human posture images and subsequent
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warnings. This framework simultaneously achieves high mean average accuracy, high infer-
ence speed, and small model size of object detection tasks. The method uses a commercial
webcam and a surveillance camera for data acquisition. It matches the requirement of con-
tactless human posture detection. This method has a form of lite SSD network embedded
with quantization-aware training and a self-attention mechanism, and thus it can reduce
model sizes and raise the inference speed. The framework can fuse the information from
images and corresponding sequential signals obtained from bounding boxes. The proposed
method merges the techniques of statistical learning into deep learning. Hence, the trained
parameters own their statistical meanings. The classified results of images and correspond-
ing sequential signals could be mapped onto probabilistic maps directly. Therefore, this
lightweight structure could quickly estimate the probability of human postures and gener-
ate alarms once the corresponding data points move into the warning regions. This method
connects the loss function with the technique of stochastic variational inference. Thus,
it endows the notions of probability to the classification inference. Since the framework
has a superior achievement on inference speed and model size, it is a strong candidate
for low-cost applications of edge computing and embedded systems. Furthermore, the
framework can be the baseline for developing tiny machine learning (TinyML) techniques
or other lite structural platforms. Therefore, we anticipate this framework can benefit the
progress of contactless smart sensing and detection in biomedical AIoT developments.
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