
Citation: Yang, J.-T.; Jiang, H.; Li, H.;

Ye, D.-S.; Jiang, W. FAD:

Fine-Grained Adversarial Detection

by Perturbation Intensity

Classification. Entropy 2023, 25, 335.

https://doi.org/10.3390/e25020335

Academic Editors: Andrea Prati, Luis

Javier García Villalba and Vincent A.

Cicirello

Received: 25 January 2023

Revised: 8 February 2023

Accepted: 10 February 2023

Published: 11 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

FAD: Fine-Grained Adversarial Detection by Perturbation
Intensity Classification
Jin-Tao Yang , Hao Jiang * , Hao Li, Dong-Sheng Ye and Wei Jiang

School of Electronic Information, Wuhan University, Wuhan 430072, China
* Correspondence: jh@whu.edu.cn

Abstract: Adversarial examples present a severe threat to deep neural networks’ application in safety-
critical domains such as autonomous driving. Although there are numerous defensive solutions,
they all have some flaws, such as the fact that they can only defend against adversarial attacks
with a limited range of adversarial intensities. Therefore, there is a need for a detection method
that can distinguish the adversarial intensity in a fine-grained manner so that subsequent tasks
can perform different defense processing against perturbations of various intensities. Based on the
fact that adversarial attack samples of different intensities are significantly different in the high-
frequency region, this paper proposes a method to amplify the high-frequency component of the
image and input it into the deep neural network based on the residual block structure. To our
best knowledge, the proposed method is the first to classify adversarial intensities at a fine-grained
level, thus providing an attack detection component for a general AI firewall. Experimental results
show that our proposed method not only has advanced performance in AutoAttack detection by
perturbation intensity classification, but also can effectively apply to detect examples of unseen
adversarial attack methods.

Keywords: fine-grained; adversarial detection; perturbation classification; high-frequency component

1. Introduction

Deep learning technology has demonstrated excellent performance and has played
a key role in many fields, such as finance, medical care, and public safety [1–4]. How-
ever, deep learning is also a double-edged sword, and its security issues have aroused
widespread concern among researchers and engineers. Among them, the research on adver-
sarial examples has gained momentum in recent years [5]. Combining a clean example with
a slight adversarial perturbation yields an adversarial example. An adversarial attack is a
term for this process of creating perturbations. Deep neural networks (DNNs) may produce
incorrect predictions due to adversarial attacks, which may then cause decision-making or
other subsequent sub-tasks to perform incorrectly. This phenomenon puts safety-sensitive
tasks in a dangerous situation. As an illustration, attacking autonomous driving may cause
misrecognition of traffic signs, failure to detect vehicles in front, and loss of seeing passing
pedestrians [6–8]. It is easy to foresee that these misidentifications will significantly harm
the safety of people and their property in many different industries. Therefore, research on
adversarial attacks and defenses is in full swing to examine the causes and decrease the
probability of misidentifications.

From an attack perspective, researchers are working on exposing the vulnerabili-
ties of DNNs to explore their mechanisms and interpretability. There are many ways to
classify attack methods, which can be divided into white-box, gray-box, and black-box
attacks according to the degree of information acquisition of the attacked model or sys-
tem. In a white-box attack, the adversary has complete knowledge of the DNN, including
its design, weights, inputs, and outputs. Specifically, the generation of the adversarial
instances involves resolving an optimization issue guided by the gradient of a model.
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Common white-box attacks include gradient-based attacks [9,10] and optimization-based
attacks [11,12]. In a grey-box attack, the adversary has limited knowledge of the model,
and it has access to the model’s training data, but knows nothing about the model archi-
tecture. Therefore, its goal is to replace the original model with an approximate model
and then use its gradients to generate adversarial examples like in the white-box scenario.
Finally, the adversary knows nothing about the model in a black-box attack. As a result,
the adversary can produce adversarial examples by leveraging the input sample content
and the transferability properties of the adversarial examples. Common black-box attacks
include gradient estimation-based attacks [13] and decision boundary-based attacks [14].

The defense works are trying every means to solve exposed or potential loopholes
to ensure the reliability and trustworthiness of DNNs in practical applications. There are
numerous ways to categorize defense strategies, which can be separated into intrusive
and non-intrusive methods depending on whether the protected model is modified. Intru-
sive methods mainly include modifying model regularization loss [15,16] and adversarial
training [17,18]. The adversarial training or regularization method is computationally
expensive, despite effectively solving the defensive problem. On whether to alter the pre-
diction results, non-intrusive approaches could be primarily split into input transformation
methods [19–22] and detection methods [23–33]. These techniques have a low computa-
tional cost and the ability to generalize across models, but their defense performance is
often much weaker than that of intrusive methods.

Many adversarial defense strategies have already been developed, but as far as we
can tell, they all have flaws. For instance, they may only be effective against adversarial
examples with a specific range of perturbation intensities or may result in relatively high
accuracy loss for clean inputs. In other words, even when defenses have been deployed,
deep learning systems are still susceptible to attacks outside the range of an effective defense.
The problem with limited defense range is shown at the top of Figure 1, where Defense-A is
effective for adversarial intensities of 0 or A, and Defense-B and Defense-C can only defend
against adversarial examples of some intensities. Meanwhile, existing adversarial detection
methods only classify input samples into clean samples and adversarial examples [23–33],
and there is no technique to classify the intensity of input samples, as shown at the bottom
of Figure 1. To address the problem in Figure 1, a fine-grained adversarial detection (FAD)
method with perturbation intensity classification is proposed in this paper. FAD is used to
classify the potential perturbation intensities in the input samples to accurately provide
adversarial examples with different perturbation intensities for different defense subtasks.

Figure 1. A diagram illustrating the characteristics of existing defense and detection methods.

The main steps of the proposed FAD method are as follows: first of all, through the
statistical observation of the spectrum of clean samples and adversarial examples with
different intensities, this paper proposes an approach based on amplifying high-frequency
components to improve the distinguishability of adversarial examples. The procedure
is to use the Haar discrete wavelet transform (DWT) to decompose the high-frequency
and low-frequency components, amplify the high-frequency components, and then use
the inverse discrete wavelet transform (IDWT) to create the reconstructed image. Then,
through the experimental observation of DNN to distinguish adversarial examples and
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refer to the existing methods of using DNN to detect adversarial examples, this paper
proposes to use DNN to classify the perturbation intensity of the reconstructed image. This
paper designs a 16-layer network based on the residual block structure [34] to achieve a
fine-grained classification of adversarial intensity. This is done in light of the residual block
structure’s excellent performance. Finally, the training sample adopts a representative
AutoAttack method (AA) [35] to produce the training sample of the adversarial intensity
classifier to obtain strong performance.

By studying the pattern of various intensity perturbations of AA in the feature space,
the proposed FAD could extend to the fine-grained categorization of perturbation intensity
of additional attack methods (especially high-frequency features). Our proposed method
has a strong detection capability and can correctly classify the intensity of adversarial
examples generated by different attack methods. The average classification accuracy of the
proposed FAD technique, which detects different intensities of different adversarial attacks
under the l2 norm, is 98.95%.

The main contributions of this paper are as follows:

• To the best of our knowledge, FAD is the first fine-grained adversarial perturbation
intensity classification method, and is a non-intrusive adversarial detection method.

• The FAD approach, which amplifies the high-frequency portion of the image, provides
cross-model generalization capabilities as well as the ability to detect unseen and
various mechanism adversarial attacks.

• We empirically demonstrate the feasibility of fine-grained perturbation intensity clas-
sification for adversarial examples, providing a detection component for general
AI firewalls.

The rest of this paper is organized as follows. Section 2 presents the existing adversarial
attack and defense methods. We describe our proposed method’s workflow and network
architecture in Section 3. Section 4 describes the experimental details and compares the
corresponding experimental results with other state-of-the-art (SOTA) detection methods.
Furthermore, ablation studies are performed evaluating each component of the proposed
defense. Finally, Section 5 concludes this work and provides an outlook on future fine-
grained adversarial detection research.

2. Related Work

In this section, we review and summarize some existing methods for adversarial
attacks and adversarial defenses. Furthermore, we briefly discuss the characteristics of
these existing methods and the advantages of our proposed method.

2.1. Adversarial Attack

Numerous algorithms for adversarial attacks have been created by researchers. Good-
fellow et al. proposed the fast gradient sign method (FGSM) [9], believing that the existence
of adversarial examples is caused by the linear behavior of high-dimensional space. By
executing a one-step calculation with step size epsilon in the gradient sign’s direction,
FGSM realizes the generation of attack examples:

xa = x + ε · sign(∇x J(x, y)), (1)

where x and xa represent clean samples and adversarial examples, respectively, J is the
neural network’s loss function, and y is the corresponding real label. ε is a hyperparameter
that controls the distance between clean samples and adversarial examples. Additionally,
since FGSM is a single-step calculation attack method, the speed at which adversarial
examples are generated is extremely fast. The FGSM attack works by producing an adver-
sarial perturbation via increasing the gradient of the model, deceiving the classification
model. However, FGSM often produces large perturbations and its attack success rate
is insufficient.
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On this basis, Madry et al. improved the step size and the number of iterations that
increase in the opposite direction of the gradient sign, and proposed the projected gradient
descent attack (PGD) [10]. Its general idea is to perform multiple iterations; each iteration
has a smaller step size and projects the perturbation into its limited area. The specific
implementation of PGD is as follows:

xt+1 = ∏
x+ε

(xt + β · sign(∇x J(xt, y))), (2)

where xt represents a sample with an iteration number of t, and β is a hyperparameter
that controls the step size of each iteration. ∏ is a projection function that controls the
distance between the generated adversarial examples and the clean samples. Its function is
to project the examples beyond the distance limit onto the lp norm sphere with the clean
sample x as the origin and the radius ε. To obtain effective adversarial examples, the PGD
attack maximizes the difference between prediction results while minimizing the intensity
of adversarial perturbations. In addition, PGD has a relatively slow calculation speed due
to its iterative attack method.

Different from PGD, Carlini et al. proposed an optimization-based attack called a
CW attack [11]. The CW attack introduces a new variable w, transforming the problem of
optimizing the perturbation δ into optimizing w by defining:

δ =
1
2
(tanh(w) + 1)− x. (3)

Because −1 ≤ tanh(w) ≤ 1, 0 ≤ x + δ ≤ 1 is established, so that the generated adversarial
examples are constrained to not exceed the range of [0, 1]. By introducing the above con-
straints into the loss function of PGD, the objective function of CW attack can be obtained.
The perturbation generated by the CW attack is almost imperceptible to the human eye,
and can adjust the confidence of the classification results. However, its calculation takes a
longer time than general attacks, and it is less convenient to implement.

For the lack of diversity in attacks such as PGD, Croce et al. proposed two improved
PGD methods and combined them with FAB [36] and SquareAttack [37] to form a strong
complementary attack combination (AA) [35]. The APGD attacks proposed by Croce et al.
adds a momentum update mechanism on the basis of PGD. Let θ(j) be the step size of the
jth iteration, x(j) be the example of the jth iteration, then the updated step size of APGD is:

u(j+1) = ∏
x+ε

(
x(j) + θ(j)∇x J

(
x(j), y

))
x(j+1) = ∏

x+ε

(
x(j) + γ ·

(
u(j+1) − x(j)

)
+ (1− γ) ·

(
x(j) − x(j−1)

)
,

(4)

where u(j+1) is the example of the jth iteration generated by original PGD, and γ ∈ [0, 1]
(using γ = 0.75) regulates the impact of the previous update on the current update. In
addition, using cross-entropy loss and difference of logit ratio loss as attack variants, two
improved attacks are constructed, namely APGDCE and APGDDLR. Finally, the combined
attack method AA is formed by combining these two APGD methods with the existing
FAB and SquareAttack methods.

AA = APGDCE + APGDDLR + FAB + SquareAttack. (5)

With a reasonable computational expense, AA can produce positive attack results against
models with a wide variety of architectures. AA is used as the benchmark for robustness
evaluation because it is by far the most potent attack.
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2.2. Adversarial Defense
2.2.1. Intrusive Defense

Adversarial training and network modification are two common examples of intrusive
defense. When Goodfellow et al. [9] proposed the FGSM attack, they also proposed for
the first time an adversarial training method, that is, adding the adversarial examples
generated by FGSM to the training set to achieve data enhancement. This method achieves
a relatively effective defense, but the fly in the ointment is that this method needs to train
DNN from scratch, which takes a long time. Wong et al. proposed FastAT [18], a fast
one-step adversarial training method, which may lead to catastrophic overfitting, although
it improves the speed of training from scratch. Lee et al. proposed a regularized defense
method called GradDiv [15]. GradDiv uses the von Mises distribution to make the gradient
distribution after adversarial training more sparse, which improves defense performance.

2.2.2. Non-intrusive Defense

Non-intrusive defense is mainly divided into input transformation defense and adver-
sarial detection. Among them, the input transformation defense preprocesses the input
samples, and then inputs the processed image into the classifier to make it output correctly.
Mustafa et al. [19] used super-resolution methods to add high-frequency components to
images to eliminate perturbations in attack samples, and further suppressed noise through
wavelet domain filtering. Although this method has cross-model defense capability, its over-
all defense performance is not good. Liu et al. [20] proposed a defense framework based
on image compression to remove adversarial perturbations from input images through the
process of JPEG compression and decompression. However, the defensive performance of
this method on high-resolution datasets is unsatisfactory.

Adversarial detection methods divide the input samples into clean samples and ad-
versarial examples, and reject the adversarial examples to input the classifier. Tian et al.
proposed a sensitivity inconsistency detector (SID) [24], which uses the difference in sen-
sitivity of different samples to the high curvature region of the decision boundary to
distinguish adversarial examples from clean samples. Specifically, a dual model is trained
in the weighted average wavelet transform domain. Next, determine the sensitivity char-
acteristics of the adversarial example and the clean sample by calculating the difference
between the predicted value of the dual model and the original model. Finally, a sensitive
features-based adversarial example detector is trained. However, this detection technique
performs poorly for tiny perturbations and is mostly effective for larger ones. According
to Liu et al. [23], image features can be separated into explicit features that are easily
understood by people and latent features that are incomprehensible to people but are used
by DNNs. Then, they provide a feature filter (FF) [23] that uses a DCT transform domain
approach to convert spatial domain picture pixels into frequency domain coefficients. Then,
the FF retains the majority of the explicit coefficients while eliminating the high-frequency
areas’ coefficients to remove the majority of the latent characteristics. Lastly, by contrasting
the input image and its transformed image with the anticipated labels of the DNN. The
input image is adversarial if the predicted labels do not match. The method performs
well in detecting CW attacks, however, it does not perform satisfactorily for other types of
adversarial examples. Harder et al. proposed a method called SpectralDef [25] that uses
Fourier domain analysis of input images to distinguish clean samples from adversarial
images. Specifically, the method applies a 2D discrete Fourier transform on each image and
its adversarial version. For the obtained magnitude Fourier spectrum, a binary classifier is
trained to detect adversarial attacks, where the classifier adopts a logistic regression model.
SpectralDef performs better in the detection of larger perturbations, but performs poorly in
the case of small ones.

Our proposed FAD is a non-intrusive method that has stronger cross-model gener-
alization ability than intrusive methods. In contrast to input transformation defenses in
non-intrusive methods, our method does not degrades the classification performance for
clean samples. Moreover, compared with detection methods in non-intrusive methods, our
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method can not only distinguish whether an input sample is adversarial or not, but also
fine-grained classify its intensity under the l2 norm condition.

3. FAD Methods

This paper introduces powerful AA adversarial examples [35] in the training set of
FAD, aiming to be able to detect the most powerful attacks. Training FAD with AA is
anticipated to result in better generalization abilities, such as detecting unseen attacks,
due to the diversity of AA components. The adversarial examples produced by AA are
used in this section as the investigation object to conduct the following observations
and hypotheses.

3.1. Observations and Hypotheses
3.1.1. High-Frequency Component

Currently, there is no unified conclusion on the distribution characteristics of different
adversarial examples. In the existing work, some studies posit that the adversarial pertur-
bation is concentrated in the high-frequency region [21,22,38–40], and some suggest that its
distribution is related to the dataset [41]. Is it possible to classify the intensity of adversarial
examples via certain operations on high-frequency features? In this paper, we observe clean
samples and adversarial examples from the frequency domain. Specifically, the frequency
spectrum of all samples in the data set is calculated by discrete Fourier transform, then
averaged and visualized. As shown in Figure 2a–d are the spectrum mean values of clean
samples, the AA attack examples with ε = 1 , the AA attack examples with ε = 2 , and the
AA attack examples with ε = 8 (each 3000 samples). Then, (e) is the result of magnifying
the difference between the spectrum of the AA attack sample with ε = 1 and the clean
sample by 50 times, (f) is the result of magnifying the difference of the spectrum of the AA
attack sample with ε = 2 and ε = 1 by 50 times, and (g) is the result of magnifying the
difference of the frequency spectrum of the AA attack samples with ε = 8 and ε = 2 by
50 times.

Figure 2. For the 10-category subset of the ImageNet dataset [42], use DFT to calculate the spectrum
of the samples and average the results. (a) represents clean samples, (b) represents AA attack
examples [35] with ε = 1.0, and (e) indicates the result of magnifying the difference between (b,a) by
50 times.

It is not difficult to find that all the spectral differences are more obvious in the
high-frequency region (four corners), while the difference in the low-frequency region is
slightly weaker. Especially in the spectrum difference between the AA attack samples with
ε = 8 and ε = 2 (as shown in Figure 2a), the difference in the high-frequency region is
particularly noticeable. Intuitively, extracting or enhancing high-frequency features will
help distinguish adversarial examples of different intensities. In summary, after analyzing
the characteristics of the ImageNet dataset [42] (a subset of 10 categories) and its adversarial
versions with different intensities, it is found that the differences in high-frequency regions
between samples with different adversarial intensities are obvious, while the differences
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in low-frequency regions are weak. Therefore, this paper believes that the characteristics
of distinguishing adversarial examples are mainly related to high frequencies, and also
include some low-frequency signals. Its essence is a high-level feature, and it happens
to be the insensitive feature of the human vision system. Based on this, we hypothesize
that by amplifying the high-frequency components of the image, the distinguishability of
adversarial examples of varying intensities can be enhanced.

3.1.2. Discrimination Ability of DNN

Some works utilize the features of the last few layers of DNN to train shallow detection
networks [26–32], indicating that reasonable use of high-level features extracted by DNNs
can distinguish adversarial examples from clean samples. Furthermore, [33] employs a
DNN to directly perform end-to-end detection on samples. Since DNN can be used to detect
adversarial examples, can DNN be used to classify the intensity of adversarial examples?
In this paper, the AA attack is performed on the base classifier ResNet-34 (trained on
the ImageNet-10 dataset), and the output (logits) of the penultimate layer is reduced by
T-SNE [43] and visualized, as shown in Figure 3.

Figure 3. Input samples of different intensities into the base classifier ResNet-34 [34], and visualization
of the output of the penultimate layer of ResNet-34 through T-SNE [43]. AA_1 means AA attack
examples [35] with ε = 1.0.

In this low-dimensional feature space, adversarial examples with ε = 8 (green dots)
are basically completely separated from other samples, and adversarial examples with
ε = 2 (red dots) can be separated from clean samples (blue dots) to a certain extent. As a
result, this paper believes that adversarial examples of various intensities are more easily
distinguishable in the feature space (non-reduced version) where DNN is located. Due to
the ResNet-34’s task limitation (10-class classification) in Figure 3, it is unable to distinguish
between adversarial examples of various intensities. On this basis, we hypothesize that
the DNN’s capacity to discriminate can be utilized to specifically train a model for the
discrimination of examples with various intensities.

3.2. Classifying the Adversarial Intensity

While humans primarily employ low-frequency components to identify images, DNN
can integrate high-frequency and low-frequency components of images for classification
processing. This paper designs the FAD’s workflow (as shown in Figure 4) to detect and
classify the intensity of adversarial examples by fusing the observations and hypotheses
regarding high-frequency components and DNN discrimination ability in the previous
subsection. Briefly, our proposed method first augments the high-frequency components
of images, then trains a detector model using the enhanced images. Figure 4 depicts the
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detailed inference process. First, a single-level Haar DWT is applied to the input image to
produce the approximation coefficient matrix (CA), the horizontal detail coefficient matrix
(CH), the vertical detail coefficient matrix (CV), and the diagonal direction coefficient matrix
(CD). The next step is to enhance the high-frequency components CH , CV , and CD to
produce C′H , C′V , and C′D, respectively. The resulting CA, C′H , C′V , and C′D are then subjected
to an IDWT to produce the enhanced image. Finally, the enhanced image is fed into the
detector, which provides the predicted adversarial intensity.

Figure 4. The top is the workflow diagram of the proposed FAD, and the bottom is the structural
schematic of the proposed detector model.

3.2.1. Enhance High-Frequency Components

For a 2-D image X, the 2-D DWT will perform a 1-D DWT on each row and column of
X, that is 

CA = LXLT

CH = HXLT

CV = LXHT

CD = HXHT

, (6)

where H and L represent the low-pass filter and high-pass filter of the orthogonal wavelet,
respectively. In addition, CA is the low-frequency component of image X, which is an
approximate image with lower resolution, including the basic object structure. CH , CV ,
CD are the high-frequency components of image X, which contain most of the image
details including noise. The decomposition of the high-frequency and low-frequency
components of the image is finished by the aforementioned operation, and the high-
frequency components of the image will subsequently be enhanced.

C′H = α · CH
C′V = α · CV
C′D = α · CD

, (7)

where α (α > 1) is the enhancement coefficient of high-frequency components. Then apply
IDWT to reconstruct the image, then the 2-d IDWT is defined as:

X′ = LTCAL + HTC′H L + LTC′V H + HTC′D H, (8)

where X′ represents the reconstructed image with enhanced high-frequency components.
The single-level 2D-DWT in Python’s PyWavelets package [44] is used in this paper to
compute the DWT and IDWT processes in (6) and (8).



Entropy 2023, 25, 335 9 of 21

3.2.2. The Architecture of the Detector

At the bottom of Figure 4, the detector model’s architecture is given. In order to
accomplish fine-grained detection of adversarial intensities, a 16-layer network is con-
structed in this paper based on the residual block structure. This paper draws on the idea of
ResNet and builds a residual block with “shortcut connection”. We also divide the network
into 6 building layers based on this and in accordance with the ResNet model’s network
architecture. A building layer can contain one or more network layers, and one or more
residual blocks. The first building layer of the detector model is constructed by a normal
convolution layer and a maximum pooling layer, and the second building layer consists of
2 residual blocks. The third, fourth, and fifth building layers all start with a downsampling
residual module, followed by 2, 2, and 1 residual modules, respectively. Finally, the sixth
building layer is constructed by a global pooling layer and a fully connected layer. The
connection sequence of the various building layers is shown at the bottom of Figure 4.
When the input and output dimensions are the same, a shortcut connection can be used
directly (the solid line shortcut connection shown at the bottom of Figure 4). In order
to match the new feature map size when the dimension grows (the dotted line shortcut
connection shown at the bottom of Figure 4), a 1× 1 convolution with a step size of 2 is
employed. A residual block is shown in Figure 5.

Figure 5. A schematic diagram of the structure of a residual block.

Formally, a residual block is defined as:

Y = F(X, Wi) + X, (9)

where the residual block’s input and output vectors are X and Y and the residual mapping
to be learned is represented by the function F(X, Wi), and Wi is the weight of the ith
convolution layer. For instance, there are two layers of convolution in Figure 5, which
can be expressed as F = W2σ(W1X), σ represents the ReLU function, bias is ignored
for simplicity, and the operation of F + X is completed by shortcut connection. After
the addition is finished, a second non-linear ReLU function is applied. However, the
dimensions of F and X in (9) must be the same, and if not, an additional matrix Wd (using
a 1 × 1 convolution with a stride of 2) can be multiplied with X to match the dimensions
of F:

Y = F(X, Wi) + WdX. (10)

In order to achieve a faster calculation speed, the residual block designed in this paper only
involves the function F of 2-layer convolution.

The 16-layer network we created is referred described as a “fine-grained detection
network” (or simply “detector”). In order to train the detector, we first train a base classifier
model on a regular (non-adversarial) dataset as usual, and then use the AA attack against
the base classifier to generate adversarial examples of different intensities for each data
point of the training set. A balanced multivariate classification dataset that is n + 1 times
larger than the initial dataset is then obtained (n is the number of intensities of the set
adversarial perturbations). This dataset consists of raw data (label 0) and corresponding
adversarial examples (label k, k ∈ [1, n]). Finally, the detector is trained to reduce the
cross-entropy between input samples and labels.
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4. Experiments
4.1. Experiment Settings
4.1.1. Adversarial Attack Methods

To evaluate the effectiveness of the proposed FAD, we adopt four classic adversarial
attack methods (under l2-norm) mentioned in Section 2: AA [35], FGSM [9], PGD [10], and
CW [11]. Furthermore, to achieve different levels of attack effects, we divide FGSM, PGD,
and AA attacks into three different intensities according to the attack success rate, and
CW is set to one intensity with a high attack success rate. As for the ImageNet dataset,
we set the perturbation intensities ε of the FGSM, PGD, and AA attacks to 1.0, 2.0, and
8.0, respectively. Furthermore, we limit the intensity of the CW attack to ε = 2.0 because
of its long computation time. The max iterations of the CW attack are set to 20, and the
binary search steps are set to 3. FGSM, PGD, and CW are implemented by a PyTorch library
CleverHans [45]. We use the standard version of AA through the official open-source code.

4.1.2. Datasets

This work restricts the non-adversarial classification dataset to ten categories in order
to keep the computational resources necessary to generate modest adversarial examples
and to prevent having similar categories which are too similar, which would oversimplify
the attack’s task. To test the effectiveness of the proposed method, we conduct experiments
on a subset of the ImageNet dataset [42], called ImageNet-10, that contains all the data
from ten classes that were chosen randomly. We picked 10,000 clean images (10 categories
in total, 1000 images in each category) from the ImageNet-10 training set. For each category,
we randomly selected 600 images as the training set, 200 as the validation set, and 200
as the test set to train the target model. All images from the ImageNet-10 are resized
to 224× 224× 3. The base classifier chosen for this work is ResNet34 [34], trained on
ImageNet-10. Of the above 10,000 images, 3224 were successfully attacked by AA (against
ResNet-34) with ε = 1.0, 2.0, and 8.0, and these images were used to train our detector. In
addition, we selected 3000 clean samples (300 for each category) from the verification set,
and obtained 410 successfully attacked images after using 3 intensities of AA attacks to
evaluate our detector.

4.1.3. Training

All training processes are performed on an Nvidia GeForce RTX 2080Ti GPU with an
Intel Core i9-10900X CPU. For all models, the number of total training epochs is 100. The
batch size is set to 8 for all detector models when training on the adversarial dataset. In
addition, the batch size is set to 32 for base classifier when training on the ImageNet-10
dataset. Adam is used as the base classifier’s optimizer while SGD is used as the detector’s
optimizer. Meanwhile, the learning rates of all base model and detector models are set
to 3× 10−4. FAD’s high-frequency component enhancement coefficient α is set to 2. We
trained each model involved in the experiments five times under each parameter setting,
and selected the best one to complete the evaluations.

4.2. Experimental Result
4.2.1. Fine-Grained Perturbation Intensity Classification

Table 1 shows our proposed method’s fine-grained classification performance for
various intensities of adversarial examples. The items in column 1 represent different input
samples (test sets for evaluation); for example, “AAε=1” means AA adversarial examples
with ε = 1.0. Among them, all adversarial examples are generated by attacking the ResNet-
34 trained on the ImageNet-10 dataset. In Table 1, the first row represents the output of FAD.
“Level-0” means FAD’s predicted value is a clean sample (whose adversarial intensity is
ε = 0), while “Level-1”, “Level-2”, and “Level-8” represent predicted adversarial intensities
are ε = 1.0, 2.0, and 8.0, respectively. For example, the value of “AAε=1” with “Level-2”
indicates the probability that FAD predicts AA examples with ε = 1.0 as samples with an
adversarial intensity of ε = 2.0. The training set of FAD only includes clean samples and



Entropy 2023, 25, 335 11 of 21

AA attack examples. It can be seen that the fine-grained classification performance of our
proposed FAD on the test set is excellent, especially for clean samples and AA examples
with ε = 8.0, both can achieve 100% accuracy. The classification accuracy for the AA
examples with ε = 1.0 can also reach 99.76%, and there is only a 0.24% chance that they will
be incorrectly identified as clean samples. In addition, for the AA examples with ε = 2.0,
the classification accuracy is 98.78%, and there is only a 1.22% probability of misclassifying
them as “Level-1” attack examples. Furthermore, the classification accuracy; the FGSM and
PGD examples (ε = 1.0, 2.0, and 8.0) are all greater than 96%.

Table 1. Fine-grained classification probability (%) of FAD for adversarial examples generated by
attacking ResNet-34.

Level-0 Level-1 Level-2 Level-8

Clean 100.00 0.00 0.00 0.00
AAε=1 [35] 0.24 99.76 0.00 0.00
AAε=2 [35] 0.00 1.22 98.78 0.00
AAε=8 [35] 0.00 0.00 0.00 100.00

FGSMε=1 [9] 1.71 98.29 0.00 0.00
FGSMε=2 [9] 0.00 2.68 97.32 0.00
FGSMε=8 [9] 0.00 0.00 0.00 100.00
PGDε=1 [10] 0.98 99.02 0.00 0.00
PGDε=2 [10] 0.00 3.66 96.34 0.00
PGDε=8 [10] 0.00 0.00 0.00 100.00

FAD exhibited a high level of classification accuracy for the FGSM and PGD examples
that were not included in the training, proving that it is capable of classifying the intensities
of unseen attack examples and that its performance is potent.

4.2.2. Comparing with Other Detection Methods

In this paper, in the detection of different attack examples, the current SOTA methods
(SID [24] and SpectralDef [25]) are selected for comparison to evaluate the performance
of our proposed FAD. Additionally, this work includes FF [23] for comparison only when
detecting CW attack examples, since the FF method is specifically designed for the task.
This work investigates the detection performance of FAD and the SOTA detection method
in Table 2 and Figure 6, since the existing SOTA detection methods mainly detect whether
the input samples are adversarial.

Table 2. Detection accuracy (%) of FAD and the SOTA methods for adversarial examples generated
by attacking ResNet-34. All methods are trained and evaluated with the l2 norm attack examples.

FAD SpectralDef [25] SID [24]

Clean 100.00 63.66 92.20
AAε=1 [35] 99.76 40.49 66.83
AAε=2 [35] 100.00 50.00 86.83
AAε=8 [35] 100.00 97.32 100.00

FGSMε=1 [9] 98.29 40.00 44.88
FGSMε=2 [9] 100.00 47.80 57.56
FGSMε=8 [9] 100.00 96.10 67.80
PGDε=1 [10] 99.02 40.49 62.93
PGDε=2 [10] 100.00 50.49 83.66
PGDε=8 [10] 100.00 97.56 100.00

As seen in Table 2, SpectralDef’s accuracy for the detection of FGSM with ε = 8.0 is
96.10%, which is significantly better than SID’s accuracy of 67.80%. The SpectralDef method
has the advantage that it performs better at detecting adversarial examples with ε = 8.0
and has accuracy larger than 96%, but it performs worse at detecting clean samples and
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adversarial examples with low intensity. In addition, SID has a good detection effect on
clean samples, as well as AA and PGD examples with ε = 2.0 and 8.0, all greater than 83%.
Especially for AA and PGD examples with ε = 8.0, the detection accuracy can reach 100%,
but the detection performance is poor for FGSM examples, AA examples with ε = 1.0, and
PGD examples with ε = 1.0. It is easy to realize that FAD outperforms SpectralDef and SID
at detecting various samples. Moreover, SID performs better than SpectralDef in all but
one situation: the detection of FGSM examples with ε = 8.0. It is worth mentioning that all
detection methods are trained using a dataset of clean samples and AA attack examples,
and they can be extended to detect previously unseen attack examples to some extent.

Figure 6. Detection accuracy (%) of FAD and the SOTA methods for CW attack examples [11]
generated by attacking ResNet-34.

Figure 6 compares the effectiveness of FAD, FF, SpectralDef, and SID in detecting CW
attack examples, where the CW attack examples are produced by attacking ResNet-34. The
accuracy of FAD, which is second only to the FF’s accuracy of 81.36% in this group, is 71.80%
when it comes to detecting CW examples. SpectralDef and SID perform slightly worse
in terms of detecting CW examples, with accuracy of less than 50%. Furthermore, only
FF does not need training, and none of the other methods have ever used CW examples
during training. As a result, FAD, SpectralDef, and SID may all be extended to detect CW
examples to some extent, with FAD having a stronger generalization ability.

To sum up, we believe that the significant detection effect of FAD on unseen attacks
(PGD, FGSM, and CW) may be because it has learned the common features of adversarial
examples in high-frequency regions. Further, some mechanism similarities between AA,
PGD, and FGSM may result in a similar distribution of the final optimized adversarial
examples. The similarity between CW and AA is small, which may account for the slightly
diminished effectiveness of detecting unseen CW adversarial examples.

4.2.3. Cross-Model Detection

This work generates adversarial examples of various intensities against GoogLeNet [46]
(trained on ImageNet-10) and utilizes these examples to evaluate FAD to investigate if it
can successfully detect adversarial examples produced by attacking unseen models, as
shown in Table 3. Here, FAD, SpectralDef, and SID are all trained with clean samples
and AA attack examples generated by attacking ResNet-34. It is clear that SID essentially
lacks cross-model identification capabilities and only performs well for clean samples. In
contrast to SID, FAD and SpectralDef have some degree of cross-model detection capability.
Furthermore, SpectralDef has a higher detection accuracy for attack samples with low
intensities (ε = 1.0 and 2.0), all of which are above 34%. For clean samples and attack
instances with ε = 8.0, FAD has stronger detection performance, and its accuracy is larger
than 95%, particularly for PGD examples with ε = 8.0, where the accuracy can exceed
100%. However, FAD’s detection ability is subpar for low-intensity attack examples, with
accuracy not exceeding 3%.
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Table 3. Detection accuracy (%) of FAD and the SOTA methods for adversarial examples generated by
attacking GoogLeNet [46]. All methods are trained and evaluated with the l2 norm attack examples.

FAD SpectralDef [25] SID [24]

Clean 99.63 66.09 93.12
AAε=1 [35] 0.49 35.14 6.51
AAε=2 [35] 2.33 37.22 7.00
AAε=8 [35] 99.75 74.69 15.23

FGSMε=1 [9] 0.37 34.89 6.39
FGSMε=2 [9] 0.74 36.36 5.77
FGSMε=8 [9] 95.58 68.43 10.81
PGDε=1 [10] 0.49 35.38 6.51
PGDε=2 [10] 2.58 37.96 6.63
PGDε=8 [10] 100.00 80.71 16.34

In brief, FAD can detect high-intensity adversarial examples generated by attacking
the unseen model. We believe that this phenomenon is caused by the similar boundaries
of different models of the same task [47], so the distribution of adversarial examples is
relatively similar.

4.2.4. Applying to the L∞ Norm

This work generates l∞ norm adversarial examples of various intensities against
ResNet-34 and utilizes these examples to evaluate FAD to investigate if it can successfully
detect adversarial examples under different norm constraints, as shown in Table 4.

Table 4. Detection accuracy of FAD and the SOTA methods for l∞ norm attack examples generated
by attacking ResNet-34.The column “L2 Norm” indicates the value of converting the perturbation
intensity of the l∞ examples into the l2 norm. All methods are trained with the l2 norm attack
examples and evaluated with the l∞ norm attack examples.

Data L2 Norm FAD SpectralDef [25] SID [24]

FGSMε=1/255 [9] 34.66 99.20% 96.87% 13.57%
FGSMε=2/255 [9] 39.22 100.00% 98.63% 24.93%
FGSMε=8/255 [9] 59.77 100.00% 100.00% 44.23%
PGDε=1/255 [10] 32.40 99.57% 96.87% 19.13%
PGDε=2/255 [10] 36.90 100.00% 98.70% 46.90%
PGDε=8/255 [10] 51.89 100.00% 100.00% 91.47%

Among them, FAD, SpectralDef, and SID all use clean samples and l2 norm AA exam-
ples generated by attacking ResNet-34 for training. Observing the “L2 Norm” column, the
average perturbation intensities of the l∞ norm attack examples in Table 4, after converting
to the l2 norm, are all greater than 32.40. At this time, SID only has a better detection
performance for PGD examples with ε = 8/255 under the l∞ norm, and its accuracy rate
is 91.47%. In the remaining cases, the detection accuracy of SID was less than 50%. In
contrast, SpectralDef has a detection accuracy higher than 96% for adversarial examples of
various strengths under l∞ norm. For the FGSM and PGD examples with ε = 8/255 under
l∞ norm, SpectralDef’s detection accuracy can reach 100%. Moreover, FAD applied to l∞
norm has better performance in adversarial example detection, and its detection accuracy
for attack examples with different intensities was higher than 99%.

In general, FAD is better than SpectralDef and SID at detecting unseen l∞ norm attack
examples of varying intensities. It is noteworthy that all methods above can extend to the
detection of l∞ norm attack examples to some extent.

4.2.5. Applying to Image Segmentation Task

Existing work not only evaluates the adversarial robustness of image classification
tasks but also focuses on other image analysis tasks, such as image segmentation and
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landmark detection [48]. Therefore, this paper evaluates whether the proposed FAD
can be extended to image segmentation tasks, as shown in Table 5. In detail, the image
segmentation model uses a pre-trained FCN_ResNet50 [49] obtained from the TorchVision
library. The FCN_ResNet50 is trained on a subset of COCO [50] using only 20 classes
from the Pascal VOC dataset [51]. To reduce computational costs, a subset of ImageNet-10,
using only four categories (“airplane”, “bird”, “car”, and “dog”) present in the Pascal VOC
dataset, is selected to implement training and evaluation in this case. The training set (called
Segment-Trainset) contains 1187 clean samples, and the FGSM examples with ε = 1.0, 2.0
and 8.0 (1187 attack examples per intensity) generated by attacking FCN_ResNet50. The
test set, called Segment-Testset, contains 139 clean samples, and the FGSM examples
with ε = 1.0, 2.0, and 8.0 (139 attack examples per intensity) are generated by attacking
FCN_ResNet50, in which “FAD_Cls” denotes the FAD trained on the image classification
dataset (ImageNet-10), and “FAD_Seg” denotes the FAD trained on the image segmentation
dataset (Segment-Trainset).Both “FAD_Cls” and “FAD_Seg” are evaluated on the Segment-
Testset dataset.

Table 5. For the image segmentation task detecting accuracy (%) of FAD trained on the image
classification dataset (“FAD_Cls”) and FAD trained on the image segmentation dataset (“FAD_Seg”).
All methods are trained and evaluated with the l2 norm attack examples.

FAD_Cls FAD_Seg

Clean 100.00 94.24
FGSMε=1 [9] 0.72 95.68
FGSMε=2 [9] 0.72 99.28
FGSMε=8 [9] 0.72 99.28

As can be seen from Table 5, “FAD_Cls” can hardly detect the attack samples against
the image segmentation model, and its detection accuracy is only 0.72%. Compared
with “FAD_Cls”, “FAD_Seg” can effectively detect the attack samples against the image
segmentation model. In particular, the detection accuracy of “FAD_Seg” reaches 99.28%
for the FGSM samples with ε = 2.0 and 8.0. In general, the adversarial sample detection
for the image segmentation task cannot be performed using the FAD trained on the image
classification dataset (“FAD_Cls”). However, the FAD trained from scratch on the image
segmentation dataset (“FAD_Seg”) can be effectively applied to the adversarial sample
detection for the image segmentation task.

4.2.6. White-Box Attack against FAD

Up to this point, the performance evaluation of FAD in this paper has been based on the
premise that the detector will not be attacked. If the attacker has complete knowledge about
the detector, then the detector is vulnerable to attack and may output wrong results [52].
Therefore, we design the experiments of white-box attacks against FAD in Table 6. A PGD
attack is used to evaluate the performance of FAD when FAD is completely transparent to
the attacker. “Non-Targeted Attack” indicates that the class of expected output after being
attacked is not specified, and “Targeted Attack” is the opposite.

Table 6. Detection accuracy (%) of FAD after being attacked by non-targeted and targeted attacks.
All methods are trained and evaluated with the l2 norm attack examples.

Non-Targeted Attack Targeted Attack

PGDε=1 [10] 100.00 0.00
PGDε=2 [10] 3.90 0.00
PGDε=8 [10] 0.00 0.00

From Table 6, the effectiveness of the targeted attack far exceeds that of the non-
targeted attack, which makes the FAD detection accuracy 0% at ε = 1, 2, and 8. In the
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case of non-targeted attacks, the detection accuracy of FAD decreases rapidly as the attack
intensity gradually increases. The results show that if the attacker has complete knowledge
about the FAD, then the output of the FAD will be left to the manipulation of the attacker
(in the case of the targeted attack). In practical applications, the attacker usually knows
only part of the detector’s information, and the actual performance of the FAD against the
attacker will be better than in the case of Table 6.

4.3. Ablation Study
4.3.1. The Value of α

We explored the classification effect of FAD for clean samples and different intensities
of AA examples under different α values through experiments, as shown in Figure 7.

Figure 7. The relationship between the classification accuracy of FAD and the value of high-frequency
enhancement coefficient α.

Among them, α = 0, 0.5, 1, 1.5, 2, 2.5, and 3, while α = 1 means that no processing
is performed on the sample. As mentioned above, when α > 1, it is to gain the input
sample‘s high-frequency component, to select an appropriate high-frequency component
gain coefficient to improve the classification performance of adversarial example intensities.
It can be seen from Figure 7 that the performance is the best when α = 2, which can
make the average classification accuracy of attack examples with different intensities reach
99.63%, which is slightly higher than the case of not doing any processing on the input
sample (α = 1). To investigate the importance of the high-frequency component in the
classifying of the intensities of the adversarial example, the high-frequency component
of the sample is attenuated by setting α < 1. Obviously, adversarial example intensity
classification suffers greatly from the attenuation of high-frequency components. When
α = 0, the average classification accuracy for adversarial intensities drops to 95.79%.

4.3.2. Selection of Transformations

This paper designs an experiment to investigate the classification accuracy of FAD for
AA examples of different intensities and clean samples when using different transformation
methods to separate high-frequency and low-frequency components, as shown in Figure 8.

Among them, using Haar DWT to decompose high-frequency and low-frequency com-
ponents has the highest classification accuracy rate of 99.63%. Furthermore, the classifica-
tion accuracy using Bior1.3 DWT is 99.21%, lower than 99.39% without any transformation
(the bar corresponding to “None” in Figure 8). However, the performance degradation of
the method using discrete Fourier transform is obvious, and the accuracy rate is 96.65%.

Generally, the Haar wavelet transform method adopted by FAD has a more significant
contribution than other transforms to classify adversarial examples with different intensities.
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Figure 8. FAD’s classification accuracy when different transformations are used to separate the
image’s high-frequency and low-frequency components.

4.3.3. Selection of Training Examples

We verified the classification effect of FAD on various seen and unseen adversarial
examples with different intensities when examples generated by varying attack methods
were used in the training set, as shown in Table 7. By adding different intensities of Gaussian
noise to clean samples, the samples generated to train FAD have better performance in
classifying clean samples, AA examples with ε = 8.0, and PGD examples with ε = 8.0,
and poor performance in the rest of the cases. The best result is achieved when using AA
attack examples as training data for the classifying of clean samples and AA examples of
varying intensities. At the same time, for the classification of FGSM examples of different
intensities, the best performance is the case of using FGSM attack examples for training.
Unsurprisingly, training with PGD examples yields the greatest results for classifying PGD
examples of various intensities.

Table 7. The classification accuracy (%) of FAD when examples created by different attack methods
are used to train FAD. All methods are trained and evaluated with the l2 norm attack examples.

AA [35] FGSM [9] PGD [10] Gauss

Clean 100.00 99.02 99.51 99.76
AAε=1 [35] 99.76 97.07 98.78 5.37
AAε=2 [35] 98.78 98.27 98.78 0.73
AAε=8 [35] 100.00 100.00 100.00 76.59

FGSMε=1 [9] 98.29 98.78 98.54 7.07
FGSMε=2 [9] 97.32 99.51 91.46 0.98
FGSMε=8 [9] 100.00 100.00 92.93 13.66
PGDε=1 [10] 99.02 96.10 99.02 8.05
PGDε=2 [10] 96.34 95.29 98.05 0.98
PGDε=8 [10] 100.00 100.00 100.00 91.95

Average 98.95 98.40 97.71 30.51

In conclusion, it can be generalized to identify examples produced by other unseen
attack methods to some extent by using AA, FGSM, or PGD attack examples as training
samples. Furthermore, our proposed FAD uses AA attack examples as training samples,
and its average classification accuracy (98.95%) is higher than that of using other attack
examples (or Gaussian noise samples).

4.3.4. Detectors Using Various Network Architectures

This paper designs experiments to compare the adversarial intensities (clean samples
and AA examples) classification effect of our proposed 16-layer network (corresponding
to the “FAD” in Figure 9) and other different architecture models (SqueezeNet V1.1 [53],
VGG16 [54], and ViT-B/16 [55]) as the detector model, as shown in Figure 9.
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Figure 9. Classification accuracy on adversarial example intensity when detectors using various
architectures of DNNs.

At the same time, the experiments evaluate how well each detector model performs
when the high-frequency component is enhanced or not.

All networks’ classification accuracy has increased after enhancing the high-frequency
component, but VGG16’s accuracy has grown the most, from 49.70% to 95.49%. In addition,
the accuracy of the proposed FAD is higher than that of the other three networks with
different architectures as detectors, which verifies that our proposed 16-layer network has
a clear advantage in the classification task of different intensity adversarial examples.

4.3.5. Detectors with Different Layer Numbers

We design experiments to compare the classification effect of FAD on different intensity
AA examples and clean samples when using different layer numbers of residual block-
based networks (proposed in Section 3) as the detector model, as shown in Figure 10.

Figure 10. Classification accuracy of FAD when using residual block-based networks with different
number of layers as detectors.

At the same time, the specific structure of the network with different layer numbers
involved in the evaluation has shown in Table 8. Among the four networks with different
numbers of layers, the 16-layer network achieved the highest average classification accuracy
(99.63%), while the 28-layer network achieved the lowest average classification accuracy
(98.96%).

Therefore, in the network design based on the residual block structure, the 16-layer
network is most suitable for the classification task of adversarial examples with different
strengths. In other words, the deeper the network does not mean the better the performance
of the above tasks. The neural architecture search method might create an effective network
for the classification task, but the cost is too high and will not be covered here.
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Table 8. Residual block-based networks with different number of layers.

Layer Name Output Size 10-Layer 16-Layer 22-Layer 28-Layer

conv1 112×112 3×3, 64, stride 2
3×3 max pool, stride 2

conv2_x 56× 56
[

3× 3, 64
3× 3, 64

]
× 1

[
3× 3, 64
3× 3, 64

]
× 2

[
3× 3, 64
3× 3, 64

]
× 3

[
3× 3, 64
3× 3, 64

]
× 4

conv3_x 28× 28
[

3× 3, 128
3× 3, 128

]
× 1

[
3× 3, 128
3× 3, 128

]
× 2

[
3× 3, 128
3× 3, 128

]
× 3

[
3× 3, 128
3× 3, 128

]
× 3

conv4_x 14× 14
[

3× 3, 256
3× 3, 256

]
× 1

[
3× 3, 256
3× 3, 256

]
× 2

[
3× 3, 256
3× 3, 256

]
× 2

[
3× 3, 256
3× 3, 256

]
× 3

conv5_x 7× 7
[

3× 3, 512
3× 3, 512

]
× 1

[
3× 3, 512
3× 3, 512

]
× 1

[
3× 3, 512
3× 3, 512

]
× 2

[
3× 3, 512
3× 3, 512

]
× 3

1× 1 average pool, 4-d fc, softmax

5. Conclusions and Discussion

In this work, we efficiently classify adversarial examples of various intensities by
augmenting the high-frequency components of the image and feeding the augmented image
into our constructed DNN based on the residual block structure. Moreover, the proposed
FAD performs well for classifying l2 norm attack examples with varying intensities in
a fine-grained manner and can be applied as a detection component of a general AI
firewall. Compared to the SOTA adversarial detection method, FAD has superior detection
performance and could even be used to detect l∞ norm adversarial examples. Furthermore,
FAD is extensible, as it can be applied to image classification tasks as well as to other image
analysis tasks (e.g., image segmentation) for adversarial sample detection.

At the same time, the FAD method can detect the adversarial examples generated by
the unseen attack method and can be generalized to the adversarial examples generated by
attacking the unseen model. Existing attack methods for identifying traffic sign classifiers
can cause the classifier to incorrectly predict a “Speed Limit 30” sign as a “Speed Limit
80” sign by adding shadows. In this classification task case, the use of our method can
potentially reduce the number of rejections of adversarial samples (compared to the current
detection methods). In addition, combining our method with defense methods applicable
to different intensities has the potential to increase the proportion of correctly identified
frames among several consecutive frames, improving the stability and reliability of DNN
continuous decision-making. For future studies, we intend to investigate a more accurate
distinguishing of different intensities of adversarial examples in the transform domain to
obtain a more general fine-grained categorization of adversarial example intensities.
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Abbreviations
The following abbreviations are used in this manuscript:

DNNs Deep neural networks
DWT Discrete wavelet transform
IDWT Inverse discrete wavelet transform
AA AutoAttack method
SOTA State-of-the-art
FGSM Fast gradient sign method
PGD Projected gradient descent attack
SID Sensitivity inconsistency detector
FF Feature filter method
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