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Abstract: In this paper, we study the problem of bilinear regression, a type of statistical modeling
that deals with multiple variables and multiple responses. One of the main difficulties that arise in
this problem is the presence of missing data in the response matrix, a problem known as inductive
matrix completion. To address these issues, we propose a novel approach that combines elements
of Bayesian statistics with a quasi-likelihood method. Our proposed method starts by addressing
the problem of bilinear regression using a quasi-Bayesian approach. The quasi-likelihood method
that we employ in this step allows us to handle the complex relationships between the variables in a
more robust way. Next, we adapt our approach to the context of inductive matrix completion. We
make use of a low-rankness assumption and leverage the powerful PAC-Bayes bound technique to
provide statistical properties for our proposed estimators and for the quasi-posteriors. To compute
the estimators, we propose a Langevin Monte Carlo method to obtain approximate solutions to the
problem of inductive matrix completion in a computationally efficient manner. To demonstrate the
effectiveness of our proposed methods, we conduct a series of numerical studies. These studies
allow us to evaluate the performance of our estimators under different conditions and provide a clear
illustration of the strengths and limitations of our approach.

Keywords: bilinear regression; matrix completion; low-rank model; PAC-Bayesian bound; Langevin
Monte Carlo

1. Introduction

In this paper, we investigate the bilinear regression model, a statistical method that
assumes a linear relationship between a set of multiple response variables and two sets of
covariates. This model, also known as the growth curve model or generalized multivariate
analysis model, is commonly used for analyzing longitudinal data, as shown in previous
studies such as [1–6]. However, these studies only cover the scenario in which the response
matrix is fully observed.

Recently, the bilinear regression model with incomplete response has been introduced
and studied as the so-called inductive matrix completion, which is a generalization of
the matrix completion problem [7,8]. This problem has attracted significant attention in
various fields, such as drug repositioning [9], collaborative filtering [10], and genomics [7].
Inductive matrix completion is a challenging problem that arises when some of the entries in
the response matrix are missing, which makes it difficult to infer the underlying relationship
between the variables.

In this work, we explore the problem of bilinear regression and inductive matrix
completion under a low-rank constraint on the coefficient matrix. Most existing approaches
for these problems are frequentist methods, such as maximum likelihood estimation [2] or
penalized optimization [7]. These methods are effective in providing point estimates for the
parameters of the model but lack the ability to provide a full probabilistic characterization
of the uncertainty. Recently, Bayesian approaches have been considered for these problems.
For example, the paper [11] proposed a Bayesian approach for bilinear regression, and a
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Bayesian method was proposed for inductive matrix completion in the work [9]. However,
unlike frequentist approaches, the statistical properties of the Bayesian approach for these
models have not been fully explored yet.

The aim of this paper is to address an existing gap in the understanding of the bilinear
regression and inductive matrix completion problems. To achieve this goal, we propose
a novel approach that combines elements of Bayesian statistics with a quasi-likelihood
method. Specifically, we start by addressing the problem of bilinear regression using a quasi-
Bayesian approach, where a quasi-likelihood is employed. We then generalize this approach
to the problem of inductive matrix completion. To ensure that our method is adaptive
to the rank of the coefficient matrix, we use a spectral scaled Student prior distribution,
which allows us to prove that the posterior mean satisfies a tight oracle inequality. This
result demonstrates that our method is able to accurately estimate the parameters of the
model, even when the rank of the coefficient matrix is unknown. Additionally, we also
prove the contraction properties of the posteriors, which further enhances the performance
of our method.

The proposed method in this paper, the quasi-Bayesian approach, is an extension of
the traditional Bayesian approach and is becoming increasingly popular in statistics and
machine learning as a technique for generalized Bayesian inference, as noted in studies
such as [12–14]. This approach allows for more flexibility in the modeling assumptions by
replacing the likelihood function with a more general notion of risk or quasi-likelihood.

To provide theoretical guarantees for our proposed quasi-posteriors, we make use of
the PAC-Bayesian technique [15–17]. This technique provides bounds on the generalization
error of a learned estimator, and has been widely used in the literature as described in recent
reviews and introductions, such as [18,19]. The PAC-Bayes bounds have been successfully
applied in the context of matrix estimation problems as shown in studies such as [20–23].
Interestingly, by using the PAC-Bayesian technique for inductive matrix completion, we
do not need to make any assumptions about the distribution of the missing entries in
the response matrix. This is in contrast with previous works on matrix completion, such
as [24–29], which typically require assumptions about the missing data. This makes our
method more versatile and applicable to a wider range of problems.

The proposed method in this paper makes use of a spectral scaled Student prior,
which is a specific choice of prior distribution. This choice is motivated by recent works
in which it has been shown to lead to optimal rates in a variety of problems, including
high-dimensional regression [30], image denoising [31] and reduced rank regression [23].
Although this prior is not conjugate to our problems, it allows for the convenient imple-
mentation of gradient-based sampling methods, which makes it computationally efficient.

To compute the proposed estimators and sample from the quasi-posterior, we employ
a Langevin Monte Carlo (LMC) method. This method is a widely used algorithm for
approximating complex distributions and allows for efficient computation of the proposed
estimators. The LMC method allows us to obtain approximate solutions to the problem of
bilinear regression and inductive matrix completion in a computationally efficient manner.

Furthermore, we use numerical studies to demonstrate the effectiveness of our pro-
posed methods. These studies enable us to evaluate the performance of our estimators in
various scenarios and provide insight into the capabilities and limitations of our approach.
By conducting a thorough evaluation, we can gain a better understanding of how our
method performs in different settings and make any necessary adjustments to improve its
performance. We also compare our method with the ordinary least squared method. This
comparison allows us to demonstrate the superiority of our method over the traditional
approach in certain scenarios, such as when the response matrix contains missing data.
Overall, the numerical studies serve as a valuable tool for assessing the effectiveness of our
proposed method and provide a clear illustration of its strengths and weaknesses, as well
as its improvement over the traditional method.
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The remainder of this paper is organized as follows: In Section 2, we present the
problem of bilinear regression, and introduce the low-rank promoting prior distribution
that we use to address this problem. In Section 3, we extend our approach to the problem
of inductive matrix completion. In Section 4, we discuss the Langevin Monte Carlo method
used for the computation of the estimators, and present numerical studies to demonstrate
the effectiveness of our proposed methods. Finally, we conclude our work and provide a
summary of our findings in Section 5. The technical proofs are provided in Appendix A for
the interested readers.

Notation 1. Let Rn1×n2 denote the set of n1 × n2 matrices with real elements. Let Aᵀ ∈ Rn2×n1

denote the transpose of A. For any A ∈ Rn1×n2 and I = (i, j) ∈ {1, . . . , n1} × {1, . . . , n2}, we
denote by AI = A(i,j) = Ai,j the i-th row and j-th column elements of A. The matrix in Rn1×n2

with all entries equal to 0 is denoted by 0n1×n2 . For a matrix B ∈ Rn1×n1 , we let Tr(B) denote its
trace. The identity matrix in Rn1×n1 is denoted by In1 . For A ∈ Rn1×n2 , we define its sup-norm
‖A‖∞ = maxi,j |Ai,j|; its Frobenius norm ‖A‖F is defined by ‖A‖2

F = Tr(AᵀA) = ∑i,j A2
i,j and

rank(A) its rank.

2. Bilinear Linear Regression
2.1. Model

Let Y ∈ Rn×q consist of n independent response vectors, X ∈ Rn×p be a given between-
individuals design matrix and Z ∈ Rk×q be a known within-individuals design matrix.
Consider the bilinear regression model as follows:

Y = XM∗Z + E, (1)

where M∗ ∈ Rp×k is the unknown parameter matrix. The random noise matrix E is
assumed to have zero mean, E(E) = 0. The main assumption here is the low-rank restriction
on the model parameter that rank(M∗) < min(p, k).

The model presented in Equation (1) is a bilinear regression model, which can be seen
as a generalization of the reduced rank regression problem. In the case where k = q and
Z = Iq, the model simplifies to the traditional reduced rank regression problem, which has
been well-studied in the literature, such as [32,33]. However, in this paper, we consider the
more general case where the matrix Z contains additional explanatory variables.

The low-rank assumption in this model can be interpreted as indicating the presence
of a latent process that affects the response data, not only through the “between-individuals”
structure of the model but also through the “within-individuals” structure. This model is
often referred to as the growth curve model or the generalized multivariate analysis model
(GMANOVA) and has been studied in depth in the literature, such as [2].

Assumption 1. There is a known constant C < +∞ such that ‖XM∗Z‖∞ ≤ C.

From Assumption 1, it is not reliable to return predictions XMZ with entries that are
outside of interval [−C, C]. However, for computational reasons, it is extremely convenient
to employ an unbounded prior for M. Therefore, we propose to use unbounded distri-
butions for M but to use, as a predictor, a truncated version of XMZ rather than M itself.
For a matrix A, let

ΠC(A) = arg min
‖B‖∞≤C

‖A− B‖F

be the orthogonal projection of A on matrices with entries bounded by C. Note that B is
simply obtained by replacing entries of A larger than C by C, and entries smaller than −C
by −C.

For a matrix M ∈ Rp×k, we denote by r(M) the empirical risk of M as

r(M) =
1

nq
‖Y−ΠC(XMZ)‖2

F
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and its expectation is denoted by

R(M) = E[r(M)] = E
[
(Y11 − (ΠC(XMZ))11)

2
]
.

The focus of our work in this paper is on the predictive aspects of the model, that is, a
matrix M predicts almost as well as M∗ if R(M)− R(M∗) is small. Under the assumption
that Eij has a finite variance, using the Pythagorean theorem, we have

R(M)− R(M∗) =
1

nq
‖ΠC(XMZ)− XM∗Z‖2

F (2)

for any M, which means that our results can also be interpreted in terms of the Frobe-
nius norm.

Let π be a prior distribution on Rp×k (see Section 2.2). For any λ > 0, we define the
quasi-posterior

ρ̂λ(dM) ∝ exp(−λr(M))π(dM).

It is worth noting that for a specific choice of λ = nq/(2σ2), the posterior distribution
obtained corresponds to the case where the noise term Eij is assumed to be Gaussian dis-
tributed with a mean of 0 and a variance of σ2. However, our theoretical results hold under
a more general class of noise distributions. It is known that a small enough λ is sufficient
when the model is misspecified [14]. Additionally, even in the case of Gaussian noise,
in high-dimensional settings, a smaller value of λ than n/(2σ2) leads to better adaptation
properties [30,34]. The precise choice of λ in our method will be further discussed below.

We consider the following posterior mean of XMZ, given by

X̂MZλ =
∫

ΠC(XMZ)ρ̂λ(dM). (3)

It is worth noting that from the simulation experiments, it is observed that using reasonable
values for C, the Monte Carlo algorithm never samples matrices M such that ΠC(XMZ) 6=
XMZ. In other words, the boundedness constraint has very little impact on practice, and it
is mainly necessary for technical proofs. If one is interested in obtaining an estimator of
M∗ instead of an estimator of XM∗Z, when XᵀX and ZZᵀ are invertible, one can consider
the estimator M̂λ = (XᵀX)−1XᵀX̂MZλZᵀ(ZZᵀ)−1 and note that XM̂λZ = X̂MZλ. This
estimator can be used to obtain the estimator of M∗ in case the inverses of XᵀX and ZZᵀ

are computationally feasible.
The quasi-posterior distribution investigated in this paper is often referred to as the

“Gibbs posterior” in the PAC-Bayes approach. This terminology is used in the literature
such as [17–19,35,36]. Additionally, the estimator M̂λ is sometimes referred to as the
Gibbs estimator or the exponentially weighted aggregate (EWA) in the literature, such
as [34,37,38].

2.2. Prior Specification

We consider, in this paper, the following spectral scaled Student prior distribution,
with parameter τ > 0:

π(M) ∝ det(τ2Im + MMᵀ)−(p+m+2)/2. (4)

This prior distribution is designed to promote low-rankness by placing more probabil-
ity mass on matrices with smaller singular values, which leads to sparse solutions. This
prior has a similar form to the one used in related works such as [39,40], and it is known to
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lead to good performance in different problems, such as high-dimensional regression and
image denoising. It can be verified that

π(M) ∝
m

∏
j=1

(τ2 + sj(M)2)−(p+m+2)/2,

where sj(M) denotes the jth largest singular value of M. The above expression is a scaled
Student distribution evaluated at sj(M), which can be seen as a way to approximate sparsity
on sj(M) [30]. The log-sum function ∑m

j=1 log(τ2 + sj(M)2) used by [39,40] is also known
to enforce approximate sparsity on the singular values of sj(M). This means that under
this prior, most of the sj(M) are close to 0, which implies that M is well approximated by a
low-rank matrix. Therefore, it has the ability to promote the low-rankness of M.

As previously stated, this prior is not conjugate to the problem at hand. However, it
is particularly convenient to implement gradient-based sampling algorithms, such as the
Langevin Monte Carlo method, which will be discussed in more detail in Section 4. This is
because the gradient of the log-posterior can be computed efficiently, and it allows for an
efficient implementation of the LMC algorithm.

2.3. Theoretical Results

We assume the sub-exponential distribution assumption on the noise.

Assumption 2. The entries Ei,j of E are independent. There exist two known constants σ > 0 and
ξ > 0 such that

∀k ≥ 2, E(|Ei,j|k) ≤ σ2k!ξk−2/2.

Let us put

C1 = 8(σ2 + C2); C2 = 64C max(ξ, C); τ∗ =
√

C1(k + p)/(nkq‖X‖2
F‖Z‖2

F).

The statistical properties of mean estimator are given in the following theorem, where
we propose a non-asymptotic analysis for our mean estimator.

Theorem 1. Let Assumptions 1 and 2 be satisfied. Fix the parameter τ = τ∗ in the prior. Fix
δ > 0 and define λ∗ := nq min(1/(2C2), δ/[C1(1 + δ)]). Then, for any ε ∈ (0, 1), we have,
with probability at least 1− ε on the sample,

∥∥∥X̂MZλ∗ − XM∗Z
∥∥∥2

F
≤ inf

0≤r≤pk
inf

M̄ ∈ Rp×k

rank(M̄) ≤ r

{
(1 + δ)‖XM̄Z− XM∗Z‖2

F +

C1(1 + δ)2

δ

[
4r(k + p + 2) log

(
1 +
‖X‖F‖Z‖F‖M̄‖F√

C1

√
nkq

r(k + p)

)
+ k + p + 2 log

2
ε

]}
.

The choice of λ = λ∗ is determined by optimizing an upper bound on the risk R
(as shown in the proof of this theorem). However, it is important to note that this choice
may not necessarily be the best choice in practice, even though it gives a good estimate
of the order of magnitude for λ. To ensure optimal performance, the user can use cross-
validation to properly adjust the temperature parameter. Additionally, it is worth noting
that rank(M̄) 6= 0 is not a requirement in the above formula. If rank(M̄) = 0, then M̄ = 0
and we interpret 0 log(1 + 0/0) as 0.

The proof of this theorem is based on the PAC-Bayes theory, and it is provided in the
Appendix A. By taking M̄ = M∗, we can obtain an upper bound on the infimum, leading
to the following result.
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Corollary 1. Under the same assumptions and the same τ, λ∗ as in Theorem 1, let r∗ = rank(M∗).
Then, for any ε ∈ (0, 1), we have, with probability at least 1− ε on the sample,

∥∥∥X̂MZλ∗ − XM∗Z
∥∥∥2

F
≤

C1(1 + δ)2

δ

[
4r∗(k + p + 2) log

(
1 +
‖X‖F‖Z‖F‖M∗‖F√

C1

√
nkq

r(k + p)

)
+ k + p + 2 log

2
ε

]
.

Theorem 1 provides an understanding of the statistical properties of the posterior mean.
However, it is also important to understand the contraction properties of the quasi-posterior
distribution. In the following theorem, we aim to provide a result that demonstrates this
aspect of the proposed method.

Theorem 2. Under the assumptions for Theorem 1, let εn be any sequence in (0, 1) such that
εn → 0 when n→ ∞. Define

Mn =

{
M ∈ Rp×k :

∥∥∥X̂MZλ∗ − XM∗Z
∥∥∥2

F
≤ inf

0≤r≤pk
inf

M̄ ∈ Rp×k

rank(M̄) ≤ r

{
(1 + δ)‖XM̄Z− XM∗Z‖2

F +

C1(1 + δ)2

δ

[
4r(k + p + 2) log

(
1 +
‖X‖F‖Z‖F‖M̄‖F√

C1

√
nkq

r(k + p)

)
+ k + p + 2 log

2
εn

]}
.

Then,
E
[
PM∼ρ̂λ

(M ∈ Mn)
]
≥ 1− εn −−−→n→∞

1.

The proof of this theorem is provided in Appendix A.

3. Inductive Matrix Completion
3.1. Model and Method

In the context of inductive matrix completion, given two side information matrices X
and Z, we assume that only a random subset Ω of the entries of Y in model (1) is observed.
More precisely, we assume that we observe m independent and identically random pairs
(I1, Y1), . . . , (Im, Ym) given by

Yi = (XM∗Z)Ii + Ei, i = 1, . . . , m (5)

where M∗ ∈ Rp×k is the unknown parameter matrix expected to be low-rank and obser-
vation sample size is assumed that m < nq. The noise variables Ei are assumed to be
independent with E(Ei) = 0. The variables Ii are independent and identical copies of
a random variable I having distribution Π on the set {1, . . . , n} × {1, . . . , q}, we denote
Πx,y := Π(I = (x, y)).

Our goal in this paper is to investigate the problem of bilinear regression and also
address the case where the response matrix contains missing data, a problem known as
inductive matrix completion. In particular, when p = n, k = q and X = In, Z = Iq are
the identity matrices, the problem reduces to the traditional matrix completion problem,
which has been well studied in the literature [26]. Similarly, when k = q and Z = Iq is the
identity matrix, the problem becomes the reduced rank regression problem with incomplete
response, which has also been studied in recent works, such as [23,41]. However, in the
context of inductive matrix completion, we focus on the more general case where X and Z
contain additional explanatory variables; in other words, we consider the side information
from the n users and the q items in our model [8].

It has been acknowledged that there are two different ways to model the observed
values of Y, either by including or excluding the possibility of observing the same entry
multiple times. Previous studies have examined both of these methods, such as the
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examination of matrix completion without replacement in [25] and with replacement
in [26]. Both methods have practical uses and use similar techniques for estimation. This
particular study focuses on the scenario where the variables Ii are independently and
identically distributed, meaning that it is possible to observe the same entry multiple
times. Additionally, it is important to note that, according to the findings presented in
Section 6 of [42], the results of this study can also be applied to the scenario of sampling
without replacement, as long as the sampling is performed uniformly and there is no
observation noise.

We are now adapting the quasi-Bayesian approach for bilinear regression in Section 2 to
the context of inductive matrix completion. For a probability distribution P on {1, . . . , n1}×
{1, . . . , n2}, we generalize the Frobenius norm by ‖A‖2

F,P = ∑i,j P[(i, j)]A2
i,j; note that when

P is the uniform distribution, then ‖A‖2
F,P = ‖A‖2

F/(n1n2).
For a matrix M ∈ Rp×k, we denote the empirical risk of M, r′(M), and its expected

risk R′(M) respectively as

r′(M) =
1
m

m

∑
i=1

(
Yi − (ΠC(XMZ))Ii

)2,

R′(M) = E[r′(M)] = E[
(
Y1 − (ΠC(XMZ))I1

)2
].

As in Section 2, we will focus on the predictive aspects of the model, that is, a matrix
M predicts almost as well as M∗ if R′(M)− R′(M∗) is small. Under the assumption that Ei
has a finite variance, based on the Pythagorean theorem, we have

R′(M)− R′(M∗) = ‖ΠC(XMZ)− XM∗Z‖2
F,Π (6)

for any M, which means that our results can also be interpreted in terms of an estimation
of M∗ with respect to a generalized Frobenius norm.

Here, the prior π is the low-rank inducing prior specified in the Section 2.2 above. For
any λ > 0, we define the quasi-posterior

ρ̂′λ(dM) ∝ exp(−λr′(M))π(dM).

We will actually specify our choice of λ below.
The truncated posterior mean of XMZ is given by

X̂MZλ =
∫

ΠC(XM)ρ̂′λ(dM). (7)

Here, for the same technical reasons as in the context of bilinear regression, this
truncation has a very little impact in practice for reasonable values of C.

3.2. Theoretical Results

In this section, we derive the statistical properties of the posterior ρ̂′λ and the mean
estimator X̂MZλ for the context of inductive matrix completion. Let us first state our
assumptions on this model.

Assumption 3. The noise variables E1, . . . , Em are independent of I1, . . . , Im. There exist two
known constants σ′ > 0 and ξ ′ > 0 such that

∀k ≥ 2, E(|Ei|k) ≤ σ′2k!ξ ′k−2/2.

Assumptions 1 and 3 are both standard; they have been used in [41] for theoretical
analysis of reduced rank regression and in [26] for trace regression and matrix completion.
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Let us put

C′1 = 8(σ′2 + C2); C′2 = 64C max(ξ ′, C); τ∗ =
√

C′1(k + p)/(mkp‖X‖2
F‖Z‖2

F).

Theorem 3. Let Assumptions 1 and 3 be satisfied. Fix the parameter τ = τ∗ in the prior. Fix
δ > 0 and define λ′∗ := m min(1/(2C′2), δ/[C′1(1 + δ)]). Then, for any ε ∈ (0, 1), we have,
with probability at least 1− ε on the sample,

∥∥∥X̂MZλ′∗ − XM∗Z
∥∥∥2

F,Π
≤ inf

0≤r≤pk
inf

M̄ ∈ Rp×k

rank(M̄) ≤ r

{
(1 + δ)‖XM̄Z− XM∗Z‖2

F,Π+

C′1(1 + δ)2

δ

(
4r(k + p + 2) log

(
1 + ‖X‖F‖Z‖F‖M̄‖F√

C1

√
mkp

r(k+p)

)
+ k + p + 2 log 2

ε

)
m

}
.

Similar to the context of bilinear regression, the choices of λ = λ∗, τ = τ∗ come from
the optimization of an upper bound on the risk R (in the proof of this theorem). Therefore,
these choices may not be necessarily the best choice in practice, even though it gives a good
order of magnitude for tuning these parameters. The user could use cross-validation to
properly tune them in practice. Note again that rank(M̄) 6= 0 is not required in the above
formula, if rank(M̄) = 0 then M̄ = 0 and we interpret 0 log(1 + 0/0) as 0. The proof of this
theorem is provided in the Appendix A. In particular, we can upper bound the infimum on
M̄ by taking M̄ = M∗, which leads to the following result.

Corollary 2. Under the assumptions that Theorem 3 holds, let r∗ = rank(M∗). Put

Rδ,m,p,k,r∗ ,ε :=
C′1(1 + δ)2

δ

(
4r(k + p + 2) log

(
1 + ‖X‖F‖Z‖F‖M̄‖F√

C1

√
mkp

r(k+p)

)
+ k + p + 2 log 2

ε

)
m

,

then ∥∥∥X̂MZλ′∗ − XM∗Z
∥∥∥2

F,Π
≤ Rδ,m,p,k,r∗ ,ε

and in particular, if the sampling distribution Π is uniform,

‖X̂MZλ′∗ − XM∗Z‖2
F

nq
≤ Rδ,m,p,k,r∗ ,ε.

Remark 1. Up to a log-term, our error rate r(k + p)/m is similar to the best known up-to-date
rate derived in [8].

While Theorem 3 is about the finite sample convergence rate of the posterior mean, it is
actually possible to prove that the quasi-posterior ρ̂′λ contracts around M∗ at the same rate.

Theorem 4. Under the same assumptions for Theorem 3, and the same definition for τ and λ∗, let
εm be any sequence in (0, 1) such that εm → 0 when m→ ∞. Define
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Ωm =

{
M ∈ Rp×k : ‖ΠC(XMZ)− XM∗Z‖2

F,Π ≤

inf
1≤r≤pk

inf
M̄ ∈ Rp×k

rank(M̄) ≤ r

[
(1 + δ)‖XM̄Z− XM∗Z‖2

F,Π+

C′1(1 + δ)2

δ

(
4r(k + p + 2) log

(
1 + ‖X‖F‖Z‖F‖M̄‖F√

C1

√
mkp

r(k+p)

)
+ k + p + 2 log 2

εm

)
m

]}
.

Then
E
[
PM∼ρ̂′λ

(M ∈ Ωm)
]
≥ 1− εm −−−→m→∞

1.

The proof of this theorem is provided in Appendix A.

4. Numerical Studies
4.1. Langevin Monte Carlo Implementation

In this section, we propose to sample from the (quasi) posterior, in Sections 2 and 3,
by a suitable version of the Langevin Monte Carlo (LMC) algorithm, a gradient-based
sampling method. We propose to use a constant step-size unadjusted LMC algorithm;
see [43] for more details. The algorithm is given by an initial matrix M0 and the recursion

Mk+1 = Mk − h∇ log ρ̂λ(Mk) +
√

2h Nk k = 0, 1, . . . (8)

where h > 0 is the step-size, ρ̂λ is the (quasi) posterior and N0, N1, . . . are independent
random matrices with independent and identical standard Gaussian entries. We provide
a pseudo-code for LMC in Algorithm A1. For small values of the step-size h, the output
of Algorithm A1, M̂, is very close to the integral (3) of interest. However, for some h that
may not be small enough, the sum can explode [44]. In such cases, we consider to include
a Metropolis–Hastings correction in the algorithm. Another possible choice is to take a
smaller h and restart the algorithm; although it slows down the algorithm, we keep some
control over its time of execution. On the other hand, the Metropolis–Hastings approach
ensures the convergence to the desired distribution; however, the algorithm is greatly
slowed down because of an additional acceptance/rejection step at each iteration.

Next, we propose a Metropolis–Hasting correction to the LMC algorithm. It guarantees
the convergence to the (quasi) posterior, and it also provides a useful way for choosing h.
More precisely, we consider the update rule in (8) as a proposal for a new candidate:

M̃k+1 = Mk − h∇ log ρ̂λ(Mk) +
√

2h Nk, k = 0, 1, . . . , (9)

Note that the matrix M̃k+1 is normally distributed with mean Mk − h∇ log ρ̂λ(Mk)
and the covariance matrices equal to 2h times the identity matrices. This proposal is then
accepted or rejected according to the Metropolis–Hastings algorithm, where the proposal is
accepted with probability:

AMALA := min
{

1,
ρ̂λ(M̃k+1)q(Mk|M̃k+1)

ρ̂λ(Mk)q(M̃k+1|Mk)

}
, (10)

where

q(x′|x) ∝ exp
(
− 1

4h
‖x′ − x + h∇ log ρ̂λ(x)‖2

F

)
is the transition probability density from x to x′. The details of the Metropolis-adjusted
Langevin algorithm (denoted by MALA) are presented in Algorithm A2. Compared to the
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random-walk Metropolis–Hastings, MALA usually proposes moves into regions of higher
probability, which are then more likely to be accepted.

We note that the step-size h for MALA is chosen such that the acceptance rate is
approximately 0.5 following [45], while the step-size for LMC in the same setting should be
smaller than the one for MALA [46].

4.2. Simulation Studies for Biliear Regression

We perform some numerical studies on simulated data to assess the performance of our
proposed algorithms. All simulations were conducted using the R statistical software [47].

For fixed dimensions q = 10, k = 20 of the data, we vary n = 100 and n = 1000 to
check the effect of the samples, whereas the dimensions of the coefficient matrix are varied
by p = 10 and p = 100. The entries of the design matrices X and Z are independently
simulated from the standard Gaussian N (0, 1). Then, given a matrix M∗, we simulate the
response matrix Y from model (1) whose entries of the noise matrix E are independent
and identically sampled from N (0, 1). We consider the following setups for the true
coefficient matrix:

• Model I: The true coefficient matrix M∗ is a rank-2 matrix that is generated as
M∗ = B1B>2 where B1 ∈ Rp×2, B2 ∈ Rk×2 and all entries in B1 and B2 are independent
and identically sampled from N (0, 1).

• Model II: An approximate low-rank set up is studied. This series of simulations is
similar to the Model I, except that the true coefficient is no longer rank 2, but it can be
well approximated by a rank 2 matrix:

M∗ = 2 · B1B>2 + U,

where U is a matrix whose entries are independent and identically sampled from
N (0, 0.1).

We compare our approaches denoted by LMC and MALA against the (generalized)
ordinary least square [2], denoted by OLS. The OLS is defined as follows:

M̂OLS = (X>X)†X>YZ>(ZZ>)†

where A† denotes the Moore–Penrose inverse of matrix A. We fixed λ = nq, τ = 1,
and the LMC and MALA methods are initiated at the OLS estimator and are run with
10,000 iterations, where the first 1000 steps are removed as burn-in periods.

The evaluations are performed by using the mean squared estimation error (Est) and
the normalized (relative) mean square error (Nmse):

Est := ‖M̂−M∗‖2
F/(pk), Nmse := ‖M̂−M∗‖2

F/‖M∗‖2
F,

and the prediction error (Pred) as

Pred := ‖X(M̂−M∗)Z‖2
F/(nq),

where M̂ here is one of the estimators for LMC, MALA or OLS. We report the averages and
the standard deviation of these errors over 100 data replications.

The results of our study are presented in Tables 1 and 2. From the tables, it can be
observed that our proposed methods perform similarly to the OLS method. However,
the estimation method obtained from the MALA algorithm often results in smaller pre-
diction errors, particularly in high-dimensional settings. This advantage is even more
pronounced when the method is applied in the context of inductive matrix completion,
as discussed in the next subsection.
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4.3. Simulation Studies for Inductive Matrix Completion

The simulation settings for inductive matrix completion are similar to the settings for
bilinear regression, Section 4.2. However, after obtaining the response matrix Y, we remove
uniformly at random κ = 10% and κ = 30% of the entries of Y. Here, κ denotes the missing
rate. We denote the response matrix with missing entries by Ymiss.

As in the context of inductive matrix completion, we only observe the response matrix
with missing entries, Ymiss, and thus we cannot construct the OLS estimator as in the case
of bilinear regression. For this purpose, we first impute the missing entries in Ymiss by
using the R package softImpute [48], where the rank of M∗ is specified as the true rank for
matrix Ymiss. We denote the resulting imputed matrix by Yimp.

We compare our approaches denoted by LMC and MALA against the (imputed
and generalized) ordinary least square, denoted by OLS_imp. The OLS_imp is defined
as follows:

M̂OLS_imp = (X>X)†X>YimpZ>(ZZ>)†

where A† denotes the Moore–Penrose inverse of matrix A. The LMC and MALA methods
are initiated at the OLS_imp estimator and are run with 10,000 iterations, where the first
1000 steps are removed as burn-in periods.

As previously discussed in Section 4.2, we present the averages and the standard
deviation of the mean squared estimation error (Est), the normalized (relative) mean square
error (Nmse), and the prediction error (Pred) over 100 data replications in our results.

The results are detailed in Tables 3 and 4. It is evident from these tables that the results
obtained from our MALA method surpass those of the other methods in terms of prediction
error in most of the settings considered. This advantage becomes more pronounced as
the missing rate in the response matrix increases. Additionally, it is worth noting that our
MALA method is robust and performs well in the approximate low-rank setting (model II),
while the OLS and LMC methods do not.

Table 1. Simulation results on simulated data in Model I in bilinear regression, with fixed q = 10,
k = 20, for different methods, with their standard error in parentheses over 100 replications. (Est:
average of estimation errors; Pred: average of prediction errors; Nmse: average of normalized
estimation errors).

Errors LMC MALA OLS

Est 1.0053 (0.5480) 1.0342 (0.5559) 1.0052 (0.5478)

n = 100

p = 10 Pred 0.1138 (0.0171) 0.0985 (0.0151) 0.1014 (0.0154)
Nmse 0.4931 (0.1178) 0.5100 (0.1207) 0.4930 (0.1178)

Est 1.3544 (0.5867) 1.3384 (0.5836) 1.3544 (0.5867)
p = 100 Pred 1.0066 (0.0430) 0.8761 (0.0756) 1.0030 (0.0424)

Nmse 0.7049 (0.2944) 0.6963 (0.2927) 0.7049 (0.2944)

Est 1.0776 (0.5671) 1.0900 (0.5670) 1.0776 (0.5671)

n = 1000

p = 10 Pred 0.0099 (0.0013) 0.0099 (0.0013) 0.0099 (0.0013)
Nmse 0.5185 (0.1198) 0.5264 (0.1219) 0.5185 (0.1198)

Est 0.9662 (0.3240) 0.9688 (0.3244) 0.9662 (0.3240)
p = 100 Pred 0.0999 (0.0051) 0.0989 (0.0049) 0.0998 (0.0051)

Nmse 0.4961 (0.1183) 0.4976 (0.1191) 0.4961 (0.1183)
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Table 2. Simulation results on simulated data in Model II (approximate low-rank) in bilinear regres-
sion, with fixed q = 10, k = 20, for different methods, with their standard error in parentheses over
100 replications. (Est: average of estimation errors; Pred: average of prediction errors; Nmse: average
of normalized estimation errors).

Errors LMC MALA OLS

Est 4.0731 (1.828) 4.0989 (1.821) 4.0731 (1.828)

n = 100

p = 10 Pred 0.1090 (0.0160) 0.0969 (0.0140) 0.0987 (0.0145)
Nmse 0.5119 (0.1226) 0.5162 (0.1241) 0.5118 (0.1226)

Est 4.6047 (1.812) 4.6038 (1.813) 4.6047 (1.812)
p = 100 Pred 1.0062 (0.0462) 1.0597 (0.0495) 1.0006 (0.0469)

Nmse 0.5801 (0.1942) 0.5800 (0.1941) 0.5801 (0.1942)

Est 3.6733 (1.606) 3.6884 (1.606) 3.6733 (1.606)

n = 1000

p = 10 Pred 0.0098 (0.0015) 0.0098 (0.0015) 0.0098 (0.0015)
Nmse 0.4812 (0.1271) 0.4835 (0.1260) 0.4813 (0.1271)

Est 3.9972 (1.375) 3.9986 (1.376) 3.9972 (1.375)
p = 100 Pred 0.1000 (0.0043) 0.1032 (0.0057) 0.0999 (0.0043)

Nmse 0.5013 (0.1061) 0.5014 (0.1063) 0.5013 (0.1062)

Table 3. Simulation results on simulated data in Model I in inductive matrix completion, with fixed
q = 10, k = 20, for different methods, with their standard error in parentheses over 100 replications.
(κ is the missing rate; Est: average of estimation errors; Pred: average of prediction errors; Nmse:
average of normalized estimation errors).

Errors LMC MALA OLS_imp

Est 1.0559 (0.5060) 1.0803 (0.5122) 1.0559 (0.5060)

n = 100
κ = 10%

p = 10 Pred 0.1028 (0.0193) 0.1082 (0.0143) 0.1020 (0.0197)
Nmse 0.4986 (0.1116) 0.5139 (0.1197) 0.4986 (0.1116)

Est 1.4008 (0.8555) 1.3987 (0.8542) 1.4009 (0.8555)
p = 100 Pred 1.2250 (0.4568) 1.4468 (0.4137) 1.2252 (0.4570)

Nmse 0.7148 (0.3591) 0.7136 (0.3581) 0.7148 (0.3591)

Est 1.0432 (0.4963) 1.0917 (0.5085) 1.0432 (0.4963)

n = 100
κ = 30%

p = 10 Pred 0.2402 (0.2705) 0.1447 (0.0204) 0.2446 (0.2780)
Nmse 0.5242 (0.1257) 0.5538 (0.1335) 0.5242 (0.1257)

Est 1.6242 (0.8179) 1.6224 (0.8169) 1.6242 (0.8179)
p = 100 Pred 9.8879 (14.11) 10.807 (13.84) 9.8901 (14.11)

Nmse 0.7993 (0.3340) 0.7985 (0.3334) 0.7993 (0.3340)

Est 0.9810 (0.4532) 0.9882 (0.4478) 0.9810 (0.4532)

n = 1000
κ = 10%

p = 10 Pred 0.0114 (0.0033) 0.0112 (0.0015) 0.0114 (0.0033)
Nmse 0.4933 (0.1076) 0.4984 (0.1075) 0.4933 (0.1076)

Est 1.0063 (0.3465) 1.0088 (0.3471) 1.0063 (0.3465)
p = 100 Pred 0.1902 (0.1758) 0.1116 (0.0049) 0.1902 (0.1759)

Nmse 0.5069 (0.1049) 0.5082 (0.1050) 0.5069 (0.1049)

Est 1.0110 (0.4886) 1.0223 (0.4872) 1.0110 (0.4886)

n = 1000
κ = 30%

p = 10 Pred 0.0539 (0.0599) 0.0141 (0.0019) 0.0540 (0.0599)
Nmse 0.5129 (0.1030) 0.5206 (0.1043) 0.5129 (0.1030)

Est 1.0291 (0.3567) 1.0312 (0.3555) 1.0291 (0.3567)
p = 100 Pred 1.7529 (1.914) 0.1475 (0.0078) 1.7530 (1.913)

Nmse 0.5054 (0.1055) 0.5067 (0.1053) 0.5054 (0.1055)
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Table 4. Simulation results on simulated data in Model II (approximate low-rank) in inductive matrix
completion, with fixed q = 10, k = 20, for different methods, with their standard error in parentheses
over 100 replications. (κ is the missing rate; Est: average of estimation errors; Pred: average of
prediction errors; Nmse: average of normalized estimation errors).

Errors LMC MALA OLS_imp

Est 3.8319 (1.691) 3.8749 (1.719) 3.8319 (1.690)

n = 100
imis 10%

p = 10 Pred 0.1604 (0.1271) 0.1092 (0.0153) 0.1598 (0.1322)
Nmse 0.5116 (0.1154) 0.5169 (0.1147) 0.5116 (0.1155)

Est 5.9500 (2.834) 5.9452 (2.835) 5.9500 (2.834)
p = 100 Pred 4.7640 (5.272) 4.6964 (5.515) 4.7658 (5.275)

Nmse 0.7313 (0.3454) 0.7307 (0.3455) 0.7313 (0.3454)

Est 4.1838 (1.850) 4.2535 (1.859) 4.1839 (1.850)

n = 100
imis 30%

p = 10 Pred 0.7221 (0.7562) 0.1498 (0.0183) 0.7371 (0.7741)
Nmse 0.5182 (0.1128) 0.5283 (0.1147) 0.5182 (0.1128)

Est 7.1589 (4.084) 7.1558 (4.083) 7.1589 (4.084)
p = 100 Pred 39.899 (52.40) 40.233 (51.76) 39.908 (52.41)

Nmse 0.8998 (0.3821) 0.8994 (0.3820) 0.8998 (0.3821)

Est 3.9618 (1.678) 3.9788 (1.677) 3.9618 (1.678)

n = 1000
imis 10%

p = 10 Pred 0.0409 (0.0269) 0.0110 (0.0015) 0.0409 (0.0269)
Nmse 0.4968 (0.1196) 0.4989 (0.1195) 0.4968 (0.1196)

Est 4.1153 (1.295) 4.1163 (1.294) 4.1153 (1.295)
p = 100 Pred 1.0250 (0.9988) 0.1135 (0.0051) 1.0250 (0.9988)

Nmse 0.5060 (0.1096) 0.5062 (0.1096) 0.5060 (0.1096)

Est 4.1647 (1.990) 4.1836 (1.995) 4.1647 (1.990)

n = 1000
imis 30%

p = 10 Pred 0.4615 (0.3497) 0.0141 (0.0017) 0.4616 (0.3498)
Nmse 0.4905 (0.1157) 0.4933 (0.1171) 0.4905 (0.1157)

Est 4.0578 (1.400) 4.0565 (1.397) 4.0578 (1.400)
p = 100 Pred 8.5608 (6.419) 0.1538 (0.0069) 8.5609 (6.419)

Nmse 0.4944 (0.1184) 0.4943 (0.1180) 0.4944 (0.1184)

5. Discussion and Conclusions

In this paper, we focus on the problem of bilinear regression and its extension, the prob-
lem of inductive matrix completion, where the response matrix contains missing data. We
propose a novel approach that combines elements of Bayesian statistics with a quasi-
likelihood method. Our proposed method first addresses the problem of bilinear regression
using a quasi-Bayesian approach and then adapts this approach to the problem of induc-
tive matrix completion. By making use of a low-rankness assumption and leveraging the
powerful PAC-Bayes bound technique, we provide statistical properties for our proposed
estimators and for the quasi-posteriors.

Our proposed method includes an efficient gradient-based sampling algorithm that
is designed to sample from the (quasi) posterior distribution. This algorithm allows for
the approximate computation of mean estimators. These methods, referred to as LMC and
MALA, were tested in various simulation studies and were found to perform well when
compared to the ordinary least squared method. The ability to accurately sample from
the (quasi) posterior distribution and compute mean estimators makes these methods a
valuable tool for data analysis and modeling.

There are still some unresolved issues that require further investigation. One of these
is the presence of missing data in the covariate matrices X and Z. This can have a significant
impact on the analysis and may lead to biased results. Another area that needs further
exploration is the assumption of independence and identically distributed data. In some
cases, this assumption may not hold, and alternative models that allow for a dispersion
matrix may be needed. These are potential topics for future research to address and further
our understanding of these issues.



Entropy 2023, 25, 333 14 of 27

Funding: TTM is supported by the Norwegian Research Council grant number 309960 through the
Centre for Geophysical Forecasting at NTNU.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The R codes used in the numerical experiments are available at: https:
//github.com/tienmt/blr_imc (accessed on 10 February 2023).

Acknowledgments: The author would like to thank the anonymous referees for their useful comments.

Conflicts of Interest: The author declare no conflict of interest.

Appendix A. Proofs

The main technique for our proofs is the oracle-type PAC-Bayes bounds, in the spirit
of [35]. We start with a few preliminary lemmas.

Appendix A.1. Preliminary Lemmas

First, we state a version of Bernstein’s inequality from Proposition 2.9 page 24 in [49].

Lemma A1 (Bernstein’s inequality). Let U1, . . . , Un be independent real valued random variables.
Let us assume that there are two constants v and w such that ∑n

i=1 E[U2
i ] ≤ v and for all integers

k ≥ 3, ∑n
i=1 E

[
(Ui)

k
]
≤ v k!wk−2

2 . Then, for any ζ ∈ (0, 1/w),

E exp

[
ζ

n

∑
i=1

[Ui −E(Ui)]

]
≤ exp

(
vζ2

2(1− wζ)

)
.

Another basic tool to derive the PAC-Bayes bounds is Donsker and Varadhan’s vari-
ational inequality, see Lemma 1.1.3 in Catoni [17] for a proof (among others). From now,
for any Θ ⊂ Rn1×n2 , we let P(Θ) denote the set of all probability distributions on Θ
equipped with the Borel σ-algebra. For (µ, ν) ∈ P(Θ)2, the Kullback–Leibler divergence
is defined by K(ν, µ) =

∫
log
(

dν
dµ (θ)

)
ν(dθ) if ν admits a density dν

dµ with respect to µ,
and K(ν, µ) = +∞ otherwise.

Lemma A2 (Donsker and Varadhan’s variational formula). Let µ ∈ P(Θ). For any measur-
able, bounded function h : Θ→ R, we have

log
∫

eh(θ)µ(dθ) = sup
ρ∈P(Θ)

[∫
h(θ)ρ(dθ)−K(ρ, µ)

]
.

Moreover, the supremum with respect to ρ in the right-hand side is reached for the Gibbs
measure µh defined by its density with respect to µ

dµh(θ) =
eh(θ)dµ∫

eh(ϑ)µ(dϑ)
. (A1)

These two lemmas are the only tools we need to prove Theorems 1 and 2. Their
proofs are quite similar, with a few differences. For the sake of simplicity, we will state the
common parts of the proofs as a separate result in Lemma A3. Note that the proof of this
lemma will use Lemmas A1 and A2.

https://github.com/tienmt/blr_imc
https://github.com/tienmt/blr_imc
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Lemma A3. Under Assumptions 1 and 2, put

α =

λ− λ2C1

2nq(1− C2λ
nq )

 and β =

λ +
λ2C1

2nq(1− C2λ
nq )

. (A2)

Then, for any ε ∈ (0, 1), and λ ∈ (0, nq/C2),

E
[∫

exp

{
α
(

R(M)− R(M∗)
)
+ λ

(
−r(M) + r(M∗)

)
− log

[
dρ̂λ

dπ
(M)

]
−

log
2
ε

}
ρ̂λ(dM)

]
≤ ε

2
(A3)

and

E sup
ρ∈P(Rp×k)

exp

[
β

(
−
∫

Rdρ + R(M∗)
)
+ λ

(∫
rdρ− r(M∗)

)
−K(ρ, π)− log

2
ε

]
≤ ε

2
. (A4)

Proof of Lemma A3. We prove the first inequality (A10) as follows. Fix any M with
‖XMZ‖∞ ≤ C and put

Tij =
(
Yij − (XM∗Z)ij

)2 −
(
Yij − (ΠC(XMZ))ij

)2.

Note that the random variables Tij with i = 1, . . . , n; j = 1, . . . , q are independent by
construction. We have

n

∑
i=1

q

∑
j=1

E[T2
ij] =

n

∑
i=1

q

∑
j=1

E
[(

2Yij − (XM∗Z)ij −ΠC(XMZ)ij
)2(

(XM∗Z)ij −ΠC(XMZ)ij
)2
]

=
n

∑
i=1

q

∑
j=1

E
[(

2Eij + (XM∗Z)ij −ΠC(XMZ)ij
)2(

(XM∗Z)ij −ΠC(XMZ)ij
)2
]

≤
n

∑
i=1

q

∑
j=1

E
[
8
[

E2
ij + C2

][
(XM∗Z)ij −ΠC(XMZ)ij

]2]
≤

n

∑
i=1

q

∑
j=1

8
[
σ2 + C2

]
E
[
(XM∗Z)ij − (XMZ)ij

]2
≤ 8nq(σ2 + C2)[R(M)− R(M∗)]
= nqC1[R(M)− R(M∗)] =: v(M, M∗).

Next we have, for any integer k ≥ 3, that
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n

∑
i=1

q

∑
j=1

E
[
(Tij)

k
]

≤
n

∑
i=1

q

∑
j=1

E
[∣∣2Yij − (XM∗Z)ij −ΠC(XMZ)ij

∣∣k∣∣(XM∗Z)ij −ΠC(XMZ)ij
∣∣k]

≤
n

∑
i=1

q

∑
j=1

E
[
2k−1

[
|2Eij|k + (2C)k

]∣∣(XM∗Z)ij −ΠC(XMZ)ij
∣∣k]

≤
n

∑
i=1

q

∑
j=1

E
[
22k−1

(
|Eij|k + Ck

)
(2C)k−2∣∣(XM∗Z)ij −ΠC(XMZ)ij

∣∣2]
≤22k−1

[
σ2k!ξk−2 + Ck

]
(2C)k−2

n

∑
i=1

q

∑
j=1

E
∣∣(XM∗Z)ij − (XMZ)ij

∣∣2
≤

23k−3
[
σ2k!ξk−2 + Ck

]
Ck−2

8(σ2 + C2)
v(M, M∗)

≤
23k−6

[
σ2ξk−2 + Ck

]
Ck−2

(σ2 + C2)
k!v(M, M∗)

≤23k−5
[
ξk−2 + Ck−2

]
Ck−2k!v(M, M∗)

≤23k−4 max(ξ, C)k−2Ck−2k!v(M, M∗)

=[23 max(ξ, C)C]k−222k!v(M, M∗)

and use the fact that, for any k ≥ 3, 22 ≤ 23(k−2)/2 to obtain

n

∑
i=1

q

∑
j=1

E
[
(Tij)

k
]
≤ [26 max(ξ, C)C]k−2k!v(M, M∗)

2
= v(M, M∗)

k!Ck−2
2
2

.

Thus, we can apply Lemma A1 with Ui := Ti, v := v(M, M∗), w := C2 and ζ := λ/nq.
We obtain, for any λ ∈ (0, nq/w) = (0, nq/C2),

E exp
[
λ
(

R(M)− R(M∗)− r(M) + r(M∗)
)]
≤ exp

[
vλ2

2(nq)2(1− wλ
nq )

]

= exp

C1[R(M)− R(M∗)]λ2

2nq(1− C2λ
nq )

.

Rearranging terms, and using the definition of α in (A2),

E exp
[
α
(

R(M)− R(M∗)
)
+ λ

(
−r(M) + r(M∗)

)]
≤ 1.

Multiplying both sides by ε/2 and then integrating with respect to the probability
distribution π(.), we obtain

∫
E
[

exp
{

α
(

R(M)− R(M∗)
)
+ λ

(
−r(M) + r(M∗)

)
− log

2
ε

}]
π(dM) ≤ ε

2
.
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Next, Fubini’s theorem gives

E
[∫

exp

[
α
(

R(M)− R(M∗)
)
+ λ

(
−r(M) + r(M∗)

)
− log

2
ε

]
π(dM)

]
≤ ε

2
.

and note that for any measurable function h,∫
exp[h(M)]π(dM) =

∫
exp

[
h(M)− log

dρ̂λ

dπ
(M)

]
ρ̂λ(dM)

to obtain (A3).
Let us now prove (A4). Here again, we start with an application of Lemma A1, but this

time with Ui := −Ti (we keep v := v(M, M∗), w := C2 and ζ := λ/nq). We obtain, for any
λ ∈ (0, nq/C2),

E exp
[
λ
(

r(M) + r(M∗)− R(M) + R(M∗)
)]
≤ exp

C1[R(M)− R(M∗)]λ2

2nq(1− C2λ
nq )

.

Rearranging terms, using the definition of β in (A2) and multiplying both sides by
ε/2, we obtain

E exp

[
β(−R(M) + R(M∗)) + λ(r(M)− r(M∗))− log

2
ε

]
≤ ε

2
.

We integrate with respect to π and use Fubini to obtain

E
[∫

exp

[
β(−R(M) + R(M∗)) + λ(r(M)− r(M∗))− log

2
ε

]
π(dM)

]
≤ ε

2
.

Here, we use a different argument from the proof of the first inequality: we use
Lemma A2 on the integral, and this gives directly (A4).

Finally, in both proofs, we will use quite often distributions ρ ∈ P(Rp×k) that will be
defined as translations of the prior π. We introduce the following notation.

Definition A1. For any matrix M̄ ∈ Rp×k, we define ρM̄ ∈ P(Rp×k) by

ρM̄(M) = π(M̄−M).

The following technical lemmas from [31] will be useful in the proofs.

Lemma A4 (Lemma 1 in [31]). We have
∫
‖M‖2

Fπ(dM) ≤ pkτ2.

Lemma A5 (Lemma 2 in [31]). For any M̄ ∈ Rp×k, we have

K(ρM̄, π) ≤ 2rank(M̄)(k + p + 2) log

(
1 +

‖M̄‖F

τ
√

2rank(M̄)

)

with the convention 0 log(1 + 0/0) = 0.
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Appendix A.2. Proof of Theorem 1

Proof of Theorem 1. An application of Jensen’s inequality on inequality (A3) yields

E exp

[
α

(∫
Rdρ̂λ − R(M∗)

)
+ λ

(
−
∫

rdρ̂λ + r(M∗)
)
−K(ρ̂λ, π)− log

2
ε

]
≤ ε

2
.

Using the standard Chernoff’s trick to transform an exponential moment inequality
into a deviation inequality, that is: exp(x) ≥ 1R+

(x), we obtain

P
{[

α

(∫
Rdρ̂λ − R(M∗)

)
+ λ

(
−
∫

rdρ̂λ + r(M∗)
)
−K(ρ̂λ, π)− log

2
ε

]
≥ 0

}
≤ ε

2
(A5)

Using (2) we have∫
Rdρ̂λ − R(M∗) =

1
nq

∫
‖ΠC(XMZ)− XM∗Z‖2

F ρ̂λ(dM)

≥ 1
nq

∥∥∥∥∫ ΠC(XMZ)ρ̂λ(dM)− XM∗Z
∥∥∥∥2

F

≥ 1
nq

∥∥∥X̂MZλ − XM∗Z
∥∥∥2

F

where we used Jensen’s inequality in the second line, and the definition of X̂MZλ from the
second to the third line. Plugging this into our probability bound (A5), and dividing both
sides by α, we obtain

P
{

1
nq

∥∥∥X̂MZλ − XM∗Z
∥∥∥2

F
≤
∫

rdρ̂λ − r(M∗) + 1
λ

[
K(ρ̂λ, π) + log 2

ε

]
α
λ

}
≥ 1− ε

2

under the additional condition that λ is such that α > 0, which we will assume from now
(note that this is satisfied by λ∗). Using Lemma A2, we can rewrite this as

P
{

1
nq

∥∥∥X̂MZλ − XM∗Z
∥∥∥2

F
≤ inf

ρ∈P(Rp×k)

∫
rdρ− r(M∗) + 1

λ

[
K(ρ, π) + log 2

ε

]
α
λ

}
≥ 1− ε

2
. (A6)

We consider now the consequences of the second inequality in Lemma A3, that is (A4).
With Chernoff’s trick and rearranging terms a little, we obtain

P
{
∀ρ ∈ P(Rp×k),

∫
rdρ− r(M∗) ≤ β

λ

[∫
Rdρ− R(M∗)

]
+

1
λ

[
K(ρ, π) + log

2
ε

]}
≥ 1− ε

2
.

which we can rewrite as, ∀ρ ∈ P(Rp×k), with probability at least 1− ε
2 ,

∫
rdρ− r(M∗) ≤ β

λ

∫ 1
nq
‖ΠC(XMZ)− XM∗Z‖2

Fρ(dM) +
1
λ

[
K(ρ, π) + log

2
ε

]
. (A7)

Combining (A7) and (A6) with a union bound argument gives the following bound,
with probability of at least 1− ε,

1
nq

∥∥∥X̂MZλ − XM∗Z
∥∥∥2

F

≤ inf
ρ∈P(Rp×k)

β
∫ 1

nq‖ΠC(XMZ)− XM∗Z‖2
Fρ(dM) + 2

[
K(ρ, π) + log 2

ε

]
α

.
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Noting that, for any (i, j), (XM∗Z)i,j ∈ [−C, C] implies that

|(ΠC(XMZ))i,j − (XM∗Z)i,j| ≤ |(XMZ)i,j − (XM∗Z)i,j|

and thus

1
nq

∥∥∥X̂MZλ − XM∗Z
∥∥∥2

F
≤ inf

ρ∈P(Rp×k)

β
∫ 1

nq‖XMZ− XM∗Z‖2
Fρ(dM) + 2

[
K(ρ, π) + log 2

ε

]
α

.

The end of the proof consists in making the right-hand side in the inequality more
explicit. In order to do so, we restrict the infimum bound above to the distributions given
by Definition A1:

P
{

1
nq

∥∥∥X̂MZλ − XM∗Z
∥∥∥2

F

≤ inf
M̄∈Rp×k

β
∫ 1

nq‖XMZ− XM∗Z‖2
FρM̄(dM) + 2

[
K(ρM̄, π) + log 2

ε

]
α

}
≥ 1− ε. (A8)

We see immediately that Dalalyan’s lemma will be extremely useful for that. First,
Lemma A5 provides an upper bound on K(ρM̄, π). Moreover,∫

‖XMZ− XM∗Z‖2
FρM̄(dM)

≤
∫
‖XM̄Z− XM∗Z− XMZ‖2

Fπ(dM)

= ‖XM̄Z− XM∗Z‖2
F − 2

∫
∑
i,j
(XM̄Z− XM∗Z)j,i(XMZ)i,jπ(dM) +

∫
‖XMZ‖2

Fπ(dM).

The second term in the right-hand side is null because π is centered, and thus∫
‖XMZ− XM∗Z‖2

FρM̄(dM) ≤ ‖XM̄Z− XM∗Z‖2
F +

∫
‖XMZ‖2

F π(dM)

≤ ‖XM̄Z− XM∗Z‖2
F + ‖X‖2

F‖Z‖2
F

∫
‖M‖2

F π(dM)

≤ ‖XM̄Z− XM∗Z‖2
F + ‖X‖2

F‖Z‖2
F pkτ2

where we used elementary properties of the Frobenius norm, and Lemma A4 in the last
line. We can now plug this (and Lemma A5) back into (A8) to obtain

P
{

1
nq

∥∥∥X̂MZλ − XM∗Z
∥∥∥2

F
≤ inf

M̄∈Rp×k

[
β

α

1
nq
‖XM̄Z− XM∗Z‖2

F +
β

α

1
nq
‖X‖2

F‖Z‖2
F pkτ2

+
1
α

(
4rank(M̄)(k + p + 2) log

(
1 +

‖M̄‖F

τ
√

2rank(M̄)

)
+ 2 log

2
ε

)]}
≥ 1− ε.

We are now making the constants explicit. First, if λ ≤ nq/(2C2), then 2nq(1 −
C2λ/nq) ≥ np and thus

β

α
=

1 + λC1

2nq(1− C2λ
nq )

1− λC1

2nq(1− C2λ
nq )

≤
1 + λC1

nq

1− λC1
nq

.

Then, λ ≤ nqδ
C1(1+δ)

leads to β
α ≤ (1 + δ).
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Note that λ∗ = nq min(1/(2C2), δ/[C1(1 + δ)]) satisfies these two conditions, so from
now, λ = λ∗. We also use the following:

1
α
=

1

λ∗
(

1− λ∗C1
2nq(1−C2λ∗/nq)

) ≤ β

λ∗α
≤ (1 + δ)

nq min(1/(2C2), δ/[C1(1 + δ)])
≤ C1(1 + δ)2

nqδ
.

So far the bound is:

P
{

1
nq

∥∥∥X̂MZλ∗ − XM∗Z
∥∥∥2

F
≤ inf

M̄∈Rp×k

[
(1 + δ)

nq
‖XM̄Z− XM∗Z‖2

F+

(1 + δ)

nq
‖X‖2

F‖Z‖2
F pkτ2+

C1(1 + δ)2
(

4rank(M̄)(k + p + 2) log
(

1 + ‖M̄‖F

τ
√

2rank(M̄)

)
+ 2 log 2

ε

)
nqδ

]}
≥ 1− ε.

In particular, with probability at least 1− ε, the choice τ2 = C1(k + p)/(nkq‖X‖2
F‖Z‖2

F)
gives

1
nq

∥∥∥X̂MZλ∗ − XM∗Z
∥∥∥2

F
≤ inf

M̄∈Rp×k

[
(1 + δ)

nq
‖XM̄Z− XM∗Z‖2

F +
C1(1 + δ)(k + p)

nq
+

C1(1 + δ)2
(

4rank(M̄)(k + p + 2) log
(

1 + ‖X‖F‖Z‖F‖M̄‖F√
C1

√
nkq

(k+p)rank(M̄)

)
+ 2 log 2

ε

)
nqδ

]
.

Appendix A.3. Proof of Theorem 2

Proof of Theorem 2. We also start with an application of Lemma A3, and focus on (A3),
applied to ε := εn, that is:

E
[∫

exp

{
α
(

R(M)− R(M∗)
)
+ λ

(
−r(M) + r(M∗)

)
− log

[
dρ̂λ

dπ
(M)

]
−

log
2
εn

}
ρ̂λ(dM)

]
≤ εn

2
.

Using Chernoff’s trick, this gives

E
[
PM∼ρ̂λ

(M ∈ An)
]
≥ 1− εn

2

where

An =

{
M : α

(
R(M)− R(M∗)

)
+ λ

(
−r(M) + r(M∗)

)
≤ log

[
dρ̂λ

dπ
(M)

]
+ log

2
εn

}
.
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Using the definition of ρ̂λ, for M ∈ An we have

α
(

R(M)− R(M∗)
)
≤ λ

(
r(M)− r(M∗)

)
+ log

[
dρ̂λ

dπ
(M)

]
+ log

2
εn

≤ − log
∫

exp[−λr(M)]π(dM)− λr(M∗) + log
2
εn

= λ
(∫

r(M)ρ̂λ(dM)− r(M∗)
)
+K(ρ̂λ, π) + log

2
εn

= inf
ρ

{
λ
(∫

r(M)ρ(dM)− r(M∗)
)
+K(ρ, π) + log

2
εn

}
.

Now, let us define

Bn =

{
∀ρ : β

(
−
∫

Rdρ + R(M∗)
)
+ λ

(∫
rdρ− r(M∗)

)
≤ K(ρ, π) + log

2
εn

}
.

Using (A4), we have that

E
[
1Bn

]
≥ 1− εn

2
.

We will now prove that, if λ is such that α > 0,

E
[
PM∼ρ̂λ

(M ∈ Mn)
]
≥ E

[
PM∼ρ̂λ

(M ∈ An)1Bn

]
which, together with

E
[
PM∼ρ̂λ

(M ∈ An)1Bn

]
= E

[
(1− PM∼ρ̂λ

(M /∈ An))(1− 1Bc
n)
]

≥ E
[
1− PM∼ρ̂λ

(M /∈ An)− 1Bc
n

]
≥ 1− εn

will bring

E
[
PM∼ρ̂λ

(M ∈ Mn)
]
≥ 1− εn.

In order to do so, assume that we are on the set Bn, and let M ∈ An. Then,

α
(

R(M)− R(M∗)
)
≤ inf

ρ

{
λ
(∫

r(M)ρ(dM)− r(M∗)
)
+K(ρ, π) + log

2
εn

}
≤ inf

ρ

{
β
(∫

R(M)ρ(dM)− R(M∗)
)
+ 2K(ρ, π) + 2 log

2
εn

}
that is,

R(M)− R(M∗) ≤ inf
ρ∈P(Rp×k)

β[
∫

Rdρ− R(M∗)] + 2
[
K(ρ, π) + log 2

ε

]
α

or, rewriting it in terms of norms,

‖ΠC(XMZ)− XM∗Z‖2
F ≤ inf

M̄∈Rp×k

β
∫
‖XMZ− XM∗Z‖2

FρM̄(dM) + 2
[
K(ρM̄, π) + log 2

ε

]
α

.

We upper-bound the right-hand side exactly as in the proof of Theorem 1, which gives
M ∈ Mn.
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Appendix A.4. Proof of Theorem 3

Lemma A6. Under Assumptions 1 and 3, put

α′ =

λ−
λ2C′1

2m(1− C′2λ
m )

 and β′ =

λ +
λ2C′1

2m(1− C′2λ
m )

. (A9)

Then for any ε ∈ (0, 1), and λ ∈ (0, m/C′2),

E
[∫

exp

{
α′
(

R′(M)− R′(M∗)
)
+ λ

(
−r′(M) + r′(M∗)

)
−

log
[

dρ̂′λ
dπ

(M)

]
− log

2
ε

}
ρ̂′λ(dM)

]
≤ ε

2
(A10)

and

E sup
ρ∈P(Rp×k)

exp

[
β′
(
−
∫

R′dρ + R′(M∗)
)
+ λ

(∫
r′dρ− r′(M∗)

)
−K(ρ, π)− log

2
ε

]
≤ ε

2
. (A11)

Proof of Lemma A6. The inequality (A10) is proved in a similar way to the proof of Lemma A3.
That is, we apply Lemma A1 to the following independent random variables

Vi = (Yi − (XM∗Z)i)
2 − (Yi − (ΠC(XMZ))i)

2, i = 1, . . . , m.

The proof of the inequality (A11) is processed similar in the proof of Lemma A3 in
which we apply Lemma A1 to the independent random variables −Vi, i = 1, . . . , m.

Proof of Theorem 3. Similar to the proof of Theorem 1, until the (A6), and noting that
using (6), we have∫

R′dρ̂λ − R′(M∗) =
∫
‖ΠC(XMZ)− XM∗Z‖2

F,Πρ̂′λ(dM)

≥
∥∥∥∥∫ ΠC(XMZ)ρ̂′λ(dM)− XM∗Z

∥∥∥∥2

F,Π

≥
∥∥∥X̂MZλ − XM∗Z

∥∥∥2

F,Π
,

and thus, we obtain

P
{∥∥∥X̂MZλ − XM∗Z

∥∥∥2

F,Π
≤ inf

ρ∈P(Rp×k)

∫
r′dρ− r′(M∗) + 1

λ

[
K(ρ, π) + log 2

ε

]
α′
λ

}
≥ 1− ε

2
. (A12)

We consider now the consequences of inequality (A11) in Lemma A6. With Chernoff’s
trick and rearranging terms a little, we obtain ∀ρ ∈ P(Rp×k), with probability at least 1− ε

2 ,

∫
r′dρ− r′(M∗) ≤ β′

λ

∫
‖ΠC(XMZ)− XM∗Z‖2

F,Πρ(dM) +
1
λ

[
K(ρ, π) + log

2
ε

]
. (A13)
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Combining (A13) and (A12) with a union bound argument gives the bound and
noting that for any (i, j), (XM∗Z)i,j ∈ [−C, C] implies that |(ΠC(XMZ))i,j − (XM∗Z)i,j| ≤
|(XMZ)i,j − (XM∗Z)i,j| and thus

P
{∥∥∥X̂MZλ − XM∗Z

∥∥∥2

F,Π

≤ inf
ρ∈P(Rp×k)

β′
∫
‖XMZ− XM∗Z‖2

F,Πρ(dM) + 2
[
K(ρ, π) + log 2

ε

]
α′

}
≥ 1− ε.

We are now making the right-hand side in the inequality more explicit. In order to do
so, we restrict the infimum bound above to the distributions given by Definition A1:

P
{∥∥∥X̂MZλ − XM∗Z

∥∥∥2

F,Π
≤

inf
M̄∈Rp×k

β′
∫
‖XMZ− XM∗Z‖2

F,ΠρM̄(dM) + 2
[
K(ρM̄, π) + log 2

ε

]
α′

}
≥ 1− ε. (A14)

We see immediately that Dalalyan’s lemma will be extremely useful for that. First,
Lemma A5 provides an upper bound on K(ρM̄, π).

Moreover,∫
‖XMZ− XM∗Z‖2

F,ΠρM̄(dM)

≤
∫
‖XM̄Z− XM∗Z− XMZ‖2

F,Ππ(dM)

= ‖XM̄Z− XM∗Z‖2
F,Π − 2

∫
∑
i,j

Πi,j(XM̄Z− XM∗Z)j,i(XMZ)i,jπ(dM)+

∫
‖XMZ‖2

F,Ππ(dM).

The second term in the above right-hand side is null because π is centered, and thus∫
‖XMZ− XM∗Z‖2

F,ΠρM̄(dM)

≤ ‖XM̄Z− XM∗Z‖2
F,Π +

∫
‖XMZ‖2

F,Ππ(dM)

≤ ‖XM̄Z− XM∗Z‖2
F,Π +

∫
‖XMZ‖2

F π(dM)

≤ ‖XM̄Z− XM∗Z‖2
F,Π + ‖X‖2

F‖Z‖2
F

∫
‖M‖2

F π(dM)

≤ ‖XM̄Z− XM∗Z‖2
F,Π + ‖X‖2

F‖Z‖2
F pkτ2

where we used the elementary properties of the Frobenius norm, and Lemma A4 in the last
line. We can now plug this (and Lemma A5) back into (A14) to obtain:

P
{∥∥∥X̂MZλ − XM∗Z

∥∥∥2

F,Π
≤ inf

M̄∈Rp×k

[
β′

α′
‖XM̄Z− XM∗Z‖2

F,Π +
β′

α′
‖X‖2

F‖Z‖2
F pkτ2

+
1
α′

(
4rank(M̄)(k + p + 2) log

(
1 +

‖M̄‖F

τ
√

2rank(M̄)

)
+ 2 log

2
ε

)]}
≥ 1− ε.
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We are now making the constants explicit. First, if λ ≤ m/(2C′2), then 2m(1 −
C′2λ/m) ≥ m and thus

β′

α′
=

1 + λC′1

2m(1− C′2λ

m )

1− λC′1

2m(1− C′2λ

m )

≤
1 + λC′1

m

1− λC′1
m

.

Then, λ ≤ mδ
C′1(1+δ)

leads to β′

α′ ≤ (1 + δ).

Note that λ′∗ = m min(1/(2C′2), δ/[C′1(1 + δ)]) satisfies these two conditions, so from
now λ = λ′∗. We also use the following:

1
α′

=
1

λ′∗
(

1− λ′∗C′1
2m(1−C2λ′∗/m)

) ≤ β′

λ′∗α′
≤ (1 + δ)

m min(1/(2C′2), δ/[C′1(1 + δ)])
≤

C′1(1 + δ)2

mδ
.

So far the bound is:

P
{∥∥∥X̂MZλ′∗ − XM∗Z

∥∥∥2

F,Π
≤ inf

M̄∈Rp×k

[
(1 + δ)‖XM̄Z− XM∗Z‖2

F,Π+

(1 + δ)‖X‖2
F‖Z‖2

F pkτ2+

C′1(1 + δ)2
(

4rank(M̄)(k + p + 2) log
(

1 + ‖M̄‖F

τ
√

2rank(M̄)

)
+ 2 log 2

ε

)
mδ

]}
≥ 1− ε.

In particular, with probability at least 1− ε, the choice τ2 = C′1(k + p)/(mkp‖X‖2
F‖Z‖2

F)
gives

∥∥∥X̂MZλ′∗ − XM∗Z
∥∥∥2

F,Π
≤ inf

M̄∈Rp×k

[
(1 + δ)‖XM̄Z− XM∗Z‖2

F,Π +
C′1(1 + δ)(k + p)

m
+

C′1(1 + δ)2
(

4rank(M̄)(k + p + 2) log
(

1 + ‖X‖F‖Z‖F‖M̄‖F√
C′1

√
mkp

(k+p)rank(M̄)

)
+ 2 log 2

ε

)
mδ

]
.

Appendix A.5. Proof of Theorem 4

Proof. The proof is proceeded completely similar to the proof of Theorem 2, in Appendix A.3.

Appendix B. Comments on Algorithm Implementation

For the case of inductive matrix completion, we write the logarithm of the density of
the posterior

log ρ̂λ(M) = −λ

n

n

∑
i=1

(Yi − (ΠC(XMZ))i)
2 − p + m + 2

2
log det(τ2Im + MMᵀ).

Let us now differentiate this expression in M. Note that the term (Yi − (ΠC(XMZ))i)
2

does actually not depend on M locally if (XMZ)i /∈ [−C, C], in this case its differential with
respect to M is 0p×m. Otherwise, (Yi − (ΠC(XMZ))i)

2 = (Yi − (XMZ)i)
2. In order to be able

to differentiate the term (XMZ)i, let us introduce a notation for the entries of Ii: Ii = (ai, bi).
Then∇(XMZ)i = D where the matrix D ∈ Rp×m satisfies Dx,y = 1{x=bj}Xaj ,y. Then
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∇ log ρ̂λ(M) =
2λ

n

n

∑
i=1

(∇(XMZ)i)(Yi − (XMZ)i)1{|(XMZ)i |<C} − (p + m + 2)(τ2Im + MMᵀ)−1M.

The above calculation still requires to calculate a p× p matrix inversion at each iteration;
for very large p, this might be expensive and can slow down the algorithm. Therefore,
we could replace this matrix inversion by its accurately approximation through a convex
optimization. It is noted that the matrix B := (τ2Im + MMᵀ)−1M is the solution to the
following convex optimization problem: minB

{
‖Ip −M>B‖2

F + τ2‖B‖2
F
}

. The solution of
this optimization problem can be conveniently obtained by using the package ‘glmnet’ [50]
(with the family option ‘mgaussian’). This avoids performing matrix inversion or other
costly calculation. However, we note here that the LMC algorithm is being used with
approximate gradient evaluation; theoretical assessment of this approach can be found
in [51].

Algorithm A1 LMC

Input: The data.
Parameters: Positive real numbers λ, τ, h, T.
Output: The matrix M̂
Initialize: M0, M̂ = 0m×p
for k← 1 to T do

Sample Mk from (8);
M̂← M̂ + Mk/T

end for

Algorithm A2 MALA

Input: The data.
Parameters: Positive real numbers λ, τ, h, T
Output: The matrix M̂
Initialize: M0; M̂ = 0m×p
for k = 1 to T do

Sample M̃k from (9).
Set Mk = M̃k with probability AMALA, from (10), otherwise Mk = Mk−1 .
M̂← M̂ + Mk/T .

end for
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