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Abstract: Feature selection refers to a vital function in machine learning and data mining. The
maximum weight minimum redundancy feature selection method not only considers the importance
of features but also reduces the redundancy among features. However, the characteristics of various
datasets are not identical, and thus the feature selection method should have different feature
evaluation criteria for all datasets. Additionally, high-dimensional data analysis poses a challenge
to enhancing the classification performance of the different feature selection methods. This study
presents a kernel partial least squares feature selection method on the basis of the enhanced maximum
weight minimum redundancy algorithm to simplify the calculation and improve the classification
accuracy of high-dimensional datasets. By introducing a weight factor, the correlation between
the maximum weight and the minimum redundancy in the evaluation criterion can be adjusted to
develop an improved maximum weight minimum redundancy method. In this study, the proposed
KPLS feature selection method considers the redundancy between the features and the feature
weighting between any feature and a class label in different datasets. Moreover, the feature selection
method proposed in this study has been tested regarding its classification accuracy on data containing
noise and several datasets. The experimental findings achieved using different datasets explore the
feasibility and effectiveness of the proposed method which can select an optimal feature subset and
obtain great classification performance based on three different metrics when compared with other
feature selection methods.

Keywords: feature selection; Relief; maximum weight minimum redundancy; kernel partial least
squares

1. Introduction

Feature selection is a kind of critical issue in machine learning that aims to identify the
optimal feature subset by removing irrelevant or redundant features and enhancing the
accuracy of classification [1]. Feature selection has been extensively applied in image recog-
nition [2], text classification [3], image retrieval [4], fault diagnosis [5], bioinformatics data
analysis [6], and so on. Nowadays, feature selection methods are mainly categorized into
the following three main types: filter, wrapper, and embedded [1,7,8]. Filter methods [8,9]
are independent of the subsequent learning algorithms. In the above-mentioned methods,
the statistical performance evaluation characteristics of all training data are generally di-
rectly employed, which is a fast process, but the evaluation results show a large deviation
from the performance of the subsequent learning algorithms. Wrapper methods [9,10]
adopt the training accuracy of the subsequent learning algorithm for evaluating the feature
subset, which is inappropriate for large datasets due to its small deviation and the large
amount of calculation involved [1]. Embedded methods [11] combine the feature selection
training process with the feature learning algorithms, and the features are automatically
selected while the model training is completed. However, embedded methods are insuffi-
cient for special algorithms [12]. Relative to the wrapper and embedded methods, the filter
methods have been extensively applied in feature selection.
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Feature weighting represents the degree of association between any feature and a class
label [13]. The larger the feature weighting value, the stronger the classification ability of the
feature. Thus, feature weighting can reflect the classification discrimination ability of any
feature in a dataset. To date, numerous feature weighting methods have been developed for
feature selection on the basis of various strategies. The Pearson correlation coefficient (PCC)
method [1,14], based on features and classes, is a widely used statistical method for feature
weighting. However, this method can only be employed for continuous variables, and these
variables have line dependency. To counteract this drawback, Kendall’s rank correlation
coefficient has been adopted for feature weighting [15]. Mutual information [16,17] and
information gain [18] methods that are on the basis of information theory have also been
developed. The Relief method [14,19] based on feature weighting has been proposed as
a classification model. This method can analyze a sample and its nearest neighbors from
different classifications and the same classification. Thus, the importance of each sample
feature of the dataset can be demonstrated. The ReliefF method [20], as an extension of
the Relief algorithm, can describe multilabel feature selections. Moreover, the Fisher score
(FS) method [21] can be regarded as a supervised feature weighting method, representing
the recognition capability of each sample feature depending on its calculated Fisher score.
The Laplacian score [22], as an unsupervised feature weighting method, can analyze the
variance and local retention of each feature, reflecting the capability of each feature to retain
its original data manifold structure. Lastly, the Constraint score [23] can be applied in
semi-supervised and supervised learning by calculating the pair-wise constraints between
the data samples as the feature weighting. In addition to the above methods, there are
many other feature weighting methods. The reader can refer to the literature to learn the
details of these methods [1–3,8].

Redundancy represents the degree of correlation of any one feature with another in
a dataset. Minimum redundancy refers to the description of the dependence association
between features and requires minimum correlation between features. Thus, features are
selected by optimizing a special cost function, which is nothing but a trade-off between
the largest amount of information about the characteristics and the least redundancy
between any two features. The correlation-based feature selection (CFS) method [24]
exploits the heuristic method with the purpose of assessing the value of a feature subset,
which is on the basis of the assumption that the features included in the optimal feature
subset need to be highly related to the classification, whereas the selected features are
irrelevant. However, the fast correlation-based feature selection (Fast CFS) method [25] can
lower the computational complexity of the CFS algorithm by eliminating the redundant
features in the selected feature subset. Moreover, the minimum redundancy maximum
relevance (mRMR) method [26] adopts mutual information for measuring the redundancy
and relevance between the features. Further, two cost functions on the basis of mutual
information are constructed to acquire the optimal feature subset. However, the CFS, Fast
CFS, and mRMR methods can only be used for supervised learning tasks, and the number
of selected features cannot be provided in advance in the filter methods of space search.
In addition, the maximum weight and minimum redundancy (MWMR) method [27] has
been developed to search for the optimal feature subsets in accordance with maximum
weight and minimum redundancy. Moreover, the weight of each feature represents its
importance, and the redundancy reflects the relationship between the features. However,
due to the differences in the redundancy and feature weighting of different datasets, the
MWMR method cannot efficiently consider the redundancy among features and the feature
weighting between the feature and class labels of different datasets.

In addition, the various feature selection methods described above can efficiently
handle processing in linear systems, which makes them unable to take advantage of the
nonlinear relationships between variables. The partial least squares (PLS) method [28], as a
set of techniques, can map the input and output variables into a new space with the overall
objective of maximizing the covariance. The PLS method has been successfully adopted in
various applications of machine learning, however, this method is only suitable for feature
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selection in linear systems. As an extension of PLS, the kernel partial least squares (KPLS)
method [29], can address the nonlinear systems better than the PLS method. KPLS can
be adopted for selecting an optimal set of features. The kernel method employs a kernel
function that conforms to the inner product of the feature space, which avoids nonlinear
optimization [30,31]. Thus, the KPLS method is an effective and fast method to process
nonlinear systems and can be adopted for small and large datasets.

In the current work, a KPLS feature selection method on the basis of the improved
MWMR has been proposed. The method proposed in this study applies the advantages
of the KPLS feature selection method in nonlinear systems by using the ReliefF algorithm
to calculate the dependency between a feature and a class label. As an improvement to
the correlation of the maximum weight and minimum redundancy in the MWMR [27]
method, the method adjusts the ratio of the maximum weight and minimum redundancy
in the evaluation criteria of different datasets by adding a weight factor. To learn the classi-
fication performance of this method on different datasets, the proposed feature selection
method has been tested in line with the classification accuracy using a linear support vector
machine (SVM) classifier [32]. In order to obtain classification accuracy, the performance
of the proposed method has been compared with the FS [21], CFS [24], ReliefF [20], and
mRMR [27] methods by using a 10-fold cross-validation 10 times.

The remainder of this study has been structured as follows: The concept of PLS, KPLS,
and the related feature selection methods are shown in Section 2, the proposed KPLS
feature selection method is depicted in Section 3, the experimental findings are presented
in Section 4, and conclusions from this study and some future directions are illustrated in
Section 5.

2. KPLS Method and Feature Selection

In the current section, we first introduce the PLS and KPLS methods, and then describe
the improved MWMR algorithm and discuss its useful properties.

2.1. PLS Method

The PLS method has been proven to be a valuable and popular method for modeling
the correlation between two datasets. This method can also be applied in dimension
reduction techniques and modeling, as well as classification and regression.

Consider a pair of input data, X ∈ Rn×m, with n samples and m features and output
data, Y ∈ Rn×q, with n samples and q features. The PLS method mainly aims to maximize
the association between the input data, X, and the output data, Y, using an iterative method,
and applies least squares regression on the principal components. Thus, the PLS model
describes the maximum correlation between the input and output data, and can be adopted
for finding the approach to the following optimization problem [28]:

max
w∈Rm ,c∈Rq

< Xw, Yc >

s.t. wTw = 1, cTc = 1
(1)

where w and c represent the weight vectors of X and Y, respectively. This iterative process
can continue until a stop condition is satisfied [28].

2.2. KPLS Method

The KPLS method [29] was proposed to measure the nonlinear correlation in the kernel
space. In this method, a nonlinear multiple regression model is constructed between the
input and output variables. In addition, the original input variables are first transformed
into a high-dimensional or even infinite-dimensional feature space, and subsequently, the
linear PLS model is built in this high-dimensional feature space [29,33]. The KPLS method
avoids nonlinear optimization of the feature space by using kernel functions. Therefore, as
an iterative algorithm, the KPLS model can be introduced to process the feature selection
problem in low- and high-dimensional datasets.
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For a pair of input data, X ∈ Rn×m, with n samples and m features, output data, Y ∈
Rn×q, with n samples and q features, and a mapping function, ϕ(x) : Rm → F , the input
dataset, X, is mapped into a reproducing kernel Hilbert space, in which the target space can
be extremely large or even infinite-dimensional. Therefore, X and Y are transformed into the
feature matrices Φ(X) = [ϕ(x1), ϕ(x2), · · · , ϕ(xn)] and Φ(Y) = [ϕ(y1), ϕ(y2), · · · , ϕ(yn)],
respectively. The KPLS method aims to find projection matrices maximizing the association
between the input and output datasets. Therefore, the target function of KPLS can be
expressed as [33]:

max
w∈Rs ,c∈Rt

< Φ(X)w, Φ(Y)c >

s.t. wTw = 1, cTc = 1
(2)

where Kx = Φ(x)ΦT(x) ∈ Rn×n refers to a kernel Gram matrix. Based on the kernel kick,
this study avoids explicitly mapping the dataset into a high-dimensional feature space.
The detailed iteration process of the KPLS algorithm can be found in previously published
articles [29,33].

2.3. Improved MWMR Method

Weight (feature-class) and redundancy (feature-feature) analysis are the foundation of
the MWMR [27] method. Feature weighting is adopted for calculating the ranking of the
sample features based on the class labels, and relevance is used to calculate the redundancy
between the features of the sample dataset. To shorten the training time and clearly display
the correlation between the features in high-dimensional datasets, it is essential to choose
features with a high classification discrimination ability, which is the maximum weight
criterion. Further, to remove the redundant features from the dataset, two highly correlated
features should be avoided from appearing in the selected feature subsets, which is referred
to as the minimum redundancy criterion. The detailed maximum weight and minimum
redundancy criteria are explained below.

The maximum weight (MW) between a feature and a class label can be acquired
according to the feature weighting score (W_score(fi|c)), which is a number based on
feature weighting that describes the ranking of a feature, fi, with respect to its class label, c.
The MW can be written as

MW = max
i
{W_score( fi|c )} (3)

The feature with the highest W_score(fi|c) has the strongest classification ability,
whereas that with the lowest W_score(fi|c) has the lowest classification ability. There-
fore, the feature with the maximum weight should be selected and that with the minimum
weight should be deleted. This feature selection criterion is the MW criterion.

The minimum redundancy (MR) [34] between the features can be obtained with the
feature relevance score (R_score(fi|fj)), which is on the basis of the correlation between
features that describes the relevance of a selected feature, fi, with respect to a non-selected
feature, fj. Thus, let F be the set of all the features and F* be the set of the selected features.
Then, MR can be written as

MR = min
i,j
{R_score( fi

∣∣ f j )} (4)

where fi ∈ F∗; f j ∈ S, S = F − F∗. When two features are highly correlated, if one of
them is discarded, the classification ability of the remaining features does not change
much. Therefore, a non-selected feature and a selected feature with high redundancy can
be deleted. Instead, the non-selected features and the selected feature with minimum
redundancy should be selected. This feature selection criterion is the MR criterion [26].

The criterion used for determining the feature subset through the optimization of
the conditions in Equations (3) and (4) simultaneously is called MWMR [27]. However,
different datasets might lead to differences in the classification performance of the method
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used. Some datasets have more redundancy among their features, whereas others have
more feature weighting between their features and their class labels. Therefore, if the
redundancy and feature weighting in the evaluation criterion can be given different weight
factors according to the internal attribute relations of the datasets, the features of the
sample datasets can be learned accurately, and the effectiveness of feature selection can
be improved. Thus, a weight factor, α, can be introduced such that the weight factor of
the MW in the feature evaluation criterion is α and the weight factor of the MR is (1− α).
During feature selection of different datasets, when the MW of a dataset plays a leading
role, the value α corresponding to the MW is increased. On the contrary, the value (1− α),
corresponding to the MR, is increased so that the MR plays a greater role in the selected
feature subset. Thus, we can describe the improved MWMR model as:

R = max{αMW − (1− α)×MR)} (5)

where α is the weight factor that has been assigned to the MW in the optimizing criterion,
R. In addition, the value of α has been tested to be between {0,1}. This range begins with
α = 0, which corresponds to Equation (4), and ends with α = 1, corresponding to Equation
(3). When α = 0, the optimal feature selection criterion corresponds to choosing the optimal
feature subset only in accordance with the minimum redundancy between the features.
When α = 1, the optimal criterion for feature selection corresponds to choosing the optimal
feature subset only in accordance with the maximum weight between the feature and its
class label. The optimal value of α has been determined by the 10-fold cross-validation
classification accuracy [35].

3. Proposed KPLS Feature Selection on the Basis of the Improved MWMR Method

In the current work, our objective is to provide an efficient feature selection method
for selecting the optimal feature subset, thus improving the speed and accuracy of the
subsequent data classification process.

The MWMR algorithm [27] not only takes the association between feature weighting
and class labels into account but also the redundancy between the features; additionally,
it has high computational efficiency and is suitable for processing high-dimensional or
large-scale datasets. However, in practice, some features in the datasets are strongly related
to their class labels, whereas others are highly redundant. Therefore, the effectiveness of
feature selection can be improved by assigning feature weighting and redundancy in the
evaluation criterion depending on the internal attribute correlation of the datasets. On
the other hand, the MWMR method [27] does not take into consideration the different
correlations among feature weighting, redundancy, and classification in different datasets.
To overcome these problems of this method, we have proposed an improved MWMR
method, as described in Section 2. This has been achieved by introducing a weight factor, α,
into the evaluation criterion such that the weight factor of the MW in the feature evaluation
standard is α, and the weight factor of the MR is (1 − α). Feature selection can then
be performed for different datasets, α can be increased when the MW of the datasets
exerts a dominant function, and the value of α corresponding to the MR can be increased
conversely. In addition, the KPLS method can efficiently avoid nonlinear optimization
problems with the use of kernel functions. This method can map the data to latent vectors
and subsequently employ linear regression to those components, making it usable for both
small and large-scale data.

Therefore, the present study shows a KPLS feature selection method in accordance
with the improved MWMR (KPLS-MWMR) method. It is shown that the proposed feature
selection method can calculate and enhance the classification accuracy of low-dimensional
as well as high-dimensional datasets. When identifying a set to be the optimal feature
subset, it not only considers the correlation between feature weighting and redundancy
but also makes use of the advantages of the KPLS method to avoid nonlinear optimization.
The proposed KPLS-MWMR method contains the following five basic steps:
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(1) Calculation of the latent matrix using the KPLS algorithm;
(2) Calculation of the feature weighting score (W_score(fi|c)) based on the feature, fi, and

the class label, c, of the dataset;
(3) Calculation of the feature redundancy score (R_score(fi|fj)) based on the features fi

and fj of the dataset;
(4) Calculation of the objective function, R, according to the feature weighting score and

feature redundancy score;
(5) Selection of an optimal feature subset on the basis of the objective function, R.

The flow chart of the proposed KPLS-MWMR feature selection method including
the basic steps is shown in Figure 1 and the proposed KPLS-MWMR feature selection
method is presented in Algorithm 1. First, the latent matrix is computed using the KPLS
algorithm [29]. Second, the feature weighting scores for the sample dataset are generated
using the ReliefF algorithm [20]. The characteristics of the sample dataset are arranged in
descending order in accordance with the feature weighting scores, and the feature with the
maximum feature weighting score in the dataset is selected. Third, the redundancy score
between the selected feature and the non-selected features of the dataset is obtained using
the PCC algorithm [14]. Finally, based on the features and the class labels, the objective
function, R, can be calculated, and the optimal feature subset is chosen.

Algorithm 1. KPLS based on maximum weight minimum redundancy (KPLS-MWMR).

Input: Feature dataset, X ∈ Rn×m, class label, Y ∈ Rn×1, feature number, k,
weight factor, α.
Output: A selected feature subset, F*.
(1) Initialize the feature dataset, F;
(2) Let the feature set F∗ = ∅;
(3) Calculate the latent matrix: F = KPLS(X,Y) using the KPLS algorithm [29];
(4) Calculate the feature weighting score: W_score (F|Y) using the Relief F algorithm [20];
(5) Arrange the feature weighting score in descending order: [WS, rank] = descend(W_score(F|Y));
(6) Form a feature subset S = X(:, rank);
(7) Select the optimal feature subset F* = S(:, 1);
(8) For each j < k;
(9) f 1 = S(:, j);
(10) w = WS(:, j);
(11) Compute the feature redundancy score, r = R_score(f 1|(S − F*)) using the PCC algorithm [15];
(12) Calculate the evaluation criteria, R : R = αw− (1− α)r according to Equation (5);
(13) Arrange the values of R in descending order: [weight, rank] = descend(R);
(14) Update F*: F* = [ F*, S (:, rank(1))];
(15) Delete the selected optimal feature in S: S(:,rank(1)) = [ ];
(16) Update j: j = j + 1;
(17) Repeat;
(18) End;
(19) Return the optimal subset F* of k features.

The FS [21], CFS [24], ReliefF [20], mRMR [27], and the proposed KPLS-MWMR
methods can perform feature selection with supervised learning. However, the FS [21]
method calculates the feature weighting according to their recognition ability without
considering the redundancy between the features. The CFS [24] method chooses the
features that are the most associated with the class label and have the least redundancy with
the selected features in order to form the optimal feature subset, whereas the redundancy
between the features is ignored. The ReliefF [20] method is based on the feature weighting
between the features and the class label without considering the redundancy between the
features. In addition, the mRMR [27] method can measure the connection between the
features and the class labels and the redundancy of the feature subsets in line with the
mutual information values but neglects the redundancy between the features in different
datasets and the different association between the features and the class labels. Compared
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to the FS, CFS, ReliefF, and mRMR methods, the proposed KPLS-MWMR algorithm not
only considers feature weighting and feature redundancy but also considers the correlation
between feature weighting and feature redundancy for different datasets.
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4. Experimental Results

For the purpose the evaluating the feature selection performance of the proposed
KPLS-MWMR method, experiments were conducted by applying this method on specific
datasets, and the results thus obtained were compared with those obtained by applying
FS [21], CFS [24], ReliefF [20], and mRMR [27] methods on the same datasets. Here, the
linear SVM classifier [32] was used as the base classifier that came with MATLAB 2016a. All
the involved experiments were run on a PC comprising an Intel Core i3 2100 CPU with a
maximum of 4 GB of memory, having a Windows 10 operating system, and using MATLAB
2016a software.

Three groups of experiments were performed. The first set of experiments was carried
out using synthetic data to show the effect of the weight factor, α, and the redundant
features on the classification performance of the proposed KPLS-MWMR method. The
experimental results showed the effectiveness of the proposed feature selection algorithm.
The second set of experiments was performed to analyze the learning performance of
the proposed KPLS-MWMR and other feature selection methods by adopting several real
datasets. Here, three evaluation criteria, namely, the classification accuracy, the kappa
coefficient, and the F1-score, were adopted to distinguish the superiority of the different
feature selection methods. In addition, a third set of experiments was performed for
describing the sensitivity of α on the KPLS-MWMR method by analyzing the classification
performance of the method at different values of α.
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4.1. Experiments Were Performed Using Synthetic Data

This subsection presents the findings that confirmed the effectiveness of the proposed
method, which was investigated by applying this method to a synthetic dataset to eliminate
the redundant features. Initially, the classification performance of the proposed method
after eliminating the redundant features under different weight factors was evaluated. Fur-
ther, the impact of different noise levels on the classification performance of the proposed
feature selection was analyzed. Finally, the classification performances of diverse feature
selection methods in eliminating redundant features were investigated.

Based on a previous study [36], synthetic datasets involving three classes were con-
structed in this work which obeyed the normal distributions N(5, 1), N(10, 1), and N(15, 1),
respectively. Each class of the dataset included 100 instances and three numerical features.
A total of 100 noise features were added to each instance that was subjected to the normal
distribution N(0, 0.01).

To decrease the impact of the irrelevant and redundant features on the classification
results, 10-fold cross-validation was adopted for computing the classification accuracy
on the synthetic datasets. The above process was repeated 10 times, with the average
value being taken as the final result. The classification performance of the KPLS-MWMR
algorithm was compared with that of the other associated methods, namely, the FS, CFS,
ReliefF, and mRMR algorithms.

Taking the synthetic dataset with 100 noise features as the example to illustrate the
process of the proposed KPLS-MWMR algorithm on the top three features selected in
detail, we observed the following: (1) The classification performance was described after
eliminating the redundant features for different values of α, as displayed in Figure 2. Based
on Figure 2, it was found that the classification accuracy is different for different values
of α, which range from 0.1 to 0.9. When α is 0.3, the highest classification accuracy was
obtained. (2) Table 1 lists the classification accuracy results of the first three features chosen
by the FS, CFS, mRMR, ReliefF, and KPLS-MWMR feature selection algorithms. Except for
the CFS algorithm, all other algorithms can accurately choose the real features, indicating
that the class correlation is preserved in these methods for identifying the redundant
features. To some extent, the classification accuracy of the FS and mRMR methods is lower
compared to that of the ReliefF method. The KPLS-MWMR algorithm exhibits the highest
classification accuracy.
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Table 1. Top three features chosen by the different feature selection algorithms.

Algorithms Top Three Features Accuracy

FS f1, f2, f3 0.973
CFS f52, f58, f3 0.907
mRMR f3, f2, f1 0.973
ReliefF f3, f2, f1 0.977
KPLS-MWMR f1, f3, f2 0.983

The feature selection performance of the KPLS-MWMR method was further tested
by applying it to five synthetic datasets containing different amounts of noise features.
The number of noise features was elevated from 100 to 500. Based on Figure 3, for all
datasets, the classification accuracy is the highest when the number of features is three. The
classification accuracy tends to increase initially with the elevating number of features but
subsequently decreases as the noise features are added.
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4.2. Experiments Performed Using Public Data

In order to efficiently and intuitively analyze the feature selection performance of the
proposed KPLS-MWMR method, this method and four other feature selection methods,
namely, the FS, CFS, mRMR, and ReliefF methods, were applied to eight datasets, which
are often adopted for the evaluation of the performance of the feature selection methods.
Ten datasets were employed to perform the experiments. Seven datasets, Ionosphere,
Sonar, Musk, Arrhythmia, Madelon, LSVT, and DrivFace, can be downloaded from the UCI
machine learning repository [37], and three datasets, namely, SRBCT, Lung, and Carcinom,
are gene expression datasets from the Kent Ridge biomedical dataset repository [38]. These
datasets were classified into training and testing datasets, where the training datasets
were employed to choose the features, and the testing datasets were used for evaluating
the classification performance of the different methods based on the linear SVM classifier.
Additionally, the whole dataset was categorized into a 70% training set and a 30% testing
set. Table 2 presents the details of the different datasets. A Gaussian kernel function,
K(x, y) = exp(−‖x− y‖2/s), with different scale or width parameters, s, was used for all
the datasets [35]. The value of s for each dataset was tuned using a validation set before
performing the calculations.
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Table 2. Description of the ten different datasets used for evaluating the performance of the proposed
KPLS-MWMR method and four other feature selection methods.

Datasets Instances Features Class Training

Ionosphere 351 34 2 246
Sonar 208 60 2 146
Musk 4776 166 2 3343
Arrhythmia 452 274 13 316
SRBCT 83 2308 4 58
Lung 203 3312 5 142
DrivFace 606 6400 3 424
Carcinom 174 9182 11 122
LSVT 126 310 2 88
Madelon 2000 500 2 1400

The classification performance was evaluated on the basis of three extensively applied
metrics, namely, the classification accuracy, the kappa coefficient, and the F1-score. In order
to obtain convincing experimental results, 10-fold random cross-validation was employed,
and the average values of the three metrics were recorded.

(1) Classification accuracy

Classification accuracy refers to an index that can be employed to evaluate the feature
selection models. Generally, the accuracy rate suggests the proportion of the samples
correctly predicted by our model to all the samples that are involved in the prediction.
Figure 4 presents the average classification accuracy of the diverse feature selection methods
with the use of the selected features.

(2) Kappa coefficient

The kappa coefficient [39] refers to a measure of classification accuracy. In addition,
the calculation of the kappa coefficient is on the basis of the confusion matrix in an N-
class problem. The kappa coefficient is calculated as kappa = (p0 − pe)/(1 − pe), where
p0 represents the overall classification accuracy and pe denotes the overall classification
accuracy expected by chance. Table 3 presents the kappa coefficients of the various feature
selection methods obtained by applying them to the eight datasets.

(3) F1-score

The F1-score [40] is a measurement index of the classification problem, which considers
the accuracy as well as recall of the classification model. Based on a maximum value of 1
and a minimum value of 0, the F1-score is considered to be a weighted average of the model
accuracy and recall. Table 4 gives the F1-score of the different feature selection methods
obtained by applying them to the eight datasets.

The feature selection performance of the proposed KPLS-MWMR method can be
observed in Figure 4, in which the findings of this method have been compared with
those of the FS [21], CFS [24], mRMR [27], and ReliefF [20] methods by applying them
on the eight datasets, namely, the Musk, Arrhythmia, SRBCT, Lung, DrivFace, Carcinom,
LSVT, and Madelon datasets. Here, the linear SVM classifier was employed to be the
base classifier with the aim of testing the classification performance. Furthermore, the
classification accuracy was obtained by 10-fold cross-validation. The x-axis refers to the
number of selected features and the y-axis represents the average classification accuracy of
10 randomized experiments obtained using each feature selection method. The number of
selected features was increased from 10 to 100.
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Table 3. Kappa coefficients obtained by applying the various feature selection methods to the eight
datasets.

Datasets
Feature Selection Method

FS CFS mRMR ReliefF KPLS-MWMR

Musk 0.4807 0.5019 0.4519 0.4397 0.5143
Arrhythmia 0.1726 0.2277 0.3244 0.2772 0.3410
SRBCT 0.7510 0.6698 0.8994 0.8829 0.9383
Lung 0.8087 0.7864 0.8271 0.8876 0.8367
DrivFace 0.4295 0.7050 0.6832 0.6460 0.7062
Carcinom 0.6770 0.6295 0.7438 0.7303 0.7649
LSVT 0.5935 0.5490 0.6369 0.5714 0.6871
Madelon 0.1980 0.0450 0.0780 0.2240 0.2277

Table 4. F1-scores obtained by applying various feature selection methods to the eight datasets.

Datasets
Feature Selection Method

FS CFS mRMR ReliefF KPLS-MWMR

Musk 0.7403 0.7504 0.7259 0.7193 0.7564
Arrhythmia 0.4576 0.4851 0.4134 0.4951 0.4954
SRBCT 0.8027 0.7828 0.9300 0.9191 0.9642
Lung 0.7654 0.7947 0.8186 0.8930 0.8230
DrivFace 0.5864 0.8057 0.7891 0.7689 0.8094
Carcinom 0.6519 0.6034 0.7206 0.7099 0.7315
LSVT 0.7941 0.7705 0.8168 0.7824 0.8433
Madelon 0.5990 0.5230 0.5390 0.6120 0.6220

Figure 4a–h shows the performance of the various feature selection methods with the
SVM classifier. In line with the results, the classification accuracy can be enhanced when
the number of selected features increases. As presented in Figure 4a, the optimal weight
factor, α, is 0.3 for the Musk dataset. Using the KPLS-MWMR method with 100 selected
features, the highest classification accuracy can be obtained. The classification accuracy
of the FS method is close to that of the mRMR and ReliefF methods with 100 selected
features. The CFS method exhibits the lowest classification accuracy. In Figure 4b, the
optimal value of α is 0.3 for the Arrhythmia dataset. The highest classification accuracy
on the Arrhythmia dataset is obtained using the KPLS-MWMR method with 90 selected
features. The classification accuracy of the FS, CFS, mRMR, and ReliefF methods with
100 selected features is close to the KPLS-MWMR method. The CFS method exhibits the
lowest classification accuracy for 100 selected features. In Figure 4c, the optimal value of α
is 0.9 for the SRBCT dataset. For this dataset, the highest classification accuracy is exhibited
by the KPLS-MWMR method with 80 selected features. The classification accuracy of the
mRMR and ReliefF methods with 100 selected features is close to the KPLS-MWMR method.
The FS and CFS methods exhibit little difference in their classification accuracy in relative
to the mRMR and ReliefF methods, but the number of selected features is 90. As presented
in Figure 4d, the optimal value of α is 0.1 for the Lung dataset. The highest classification
accuracy for this dataset is exhibited by the KPLS-MWMR method with 90 selected features.
The lowest classification accuracy is exhibited by the FS method with 100 selected features.
The classification accuracy of the ReliefF and mRMR methods is closer to the KPLS-MWMR
method with the same number of selected features. In Figure 4e, the optimal value of α is
0.5 for the DrivFace dataset. Using the KPLS-MWMR method with 50 selected features, the
highest classification accuracy is achieved for this dataset, whereas the lowest classification
accuracy is exhibited by the FS method with 60 selected features. The classification accuracy
of the CFS, ReliefF, and mRMR methods is similar and the number of selected features
remains the same. Based on Figure 4f, the optimal value of α is 0.5 for the Carcinom dataset.
Moreover, the highest classification accuracy for this dataset is obtained with the use of the
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KPLS-MWMR method with 100 selected features. With the increasing sample number, the
rate of change of classification accuracy of the mRMR and ReliefF methods can be observed
to be relatively large. With the number of features being 100, the classification accuracy of
the mRMR and ReliefF methods is close to that of the KPLS-MWMR method. In Figure 4g,
the optimal value of α is 0.7 for the LSVT dataset. The highest classification accuracy is
obtained for this dataset using the KPLS-MWMR method with 80 selected features. Among
the different feature selection methods, the classification performance of the CFS method
is the lowest. In Figure 4h, the optimal value of α is 0.1 for the Madelon dataset. With
the number of selected features being lower than 50, the classification performance of the
proposed algorithm is poor compared to that of the ReliefF method but better than that of
the CFS and mRMR methods. Nevertheless, with the number of selected features starting at
50, the KPLS-MWMR method exhibits better classification performance. With the number
of selected features being 80, the highest classification accuracy can be obtained by the
KPLS-MWMR method.

From the above experimental results, it is found that the classification performance of
the proposed algorithm exceeds that of the FS, CFS, mRMR, and ReliefF methods. Since
the datasets used in the evaluation include low- as well as high-dimensional datasets,
the classification performance of the KPLS-MWMR feature selection algorithm proves its
efficiency for both types of datasets. This also indicates that the performance of classification
learning can be efficiently enhanced by choosing the features that are most associated with
the classification by feature weight, as well as the features with the least redundancy among
the selected features.

The kappa coefficients and the F1-score obtained by applying the various feature
selection methods on the eight datasets are given in Tables 3 and 4. Here, in the experiments
for calculating these two metrics, the number of selected features reaches 50. According to
the findings of all the experiments, it is observed that the KPLS-MWMR method exhibits
comparatively good performance on most datasets. The performance of the proposed
method is better relative to that of the mRMR and ReliefF methods, which indicates that the
proposed algorithm exhibits advantages in preserving the features required for accurate
classification. Among all the methods considered in this study, the performance of the FS
method is poor, suggesting that it is insufficient for classifying samples by considering only
feature weighting.

In conclusion, the KPLS-MWMR algorithm exhibits superior learning performance
compared to the other feature selection algorithms considered in this study. This illus-
trates that the KPLS-MWMR algorithm is feasible for classification learning by introducing
a weight factor,α, to adjust the ratio between the maximum weight and minimum re-
dundancy. Accordingly, the optimal feature subset can be found by keeping the ratio
of the maximum weight to the minimum redundancy in order to accurately learn its
classification performance.

4.3. Weight Factor Sensitivity Analysis

For different datasets, the feature evaluation criteria of the algorithm assign different
weight factors to the maximum weight and the minimum redundancy, thus highlighting
the characteristics of different datasets. In the KPLS-MWMR method, the weight factor,
α, determines the ratio between the maximum weight and minimum redundancy in the
calculation criterion, which needs to be adjusted continuously to obtain an optimal feature
subset based on feature selection.

For simplicity, we have classified the datasets into two types (low-dimensional and
high-dimensional datasets) and have presented the results, according to the classification
accuracy, in Figure 5. For the low-dimensional datasets, namely, the Ionosphere, Sonar,
Musk, and Madelon datasets, the optimal feature number, k, of the datasets was set to 10.
For the high-dimensional datasets, the SRBCT, Lung, DrivFace, and Carcinom datasets,
only 1% of the total number of features in the datasets were selected for the feature selection
experiment. In Figure 5a, the highest classification accuracy on the Ionosphere, Sonar,
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Musk, and Madelon datasets is obtained using the KPLS-MWMR method, and the weight
factor values are 0.9, 0.7, 0.5, and 0.6, respectively. In Figure 5b, the highest classification
accuracy on the SRBCT, Lung, DrivFace, and Carcinom datasets is obtained using the
KPLS-MWMR method, and the weight factor values are 0.6, 0.1, 0.3, and 0.4, respectively.
When the same weight factor is selected, the classification accuracy of low-dimensional and
high-dimensional datasets may be different. It has been observed that: (1) For the same
dataset, the classification accuracy might vary depending on the value of the weight factor
α. (2) For different datasets, the classification accuracy might be different even when the
same value of the weight factor α is used. (3) The best results are obtained for the value of
the weight factor α that is less than 0.5 for most of the datasets used in this study.
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5. Conclusions

To conclude, a KPLS feature selection method based on the maximum weight mini-
mum redundancy technique was put forward to modify its classification performance. First,
using the proposed KPLS-MWMR, the influence of the weight factor and the redundant
features on the classification performance was investigated. According to experimental
results, the effectiveness of the proposed feature selection algorithm was confirmed. Sub-
sequently, the classification performance of the proposed KPLS-MWMR and four other
feature selection methods on several real datasets was analyzed concerning three evalu-
ation criteria, namely, the classification accuracy, the kappa coefficient, and the F1-score,
to distinguish the superiority of the feature selection methods. From the comparison of
the results, it was observed that the performance of the proposed KPLS-MWMR method
was notably improved relative to the FS, CFS, mRMR, and ReliefF methods. Finally, the
sensitivity of the weight factor was investigated using the KPLS-MWMR method by ana-
lyzing its classification performance at different weight factors. In future work, the feature
selection model of high-dimensional small sample datasets and the feature selection model
of classified unbalanced datasets will be proposed to solve the feature selection problem of
high-dimensional small sample data and classified unbalanced data.
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