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Abstract: A growing number of papers on style transfer for texts rely on information decomposition.
The performance of the resulting systems is usually assessed empirically in terms of the output quality
or requires laborious experiments. This paper suggests a straightforward information theoretical
framework to assess the quality of information decomposition for latent representations in the context
of style transfer. Experimenting with several state-of-the-art models, we demonstrate that such
estimates could be used as a fast and straightforward health check for the models instead of more
laborious empirical experiments.
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1. Introduction

Natural language generation (NLG) is a challenging task. The discrete nature of textual
information [1] leads to non-smooth disentangled representations and the absence of local
information continuity [2] that make natural language generation even more complicated.
One of the NLG tasks is style transfer for texts. This task is often addressed in the con-
text of disentangled latent representations [1,3–9]. These works use an encoder–decoder
architecture with one or multiple style discriminators to improve latent representations.
An encoder takes a given sentence as an input and generates a style-independent content
representation. The decoder then uses this content representation and a target style repre-
sentation to generate a new sentence in the needed style (for a detailed review of modern
text style transfer we address the reader to [10]).

There is a variety of benchmarks and methods used to compare the relative perfor-
mance of the proposed architectures, see [11–13]. Yet, there is little rigorous work on
how one could assess the quality of the resulting representations. For example, ref. [14]
demonstrate that the quality of style and content decomposition depends on the particular
architecture and models, with better information decomposition quality outperforming
the state-of-the-art models in terms of BLEU (bilingual evaluation understudy) [15] be-
tween output and human-written reformulations. (BLEU’s output is always a number
between 0 and 1. This value indicates how similar the candidate text is to the reference
texts, with values closer to 1 representing more similar texts.) However, the experiments
that illustrate this are very computationally intensive. This paper suggests assessing the
quality of the obtained representations in a more effective, straightforward way and shows
that the proposed theoretical estimates correspond to the empirical results. Since infor-
mation decomposition within a latent representation might play a key role in minute text
manipulation, ref. [1] hope that a computationally light model that assesses the quality
of information decomposition in a given architecture could be instrumental for further
research in natural language generation.
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2. Related Work

The problem of text style transfer (TST) needs a more rigorous definition [16]. However,
there are some attempts to quantify literary style, see [17]. Ref. [18] states that stylized
texts could be generated if a system is trained on a dataset of stylistically similar texts.
Ref. [19] show that the literary styles of the authors could be learned end-to-end.

Most recent contributions in the field address specific narrow aspects of style that
could be empirically measured. Such stylistic attributes of text range from politeness [20],
the ‘style of the time’ [17] and formality of speech [11] to author-specific attributes (see [21]
or [22] on ‘shakespearization’), gender or political slant [23]. These attributes themselves
are defined with varying degrees of rigor. Refs. [4,24] define a style as a set of arbitrary
quantitatively measurable categorical or continuous parameters that could be automatically
estimated with an external classifier. Further in this paper, we work with this empirical
paradigm of literary style. It is widely used in modern text style transfer research since it
allows natural extensions due to the compositionality of stylistic features. For example,
ref. [12] provide a dataset for fine-grained stylistic changes as building blocks for more com-
plex, high-level transfers, or [25] suggest treating style transfer as one-to-many mapping
instead of one-to-one correspondence.

Many TST contributions either use an idea of an adversarial component to ensure
that semantic representations contain no stylistic information [4] or combine it with some
additional constrictions. For example, ref. [3] apply a GAN to align hidden representations
of sentences from two corpora and use an adversarial loss to decompose information
about the form of a sentence. Ref. [6] introduce adversarial–motivational training that
includes a special motivational loss to encourage a better decomposition. Ref. [5] develop a
structured content-preserving model that leverages linguistic information in the structured
fine-grained supervision to preserve the style-independent content better. Ref. [7] show
that the decomposition of style and content could be improved with an auxiliary multi-task
for label prediction and adversarial objective for a bag-of-words prediction.

Recently, ref. [26] propose a new information-theory-motivated architecture for style
transfer. They develop a method that leverages mutual information upper bound to
measure dependence between style and content. Ref. [27] propose a method that can
decompose speech into four components by introducing three information bottlenecks. The
majority of the approaches mentioned above use some form of disentangled representation
learning (DRL) [7], yet there are only a handful of methods to assess the relative quality
of the obtained representations provided by different architectures. This paper addresses
latent representation quality assessment in an information-theoretic framework called
partial information decomposition. We propose a straightforward information-theory-
based approach and demonstrate that the proposed estimates correspond to the empirical
results but are significantly less computationally demanding.

In this paper, we experiment with a subtask of sentiment transfer. There is a discussion
if the sentiment of a text could be regarded as its stylistic attribute, see [28]. However,
numerous style transfer papers regard sentiment transfer as a viable task for the style
transfer system. For example, refs. [29–31] estimate the quality of the style transfer with
pre-trained binary sentiment classifiers.

3. Style Transfer

Consider the text style transfer that comprises an encoder–generator pair
M = { fθenc , fθgen} parameterized by neural networks. The input to the model is a sentence
x = (w1, . . . , wT) where wi ∈ Rdw and its style variable y ∈ {0, 1}. The encoder maps x to
a latent representation z ∈ Rdz . The generator then takes z and y as inputs to generate a
new sentence x̂. Ideally, changing the value of y should generate x̂ in a different style.

There are various methods for the evaluation of text style transfer models. For a
detailed overview of modern semantic similarity measures and their applicability to the
problem of style transfer, we address the reader to [32]. Instead of assessing the system’s
overall performance, this paper focuses on the latent space that the style transfer model
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uses. Several TST papers state that precise text manipulation is enabled through effective
information representation. However, there is no method that could compare the quality of
latent spaces obtained by two different architectures. In this paper, we demonstrate that
one can compare the rate of information decomposition achieved by a given model using
measures from information theory.

4. Qualifying Latent Representations with Coinformation

Mutual information (MI) was originally proposed in Claude Shannon’s article “A
Mathematical Theory of Communication” [33]. Given three jointly distributed random
variables (X, Y, Z) ∼ P, the mutual information between X and Y and Z can be decomposed
into information that Y has about X that is unknown to Z (we call this the unique information
of Y w.r.t. Z) and information that Y has about X that is known to Z (we call this the shared
or redundant information. Using the chain rule, the mutual information between X and
(Y, Z) can be decomposed into four terms:

I(X; Y, Z) (1)

= UI(X; Y\Z)︸ ︷︷ ︸
unique information of Y w.r.t. Z

+ SI(X; Y, Z)︸ ︷︷ ︸
shared information

+ UI(X; Z\Y)︸ ︷︷ ︸
unique information of Z w.r.t. Y

+ CI(X; Y, Z).︸ ︷︷ ︸
complementary information

This decomposition is part of a framework called partial information decomposition
(PID) and was originally proposed by [34]. Ref. [35] made a now widely used proposal for
concrete measures for the terms in Equation (1). The difference of the shared and synergistic
information is equal to the coinformation [36,37], a symmetric measure of the correlation
between three random variables:

CoI(X; Y; Z) = SI(X; Y, Z)− CI(X; Y, Z)

= I(X; Y)− I(X; Y|Z)
= I(Y; Z)− I(Y; Z|X)

= I(X; Z)− I(X; Z|Y) (2)

Coinformation is also widely used in neurosciences, with negative values interpreted as
synergy and positive values as redundancy.

In the text style transfer (TST) setting, X represents the input text, Y its stylistic content
and Z is the latent representation of the input that ideally should only capture the semantic
content of X. In terms of the information decomposition in Equation (1) this would
mean that when we decompose X there is unique information while the shared and the
complementary information vanish. Since style Y is independent of latent representation Z
given original input text X, the following statement holds

CoI(X; Y; Z) = I(Y; Z)− I(Y; Z|X)︸ ︷︷ ︸
=0

= I(Y; Z). (3)

We propose to use I(Y; Z) as a proxy to measure the quality of the latent representation Z.
Because Equation (3) implies that the shared information SI(X; Y, Z) is always greater than
or equal to the complementary information CI(X; Y, Z), we can say that a successful text
style transfer should transfer only the semantic aspect of X into Z and therefore has low
I(Y; Z). In other words, these models should learn the latent representation Z in such a
way that it keeps the redundant information SI(X; Y, Z) as low as possible.
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5. Experiments

This section calculates the proposed I(Y; Z) for eight different style transfer archi-
tectures and shows how such a quantity can characterize the quality of the information
decomposition in two given latent spaces.

5.1. Calculating Mutual Information

A framework for MI estimation between two continuous distributions was pro-
posed [38]. This method is based on the estimator for differential entropy. In particular, one
could apply the framework for the case where one of the distributions is continuous and
another one is discrete [39] as follows

I(X, Y) = ψ(N)− 〈ψ(Nx)〉+ ψ(k)− 〈ψ(m)〉,

where ψ(·) is the digamma function, 〈·〉 is the overall averaging of points from the dataset,
N is the total number of points in the dataset, Nx is the number of points for the given
value x of discrete distribution, k is the number of nearest neighbors and m is the number
of points which are closer than the k-th neighbor to the given point.

We conduct our experiments on [5] human-rewritten Yelp! Reviews: the dataset
contains 998 original and 998 reformulated Yelp! Reviews that are rewritten into either
positive or negative sentiment. As shown in Figure 1, we experiment with six different text
style transfer models, namely [1]’s autoencoder with discriminators that we further denote
as (Baseline);autoencoder model with discriminators (ZDiscr), shifted autoencoder (SAE)
and shifted autoencoder with discriminators (SAEZDiscr) introduced in [9]; Ref. [3]’s
autoencoder for mapping texts written in different styles in the same latent space (Shen);
Ref. [5]’s autoencoder with discriminator which trained with additional language model
and part of speech losses (TianFull); a version of TianFull trained without additional lan-
guage model loss (TianWithoutLM); and a version of TianFull trained without additional
part of speech loss (TianWithoutPOS). In every figure, solid lines represent inputs and
the dashed blue lines connect inputs compared by discriminators. In contrast, the dashed
red line stands for the soft output of the architecture passed to the encoder to explicitly
minimize the distance between latent representations of input and output.

Out of the architectures in question, only the one proposed by [3] does not use addi-
tional tools to estimate the quality of the output x̂ to improve information decomposition
in the encoder. Instead, it explicitly tries to minimize the distance between the aligned
mapping of the sentences with different styles.

5.2. Exploring Latent Spaces

Let us obtain some intuition on the underlying geometry of the obtained latent spaces.
k-means clustering could be a straightforward and intuitive method to obtain such intuition.
K-means, by default, uses a within-cluster sum of squares criterion. Since the estimate in
Equation (4) uses nearest neighbors, it could be prone to noise depending on the structure
of the resulting latent space. Figure 2 shows how the within-cluster sum of squares criterion
changes for all architectures and their modifications as we choose different numbers of
clusters. Figure 2 highlights vital differences between architectures. The lower clustering
coefficient implies local dense clusters in a latent space, while the higher clustering co-
efficient implies that clusters are not dense. We see that some architectures such as SAE
provide latent spaces with a smaller number of dense clusters, while others, like the model
introduced in [5], obtain latent representations with no distinct structure, rather, latent
representations form a cloud of points in the latent space.
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Figure 1. Text style transfer models evaluated in this work. Dashed lines indicate auxiliary training
procedures that ensure z capturing the semantic content: the discriminators are denoted with blue
color and the distance constraint is denoted with red. (a) Baseline: Variational autoencoder with
discriminators [1]. (b) ZDiscr: Autoencoder with an additional discriminator [9]. (c) SAE: Shifted
autoencoder [9]. (d) SAEZDiscr: Shifted autoencoder with an additional discriminator [9]. (e) Shen
et al. (2017): Aligned autoencoder [3]. (f) Tian et al. (2018): Autoencoder with LM and POS losses [5].
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Figure 2. Clustering coefficient as a function of a number of clusters in a latent space obtained by
architectures. Refs. [1,3,5].

Having this basic intuition, let us now calculate a mutual information estimate accord-
ing to Equation (4) setting the number of nearest neighbors to three as recommended in [39].
Figure 3 shows the obtained estimates of MI alongside BLEU scores between model outputs
and human rewrites. Higher BLEU corresponds to better performance of the model. One
sees that there is a general correspondence between the proposed MI estimate and the
performance of the model. The nature of the models is different, and the results are prone
to noise, yet there is a general tendency that models that achieve lower mutual information
between stylistic variable and semantic representation tend to perform better in terms of
BLEU between model outputs and actual human rewrites.

Figure 3. Estimated mutual information between target style and latent representation and BLEU
between model output and human rewrites. Lower mutual information corresponds to higher BLEU
and better performance. Refs. [1,3,5].
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5.3. Correspondence with Empirical Results

In [14], the authors used a method proposed originally in [40] to see if better infor-
mation decomposition corresponds to better style transfer performance. We reproduce
and enhance these experiments here to see if our methodology aligns with these empirical
results. The methodology originally proposed in [40] is as follows. To see if the encoder
manages to decompose semantic and stylistic information, one can train a stand-alone
artificial neural network that tries to predict the style of the input using its resulting latent
representation. The lower accuracy of such classifiers corresponds to the higher quality
of information decomposition. In [9], the authors show that the architectures used for
style transfer are noisy. This means that to calculate the standard deviation for the results
obtained with this method of information decomposition quality estimation, one has to
retrain every architecture from scratch. Such experiments are computationally intensive
and have to be tailored for every architecture.

Ref. [40] train a stand-alone artificial neural network that tries to predict the style of the
input using its resulting latent representation. The authors suggest that the lower accuracy
of such classifiers corresponds to a higher quality of information decomposition. Figure 4
shows the measurement of such external classifiers’ accuracy along with the estimates
of MI proposed earlier in this paper. We run eight experiments with every architecture.
Figures 3 and 4 show standard deviations of the results along with the average numbers.
One could see that the architectures with lower external classifier accuracy tend to deliver
better performance in terms of BLEU with human-written rewrites. This means that
measures for information decomposition quality could be useful for further advances in
the research on minute language manipulation. However, this methodology demands the
training of a stand-alone artificial neural network, and the results are prone to error due
to inadequate choice of architecture. Naturally, if the architecture is not complex enough
in comparison with the encoder, it could not provide adequate results, see [14]. However,
comparing Figures 3 and 4, one can see that our information-theory-inspired methodology
gives results that are in line with the method proposed by [40] yet uses a fraction of
computational resources and is not prone to the errors due to inadequate architecture
design. One could use the proposed methodology as a simple and straightforward health
check for the models that rely on information decomposition.

Figure 4. Accuracy of an external classifier and the proposed mutual information estimates, R2 = 0.78.
The proposed method for mutual information estimations obtains results similar to the previous
empirical methods. Refs. [1,3,5].
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6. Discussion

Out of the eight models that we experiment with, there is one that stands out, namely,
the method proposed in [3]. Figure 3 shows that despite the relatively low value of
mutual information estimation, the model performs rather poorly in terms of the BLEU
between human rewrites and the model’s output. Indeed, unlike other methods, [3]
uses cross-alignment of the training data and does not provide any specific mechanism for
estimation of the output quality as a part of the model. Instead, it tries to force distributional
alignment over the latent space or sentence populations since the model is originally
developed to work with nonparallel corpora rather than with style transfer on parallel
texts. Thus, the model minimizes mutual information between Y and Z but does not
explicitly maximize I(X, Y, Z). Under these structural assumptions, better information
decomposition obtained does not guarantee better performance of the model, which we
see in the experiments. This highlights the clear limitation of the proposed method: if the
architecture does not explicitly maximize I(X, Y, Z), the decomposition quality assessment
is not aligned with the performance of the model on the downstream task. Another
explicit limitation of the proposed method corresponds to the applicability of the estimation
methods proposed [38,39]: latent representation distribution has to be continuous while
the distribution of the stylistic variable has to be discrete.

7. Conclusions

In this work, we have presented an alternative approach for evaluating the latent
representation learned by TST models. If models learn the latent representations that
capture only the semantic content of the inputs, the low value of mutual information
between the latent representations and the target variable could measure the relative
information decomposition quality obtained by various systems. Such methodology yields
results in line with previous experiments yet is transparent and computationally efficient.

Author Contributions: Conceptualization, E.O., J.J. and I.P.Y.; Methodology, E.O., J.J. and I.P.Y.;
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and agreed to the published version of the manuscript.
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