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Abstract: Automatic modulation classification (AMC) is an important method for monitoring and
identifying any underwater communication interference. Since the underwater acoustic commu-
nication scenario is full of multi-path fading and ocean ambient noise (OAN), coupled with the
application of modern communication technology, which is usually susceptible to environmental
influences, automatic modulation classification (AMC) becomes particularly difficult when it comes
to an underwater scenario. Motivated by the deep complex networks (DCN), which have an innate
ability to process complex data, we explore DCN for AMC of underwater acoustic communication
signals. To integrate the signal processing method with deep learning and overcome the influences
of underwater acoustic channels, we propose two complex physical signal processing layers based
on DCN. The proposed layers include a deep complex matched filter (DCMF) and deep complex
channel equalizer (DCCE), which are designed to remove noise and reduce the influence of multi-path
fading for the received signals, respectively. Hierarchical DCN is constructed using the proposed
method to achieve better performance of AMC. The influence of the real-world underwater acoustic
communication scenario is taken into account; two underwater acoustic multi-path fading channels
are conducted using the real-world ocean observation dataset, white Gaussian noise, and real-world
OAN are used as the additive noise, respectively. Contrastive experiments show that the AMC based
on DCN can achieve better performance than the traditional deep neural network based on real value
(the average accuracy of the DCN is 5.3% higher than real-valued DNN). The proposed method based
on DCN can effectively reduce the influence of underwater acoustic channels and improve the AMC
performance in different underwater acoustic channels. The performance of the proposed method
was verified on the real-world dataset. In the underwater acoustic channels, the proposed method
outperforms a series of advanced AMC method.

Keywords: automatic modulation classification; underwater communication signals; underwater
acoustic channel; deep complex networks

1. Introduction

Automatic modulation classification (AMC) plays an important role in underwater
acoustic communication, especially in non-cooperative communication. AMC can be
used in monitoring and identification of communication interference, such as spectrum
surveillance and electronic countermeasure [1]. Modern underwater platforms (such as
submarines, autonomous underwater vehicles (AUV), and underwater unmanned vehicles
(UUV)) are in urgent need of advanced AMC technology.

AMC is the intermediate process of signal detection and demodulation [2], occupying
a very important position in signal processing technologies. Currently, most of the research
on AMC focuses on radio signals (e.g., radar, cellular, satellite), and there is relatively
little research on the classification of underwater communication signals. However, the
demand for AMC in underwater acoustic communication is increasingly urgent with
the development of modern communication technology. AMC of underwater acoustic
communication signals is an important approach to the acquisition and analysis of target
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information in marine battlefields and has become a research hotspot [3]. The essential
difference between underwater acoustic communication and radio communication is that
the latter generally uses electromagnetic waves as the carrier, while the former uses sound
waves generally because the conductivity of ocean water makes electromagnetic waves
attenuate rapidly, especially at a higher frequency. Although sound wave is more suitable
for underwater communication, it is still challenged by the poor underwater acoustic
channel. The low velocity of soundwaves in water (about 1500 m/s) results in a significant
delay in underwater communication (about 66 ms/km). Moreover, low velocity is one
of the fundamental causes of the multi-path effect and Doppler shift [4], coupled with
the extensive ocean ambient noise (OAN) [5], distorting the signals in both time and
frequency domains, such as time delay-spread, frequency-selective fading, inter-symbol
interference (ISI), frequency shift, etc. For all of these reasons, the AMC of underwater
acoustic communication signals faces serious challenges.

Current AMC algorithms can be classified into two categories: the maximum like-
lihood ratio method based on hypothesis testing and the statistical pattern classification
method, of which the latter is more commonly used. The pattern classification method
relies on two processes. The first is feature extraction, which is widely used in many
fields [6,7]. There are a few feature extraction methods used in AMC, including instan-
taneous statistics features(envelope, frequency, phase, etc.) [8], constellation features [9],
spectrum features [3,10], high-order cumulant features (HOC) [11,12], cyclostationary fea-
tures [13,14], the wavelet features [12,15], etc. The second is classification; widely used
classifiers include decision tree classifier [16], neural network classifier [17], support vec-
tor machine (SVM) [18], etc. Some methods mentioned above have been applied to the
AMC of underwater acoustic communication signals. Wu [14] employed cyclostationary
analysis to perform modulation detection on underwater acoustic communication signals,
but the proposed method can only identify lower-order phase shift keying (PSK) from
higher-order PSK and quadrature amplitude modulation (QAM). Sanderson [13] proposed
hierarchical blind AMC schemes for underwater acoustic communication signals, in which
second-order cyclostationary features and maximum likelihood were used to identify
BPSK, QPSK, and 16QAM. Zhao [19] proposed an AMC method for underwater acous-
tic communication signals, extracted features of energy entropy of Stockwell-transform
spectrogram, and classified them using SVM. Fang [20] proposed a likelihood-based algo-
rithm for identifying different PSK modulations based on sparse Bayesian learning with
expectation maximization.

In recent years, deep learning [21] has emerged as a new area of machine learning and
has shown remarkable results in computer vision [22], natural language processing [23],
and speech recognition [24]. Deep learning techniques allow for building hierarchical
representations and learning high-level features from raw data automatically without
much prior knowledge. Many deep neural networks (DNN) have been proposed for
various tasks, such as deep belief networks (DBN) [21,25], convolution neural networks
(CNN) [22], long short-term memory (LSTM) [26], autoencoder (AE) [25,27], VGGnet [28],
GoogleNet [29], ResNet [30], generative adversarial networks (GAN) [31], etc. All the
above deep learning architectures enable deep learning to excel in many fields, including
AMC. Researchers in wireless communication have introduced deep learning into AMC
with some success [32,33]. The theoretical advantages of deep learning and its success
in many fields have inspired researchers to apply it to the AMC of underwater acoustic
communication signals. Yang [32] introduced denoising autoencoder (DAE) into AMC of
underwater acoustic communication signals; they considered an underwater multi-path
fading channel with additive white Gaussian noise (AWGN). Ding [34] proposed an AMC
method that combined CNN and LSTM and achieved the classification of single side
band (SSB), frequency modulation (FM), four frequency shift keying (4FSK), orthogonal
frequency division multiplexing (OFDM), QPSK and multi-carrier multiple frequency shift
keying (MC-MFSK). Yao [1] used GAN to enhance the signals and showed well robustness
under different underwater acoustic channels. Deep learning has shown certain advantages
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in the AMC of underwater acoustic communication signals, but it is still limited by the
complexity of modulation types and the poor underwater acoustic channel.

Since deep learning was proposed, almost all architectures, techniques, and blocks of
deep learning are based on real value because most computer vision, natural language, and
speech datasets are real-valued. However, complex baseband representation is commonly
used in communication systems. Most signal processing methods based on deep learning
usually treat the real and imaginary parts of complex baseband signals as independent
channels, which may result in the merging of in-phase and orthogonal components and
loss of the basic polar representation properties [35]. Compared with the real-valued
DNN, deep complex networks (DCN) are designed in the rule of complex arithmetic to
keep the complex domain features in the network. It is more reasonable and easier to
design the signal processing physical layers in DCN, and it is more appropriate to use
DCN to process complex baseband signals. On the other hand, complex numbers can
have a richer representational capacity theoretically [36,37]. To exploit the advantage of
complex-valued representations, Trabelsi et al. [38] provided the key atomic components
for DCN, including complex convolution (CConv), complex batch-normalization (CBN),
complex weight initialization, and complex activation functions. Using complex values
can make contributions to the networks to have better representational capacity in terms of
computational and signal processing perspectives.

In this paper, we proposed a new AMC method for AMC of underwater acoustic
communication signals based on DCN. Our contributions are as follows:

1. We adopted DCN to AMC of underwater acoustic communication signals to ade-
quately learn features from the raw complex baseband signals.

2. Two physical signal processing layers were constructed based on DCN to improve
the AMC performance, including a deep complex matched filter (DCMF) and deep
complex channel equalizer (DCCE). The DCMF can help to remove noise from the
signals, and the DCCE can reduce the influence of multi-path fading effectively. DCMF
and DCCE were embedded in DCN to improve the AMC performance.

3. The influence of underwater acoustic channels on the signals was fully considered, and
different underwater acoustic channels were simulated by using the real-world ocean
observation dataset and ambient noise. The effectiveness of the proposed method was
verified in different underwater acoustic channels and real-world dataset.

This paper is organized as follows. Section 2 presents a review of underwater acoustic
communication signals and channels. Then it introduces the proposed AMC method of
underwater acoustic communication signals based on DCN. In Section 3, we evaluate the
performance of the proposed method with simulation experiments. Finally, the conclusion
of the paper is given in Section 4.

2. Materials and Methods
2.1. Underwater Acoustic Communication Signals and Channel
2.1.1. Signal Model

PSK and QAM have commonly used modulation types in the field of underwater
acoustic communication. Both modulation processes of PSK and QAM involve phase
keying. PSK and QAM can be formulated, respectively:

PSK : s(t) = Aej(2π fct+φ)
N

∑
n=0

ejθn p(t− nTs) (1)

QAM : s(t) = Aej(2π fct+φ)
N

∑
n=0

s(n)ejθn p(t− nTs) (2)

where A is the amplitude of the signal, fc is the carrier frequency offset, φ is the phase offset
of carrier frequency, n is the symbol index, N is the total number of symbols, p[t] is the
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baseband pulse shaping filter, Ts is the symbol period, ejθn and s(n)ejθn map the transmitted
symbols of PSK and QAM, respectively.

2.1.2. Underwater Acoustic Channel

In the real-world underwater acoustic communication scenario, the influence of under-
water acoustic channels on communication signals mainly includes two aspects: multi-path
fading and OAN, as is shown in Figure 1.
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Figure 1. Underwater acoustic communication.

(1) Multi-path fading
Multi-path propagation often exists in underwater acoustic communication. In a

multi-path environment, the received signal can be represented as the superposition of a
number of time-delayed and amplitude–attenuated versions of the transmitted signal. A
typical underwater acoustic channel with multi-path fading can be seen as a filter whose
impulse response function is h(t, τ), in which τ is the delay time. The impulse response
reflects the properties of the multi-path fading channel and can be expressed as

h(t, τ) =
K

∑
k=1

ak(t)δ(τ − τk(t)) (3)

where K is the total number of paths, δ(·) is the delta function, ak and τk are the attenuation,
and the delay of the k-th path.

Since the source and receiver are usually not stationary and underwater acoustic
reflection boundaries are unstable in most cases, multi-path fading is often accompanied
by Doppler shift. We consider Doppler shift caused by relative motion in multi-path
propagation. In a multi-path fading channel, each path has an independent Doppler shift
factor fdk, which can be expressed as

fdk =
vk
c

fc (4)

where fc is the carrier frequency of the transmitted signal, and vk is the radial velocity of
the source relative to the receiver of the k-th path.

Assume the transmitted signal is s(t), then the received signal x(t) propagates through
underwater acoustic channel can be expressed as

x(t) =
K

∑
k=1

ak(t)s(t− τk(t))ej2π fdkt + n(t) (5)
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where n(t) is the additive noise of the channel.
(2) Ocean ambient noise
Ocean ambient noise (OAN) is an additive interference in underwater acoustic chan-

nels. The composition of the OAN is very complicated and full of impulsive interference
due to numerous noise sources, such as ship-radiated noise, industrial noise, wind noise,
biological noise, etc. The reasons mentioned above make the OAN cannot be simulated
accurately using white Gaussian noise. AMC method based on Gaussianity assumptions
will suffer degradation in their performance to a low level. We use real-world OAN as the
additive noise of underwater acoustic channels to enhance the robustness of the proposed
AMC method in real-world underwater acoustic communication scenarios.

2.2. DCN-Based AMC Method

In this section, we presented the proposed AMC method for underwater acoustic
communication signals based on DCN. DCMF and DCCE were proposed to improve the
performance of DCN for AMC. We used the raw I/Q signals as the input of the DCN
without any feature extraction, by which the DCN was forced to learn features from high-
dimension complex time sequences. The framework of the proposed AMC method is
illustrated in Figure 2.
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Figure 2. Framework of the DCN-based AMC method.
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2.2.1. Deep Complex Matched Filter

The matched filter is often used to improve the signal-to-noise ratio (SNR) of the
received signal and optimize the quality of communication, which is an important module
in communication. We proposed a deep complex matched filter (DCMF) to improve the
SNR of the signals and optimize the classification performance. The DCMF in Figure 2 is
made up of a modified CConv layer, which is optimized by an objective function.

The proposed DCMF has three input channels and three output channels. The first
input channel of DCMF accepts received signals (x(t)) which are affected by an underwater
acoustic channel (multi-path fading and OAN), x(t) propagates through the network,
eventually producing categories. The second input is the clean received signals without
noise (xc(t)), which is only affected by the multi-path fading. The last input channel accepts
additive noise (n(t)). Clean received signals without noise (xc(t)) and the additive noise
n(t) are used to optimize the DCMF. The outputs x1(t), xc1(t), and n1(t) are the filtered
signals corresponding to the three inputs, respectively. The forward propagation of DCMF
can be formulated as  x1(t)

xc1(t)
n1(t)

 = f

W1 ∗

 x(t)
xc(t)
n(t)

+ b1 (6)

where the f (·) is a linear complex activation function. ∗ represents the CConv operation,
W1 and b1 are the complex weight and complex bias of the DCMF. The CConv kernels of
the DCMF can be seen as a matched filter bank. In the forward propagation of the DCN, the
three inputs of the DCMF are filtered by the filter bank, and the three inputs share the same
filters. In the backpropagation, the parameters are updated by the gradient of the objective
function, as is shown in Figure 2. The objective function is the SNR increment from input
signals to output signals. The DCMF is trained to maximize the objective function. The
training process can be formulated as a minimization process:

arg min
θdcm f

Fdcm f = γin − γout (7)

where θdcm f is the trainable parameters of DCMF, Fdcm f is the objective function, γin and
γout are the SNR of input and output signals, respectively. Note that each output of DCMF
is made up of a group of one-dimensional filtered signals and each of them corresponds to
one CConv kernel of DCMF, so the γout is calculated at all dimensions. On the other hand,
Equation (7) can be converted to a more computationally appropriate format:

arg min
θdcm f

Fdcm f =
E‖xc(t)‖2E‖n1(t)‖2

E‖xc1(t)‖2E‖n(t)‖2 (8)

2.2.2. Deep Complex Channel Equalizer

The multi-path fading in the underwater acoustic channels will cause ISI, which will
degrade the performance of AMC. We propose DCCE to overcome the influence of multi-
path fading by reconstructing the transmitted signal s(t) from the signals distorted by the
multi-path fading. The DCCE is designed to accept the outputs of DCMF, and there are two
input and output channels of DCCE. The first input channel accepts x1(t), while the second
accepts the sum of xc1(t) and n1(t). The outputs x2(t) and xn2(t) are the equalized signals
corresponding to the inputs, respectively. There are several kernel boxes in DCCE, which
are independent of each other. Each box accepts one feature map of the input data, which
means that the number of boxes are equal to the number of kernels in DCMF. Two CConv
layers were designed in one box, and each of them has one complex kernel. The difference
between DCCE from ordinary CConv layer is that the kernels of the DCCE are individual,
we only perform convolution operations in the time direction of the input signal. Each
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kernel connects to one output channel of DCMF, as is shown in Figure 2. The processing of
DCCE can be formulated as[

xi
2(t)

xi
n2(t)

]
= f

(
Wi

2b ∗ f
(

Wi
2a ∗

[
xi

1(t)
xi

c1(t) + xi
n1(t)

])
+ bi

2a

)
+ bi

2b, i = 1, 2, 3, . . . , M. (9)

where M is the number of boxes in DCCE, the superscript i means the i-th feature map
of input data or the i-th box in DCCE, Wi

2a, Wi
2b, bi

2a, and bi
2b are the complex weight, and

complex bias of DCCE in the i-th box, f (·) is a linear complex activation function.
The transmitted signals s(t) are processed by an individual CConv layer. The number

of kernels of this CConv layer is M, and the width of each kernel is 1. This CConv layer
was designed to map s(t) several feature maps to match the dimension of xn2(t), and the
randomly initialized complex kernels can ensure that each feature map is not equal to
another, including amplitude and phase. The output of this CConv layer is s1(t). The
objective function is the mean square error (MSE) of xn2(t) and s1(t):

arg min
θdcce

Fdcce = E‖s1(t)− xn2(t)‖2 (10)

where θdcce is the trainable parameters of DCCE, Fdcce is the objective function, the objective
function is optimized to minimize the MSE of xn2(t) and s1(t).

2.2.3. Training Method

In the training process, xc(t), n(t), and s(t) are used to optimize the DCMF and DCCE.
The received signals x(t) and the corresponding true labels y are used to optimize the
rest trainable parameters, which are noted as θr. The loss function used to optimize θr is
cross entropy:

arg min
θr

Fr = −
Nc

∑
i=1

yi log(yi
p) (11)

where Nc is the number of classes, yp is the predicted label, i is the i-th element of the label.
θdcm f , θdcce and θr will be updated per epoch. Each of θdcm f and θdcce will be frozen when
the corresponding loss stop decreases. The training will be stopped when the loss of θr
shows no improvement or the training step reaches the maximum iterations, as is shown in
Algorithm 1.

In the predicting process, only the first input channel of DCMF is opened, and the
received signals x(t) come from the testing dataset will be tested. Then the AMC accuracy
will be obtained by the predicted labels and the true labels.
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Algorithm 1 Training of the proposed method.
Input: received signals x(t), true labels y, clean received signals without noise xc(t),
additive noise n(t), transmitted signals s(t), maximum iterations N.
Output: trained parameters of Net: θ̂dcm f , θ̂dcce, θ̂r.
Initialize: trainable parameters of Net: θdcm f , θdcce, θr, Updatedcm f = True, Updatedcce =
True.

1: for i = 1, 2, . . . , N do
2: xc1(t), n1(t), xn1(t), s1(t), xn2(t), yp = Net(x(t), xc(t), n(t)). . forward propagation,

yp is the predicted label.
3: if Updatedcm f then
4: loss(θdcm f ) = Fdcm f (xc(t), n(t), xc1(t), n1(t))
5: if loss(θdcm f ) stop decreasing then
6: Updatedcm f ← False
7: else
8: update θdcm f to minimize loss(θdcm f )
9: end if

10: end if
11: if Updatedcce then
12: loss(θdcce) = Fdcce(s1(t), xn2(t))
13: if loss(θdcce) stop decreasing then
14: Updatedcce ← False
15: else
16: update θdcce to minimize loss(θdcce)
17: end if
18: end if
19: loss(θr) = Fr(y, yp)
20: update θr to minimize loss(θr)
21: end for
22: return θ̂dcm f , θ̂dcce, θ̂r=θdcm f , θdcce, θr.

3. Experiments and Discussion

In this section, extensive simulations were conducted to verify the performance of the
proposed AMC method based on DCN:

(1) Experimental dataset under various conditions were built by simulations.
(2) We analyzed the influence of underwater acoustic channels on AMC performance.
(3) We compared the AMC performance between DCN and classical real-valued DNN.
(4) We analyzed the performance of DCMF by visualizing the kernels, then the perfor-

mance gain of the proposed AMC method was verified by a series of contrastive experi-
ments, including verifying real-world underwater acoustic communication signals.

(5) The AMC performance comparison between the proposed method and some other
AMC methods were carried out.

(6) Comparison experiments were carried out to analyze the limitations of the proposed
method.

The results in this section were the average values over multiple runs.

3.1. Dataset and Parameters
3.1.1. Signals Generation

We considered six commonly used modulation types, including BPSK, QPSK, 8PSK,
16QAM, 32QAM, and 64QAM. The parameters for simulation are presented in Table 1.
The SNR ranges from −9 dB to 21 dB with an interval of 3 dB. The received signals were
expressed as the sampled complex baseband, the dimension of each signal sample is
6000 × 2, and the duration is 0.5 s. 10,000 signals are generated for each modulation type
at each SNR, which contains 5000 training signals, 2000 validation signals, and 3000 test-
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ing signals, making a total of 330,000 training signals, 132,000 validation signals, and
198,000 testing signals.

Table 1. Modulation Parameters.

Parameter Value

Sampling rate (Hz) 12 k
Carrier frequency offset (Hz) 300

Symbol rate (Baud) 800∼1200
Roll off value 0.1∼0.4

SNR (dB) −9∼21

3.1.2. Underwater Acoustic Channel

A real-world underwater acoustic communication scenario was considered in the
following experiments. The ocean observation dataset of the chosen area came from the
global gridded Argo dataset 2020 (BOA_Argo) [39]. We chose an area of the ocean near the
geographic coordinate of 26.5◦ N, 127.5◦ E, as is shown in Figure 3.
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Figure 3. The chosen sea area in the Argo dataset.

The dataset contains temperature, salinity, and static pressure for different months; we
selected the data in January. The sound velocity profile can be calculated from temperature,
salinity, and pressure by

c = 1449.2 + 4.6T − 0.055T2 + 0.00029T3

+ (1.34− 0.1T)× (S− 35) + 0.168P
(12)

where T is the temperature, S is the salinity, and P are the static pressure, which is positively
related to the depth. The depth of the chosen area is 460 m, and the sound velocity profile
is shown in Figure 4.
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Figure 4. Sound velocity profile.

As we can see that the sound gradient in this area presents positive and negative
at different depths. We put one transmitter (Tx) and two receivers (Rx1 and Rx2) in the
underwater channel. The horizontal distance between the transmitter and the two receivers
are 3 km and 5 km, respectively. The depths of the transmitter and receivers are 30 m and
80 m, respectively. The transmitter moves towards the receivers at a horizontal speed of
5 m/s, and the receivers keep stationary. Thus, we get two multi-path fading channels (Ch1
and Ch2) with different impulse responses. The time delays and amplitudes of the two
channels are illustrated in Table 2, in which the modules of the amplitudes are normalized
to [0,1].

Table 2. Time delay and amplitude of the two underwater acoustic channels.

Ch1 Ch2

Paths TimeDelay (s) Amplitude TimeDelay (s) Amplitude

1 1.965 0.861 3.276 −1
2 2.046 0.8 + 0.599j 3.334 0.305 + 0.903j
3 2.074 −0.945 − 0.153j 3.35 −0.358 − 0.848j
4 2.279 −0.143 3.357 0.483 + 0.72j
5 - - 3.482 −0.437

We built several underwater acoustic channels based on Ch1 and Ch2 using real-
world OAN and AWGN as the additive noise, respectively, in which AWGN is used as a
benchmark. The total duration of the noise is 6 h. Figure 5 has shown the spectrogram of
one OAN sample.
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Figure 5. Spectrogram of one OAN sample.

3.2. Experiment Results Analysis

In all classification experiments, we used classification accuracy to evaluate the classi-
fication performance. We just calculated the accuracy at each SNR point; the whole symbol
rate range and roll-off value range were covered in each classification task. We tested each
modulation type at each SNR point; the accuracy of one modulation type at one SNR point
is Acc1. Furthermore, the accuracy of all modulation types at one SNR point (Acc2), and
the average accuracy of all modulation types at all SNR points (Acc3) are calculated from
Acc1. The calculation method can be described as

Acc2 =
1

Nm

Nm

∑
i=1

Acc1ij (13)

Acc3 =
1

Nsnr Nm

Nsnr

∑
j=1

Nm

∑
i=1

Acc1ij (14)

where Nm is the number of modulation types, Nsnr is the number of SNR points.

3.2.1. Influence Analysis of Underwater Acoustic Channel

We first analyzed the influence of underwater acoustic channels on communication
signals and the performance of AMC. An example of the underwater acoustic channel with
multi-path fading (Ch1) and OAN influencing a QPSK signal is illustrated in Figure 6. It
is clear that underwater acoustic channel has a great influence on communication signals,
especially multi-path fading.

The influence of underwater acoustic channels on the performance of AMC was ana-
lyzed through a series of contrastive experiments, in which multi-path fading effect and ad-
ditive noise were considered individually. We trained an ordinary DCN without DCMF and
DCCE in this section as a benchmark for subsequent experiments. Figure 7 has shown the
AMC performance comparison between different channels, which include AWGN channel,
OAN channel (OAN), two channels include multi-path fading and AWGN (Ch1+AWGN,
Ch2+AWGN), and two channels include multi-path fading and OAN (Ch1+OAN and
Ch2+OAN). We can see from Figure 7:
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(1) There is an obviously positive correlation between classification accuracy and SNR.
(2) Acc3 in AWGN channel is 14.7% higher than that in OAN channel.
(3) Acc3 in Ch1+AWGN and Ch2+AWGN channels are 20.8% and 29.1% lower than

that in AWGN channel, respectively.
Similar results can be observed when using OAN as the additive noise, in which Ch1

and Ch2 reduce the Acc3 by 17.6% and 18.9%, respectively. This illustrates that OAN has
a greater influence on the AMC performance than AWGN, especially at low SNR. The
multi-path fading effect can reduce the AMC performance significantly, even at high SNR.

1 1
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1

Q

Tx
Rx

(a)

1 1
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1

1

Q

Tx
Rx

(b)

Figure 6. The influence of underwater acoustic channel on QPSK signal (where Tx is transmitted
signal, Rx is received signal): (a) Influence of multi-path fading. (b) Influence of OAN (SNR = 0 dB).
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Figure 7. Performance comparison between different channels.
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We also analyzed the performance of each modulation type individually in the under-
water acoustic channel. Figure 8 has shown the confusion matrix charts of each modulation
type in the underwater acoustic channel (Ch1+OAN). It is obvious that BPSK can be iden-
tified correctly, and the mean accuracy of PSK is higher than QAM. QPSK and 8PSK are
misclassified from each other. 16QAM, 32QAM, and 64QAM are also misclassified for
each other, especially 16QAM and 64QAM. The AMC accuracy improves gradually with
the increase in SNR. We can conclude from the classification results that the underwater
acoustic channel greatly influences the performance of AMC, especially on the high-order
modulation types. The main classification errors occurred in the in-class identification of
PSK and QAM.
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Figure 8. Confusion matrix charts on each modulation type in the underwater acoustic channel
(Ch1+OAN): (a) SNR = 0 dB. (b) SNR = 9 dB.

3.2.2. Comparison with Real-Valued DNN

We investigated the performance of DCN by comparing DCN with classical real-
valued DNN. Two DNNs with different numbers of hidden units are built for contrastive
experiments. Since DCMF and DCCE are unsuitable for real-valued DNN, an ordinary
DCN without DCMF and DCCE is used for a fair comparison. The first DNN (DNN-1)
is structurally similar to the DCN, and they have the same number of hidden units; the
second DNN (DNN-2) is a scaled-up version of DNN-1 to keep the actual complexity
and trainable parameters equal to that of the DCN. The contrastive experiments were
carried out with the AWGN channel and the underwater acoustic channel (Ch1+OAN),
respectively. Figure 9 has illustrated the performance comparison of DCN, DNN-1, and
DNN-2 under different conditions. It can be observed that the DCN has an advantage over
DNN, both in the AWGN channel and underwater acoustic channel. Acc3 of the DCN at
all SNR is higher than DNN-1 and DNN-2 at 5% and 3.4%, respectively, in the AWGN
channel. In the underwater acoustic channel, DCN has a larger advantage, Acc3 of DCN
is higher than DNN-1 and DNN-2 at 8.7% and 4.3%, respectively. Acc3 of the DCN in all
conditions is higher than real-valued DNN at 5.3%. The results demonstrate that it is more
appropriate to use DCN in AMC of underwater acoustic communication signals.
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Figure 9. Performance comparison of DCN and real-valued DNN: (a) AWGN channel. (b) Underwa-
ter acoustic channel (Ch1+OAN).

3.2.3. Performance Analysis of Deep Complex Matched Filter

We analyzed the performance of DCMF in this section. A contrastive experiment was
carried out between two DCNs with and without DCMF in the Ch1+OAN channel. In the
DCN without DCMF, an ordinary CConv layer was used to ensure the parameters of the
two DCNs are equal. We tracked the kernels of DCMF during the training to monitor the
filtering process of the DCMF. The variations of the first kernel at different training stages
are visualized in Figure 10, which includes the variation of kernel shape and spectrum.
As we can see from Figure 10a that the real and imaginary parts of the complex kernel
gradually approximate sine waves with the training process going. The spectrum of the
complex kernel converges to a matched filter, as is shown in Figure 10b. Figure 11 has
compared filtering processes between the DCMF kernel and an ordinary CConv kernel.
It is obvious that the proposed DCMF can significantly remove the noise and preserve
the communication signal in the received signal, while the ordinary CConv layer tends to
preserve features of the full frequency band.
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Figure 10. The visualization of the complex kernel of DCMF in training process (the sampling rate
fs = 12 kHz, the amplitudes of spectrums are normalized to [0,1]): (a) Shape of the first DCMF
kernel. (b) Spectrum of the first DCMF kernel.

3.2.4. Performance Analysis of Proposed Method

The AMC performance comparison between DCN with and without DCMF is shown
in Figure 12. The contrastive experiments were carried out using AWGN and OAN,
respectively. Acc3 of DCN with DCMF are 1.2%, 4%, and 5.7% higher than that without
DCMF in AWGN, Ch1+AWGN, and Ch2+AWGN channels, respectively. Acc3 of DCN
with DCMF are 9.5%, 4.4%, and 6.1% higher than that without DCMF in OAN, Ch1+OAN
and Ch2+OAN channels, respectively. The overall Acc3 of DCN with DCMF is 5.1% higher
than that without DCMF in all conditions. It is obvious that DCMF can improve the AMC
performance at low SNR(about SNR < −6 dB). The comparison results have shown the
advantages of the proposed DCMF in denoising and improving the performance of AMC.
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Figure 11. The visualization of the comparison of using DCMF and without using DCMF in frequency
domain.
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Figure 12. Performance comparison between DCN with and without DCMF using different kinds
of noise: (a) AMC accuracies in different channels with AWGN, (b) AMC accuracies in different
channels with OAN.

Other contrastive experiments were carried out to evaluate the performance of DCCE.
The DCCE was embedded in the DCN and followed the DCMF. Multi-path fading channels
Ch1 and Ch2 were considered individually. The comparison of the AMC accuracies is
illustrated in Figure 13. In Figure 13a, DCCE can improve the Acc3 in Ch1+AWGN and
Ch1+OAN channels by 5.8% and 8.4%, respectively. The accuracies increments are 10.1%
and 13.2% when Ch1 is replaced by Ch2, as is shown in Figure 13b. The overall Acc3 of
DCN with DCMF and DCCE is 9.3% higher than that with only DCMF in all conditions,
and it is 14.3% higher than the ordinary DCN in all multi-path fading channels. The results
have suggested that the proposed DCMF and DCCE can overcome the multi-path fading
effect and improve the AMC performance significantly.
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Figure 13. The comparison of the AMC accuracies with and without DCCE in different channels:
(a) AMC accuracies in Ch1 with different additive noise, (b) AMC accuracies in Ch2 with different
additive noise.

Another classification experiment was carried out on a real-world dataset, which
was recorded in the South China Sea. The data were recorded using an omnidirectional
hydrophone placed under the surface of about 10 m, the transmitter was about 3 km far
away from the receiver, and the relative speed of the transmitter and receiver was less
than 5 m/s. The modulation types of real-world signals include BPSK, QPSK, 16QAM,
and 32QAM. The SNR of the received signals is about 3–5 dB. The received signals were
down-converted and expressed as the sampled complex baseband, and all the signals were
resampled and divided into 0.5 s to keep the same dimension as the simulated signals.
The number of each modulation type is 100. The signals were classified by the proposed
method; the classification results are shown in Table 3.
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Table 3. Classification results of the real world underwater acoustic communication signals.

BPSK QPSK 16QAM 32QAM

Accuracy 73% 69% 64% 71%

3.2.5. Comparison with Achieved AMC Methods

The AMC performance comparison between the proposed method and some others
achieved AMC methods were carried out. There were three AMC methods based on
deep neural networks (include VGGnet [40], ResNet [41,42], LSTM [43,44]) and one AMC
method using feature extraction based on HOC [45,46] (which is usually used for AMC of
PSK and QAM signals) for comparison. The AMC method based on HOC used SVM as
the classifier. The trainable parameters of VGGnet, ResNet, and LSTM were kept nearly
to the DCN with DCMF and DCCE. The contrastive experiments were carried out with
the two underwater acoustic channels (Ch1+OAN and Ch2+OAN), respectively. Table 4
and Figure 14 have illustrated the performance comparison in the two underwater acoustic
channels of these mentioned AMC methods. In Figure 14a, Acc3 of each AMC method
is 50.78%, 54.94%, 55.95%, 51.48%, and 65.1%. In Figure 14b, Acc3 of each AMC method
is 59.95%, 65.79%, 65.82%, 55.17%, and 70.27%. The proposed method obtained higher
classification accuracy than the other methods in the two underwater acoustic channels.

Table 4. Average accuracy at all SNR points of different methods in two underwater acoustic channels.

Channel VGGnet ResNet LSTM HOC DCMF + DCCE

Ch1+OAN 50.78% 54.94% 55.95% 51.48% 65.1%
Ch2+OAN 59.95% 65.79% 65.82% 55.17% 70.27%
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Figure 14. Cont.
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Figure 14. The comparison of the proposed method with others AMC methods in different channels:
(a) AMC accuracies in Ch1+OAN, (b) AMC accuracies in Ch2+OAN.

3.2.6. Limitations of the Proposed Method

We carried out one experiment to analyze the SNR limitation of the proposed method.
We used the combination dataset in the channels Ch1+OAN and Ch2+OAN. Figure 15 has
illustrated the classification performance at lower SNR, as we can see that in multi-path
fading channels when the SNR ≤ −15 dB, the method can not classify the modulation
types anymore.
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Figure 15. The classification result of the proposed at lower SNR (the average accuracy in Ch1+OAN
and Ch2+OAN).

4. Conclusions

In this paper, we adopted DCN into AMC of underwater acoustic communication
signals, two physical signal processing layers based on DCN were proposed to improve the
AMC performance. The two physical signal processing layers include DCMF and DCCE,
DCMF can remove the noise from the received signals, and the DCCE can reduce the
influence of multi-path fading. The proposed method can integrate the signal processing
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method with deep learning. Real-world underwater acoustic communication scenario was
fully considered in this paper.

The results of the experiments indicated that multi-path fading and OAN in the un-
derwater acoustic channels have a great influence on underwater acoustic communication
signal and the AMC performance, especially the multi-path fading effect. DCN showed a
larger advantage than real-valued DNN in AMC of underwater acoustic communication
signals. By tracking and visualizing the filters of DCMF, we can observe that DCMF can
significantly remove the noise in the received signals. The proposed method yielded certain
performance gains and achieved robustness to the underwater acoustic channel.
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AMC Automatic modulation classification
DCMF Deep complex matched filter
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UUVs Underwater unmanned vehicles
HOC High-order cumulant
ISI Inter-symbol interference
PSK Phase shift keying
QAM Quadrature amplitude modulation
DNN Deep neural networks
DBN Deep belief networks
CNN Convolution neural networks
LSTM Long short term memory
AE Autoencoder
GAN Generative adversarial networks
DAE Denoising autoencoder
AWGN Additive white Gaussian noise
SSB Single side band
FM Frequency modulation
FSK Frequency shift keying
OFDM Orthogonal frequency division multiplexing
MC-MFSK Multi-carrier multiple frequency shift keying
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CBN Complex batch-normalization
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