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Abstract: In a recent paper, we have shown how in Madelung’s hydrodynamic formulation of
quantum mechanics, the uncertainties are related to the phase and amplitude of the complex wave
function. Now we include a dissipative environment via a nonlinear modified Schrödinger equation.
The effect of the environment is described by a complex logarithmic nonlinearity that vanishes on
average. Nevertheless, there are various changes in the dynamics of the uncertainties originating from
the nonlinear term. Again, this is illustrated explicitly using generalized coherent states as examples.
With particular focus on the quantum mechanical contribution to the energy and the uncertainty
product, connections can be made with the thermodynamic properties of the environment.

Keywords: dynamical invariant; dissipative systems; complex quantum hydrodynamics; uncertainty
relations

1. Introduction

In 1926, Schrödinger published his papers on wave mechanics, introducing the equa-
tion named after him [1]. The time-dependent version [2] has the form

ih̄
∂

∂t
ψ(x, t) =

{
− h̄2

2m
∂2

∂x2 + V(x, t)
}

ψ(x, t) = Hopψ(x, t) (1)

(our discussion will be restricted to one dimension and systems with analytic solutions,
i.e., potentials V that are at most quadratic in the position variable), and ψ(x, t) is a com-
plex function of space and time. Shortly after this, Madelung [3] found a reformulation
in terms of two real equations that have formal similarity with equations known from
hydrodynamics. For this purpose, he used the polar form

ψ(x, t) =
√

ρ(x, t) exp
( i

h̄
S(x, t)

)
(2)

for the complex wave function, where the amplitude is expressed in terms of the probability
density ρ(x, t) = ψ∗ψ and the phase essentially depends on the function S(x, t) that has
the dimension of action. The two equations are the continuity equation

∂

∂t
ρ +

∂

∂x

(
ρ

1
m

∂

∂x
S
)
= 0 (3)

and a modified Hamilton–Jacobi equation

∂

∂t
S +

1
2m

( ∂

∂x
S
)2

+ V + Vqu = 0 (4)
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with the so-called quantum potential

Vqu = − h̄2

8m

(
∂

∂x ρ

ρ

)2

− h̄2

4m
∂

∂x

(
∂

∂x ρ

ρ

)
= − h̄2

2m

∂2

∂x2
√

ρ
√

ρ
. (5)

Equations (3)–(5) are also the formal basis of Bohmian mechanics [4–6]; however, Bohm’s
interpretation is ontologically quite different. While Madelung stuck to the conventional
interpretation of quantum mechanics, Bohm introduced the concept of “hidden” variables
that should convert quantum mechanics to a deterministic theory. The deterministic aspect
is represented by the so-called Bohmian trajectories that are obtained via integration of the
velocity field 1

m
∂

∂x S(x, t) that appears in the continuity Equation (3). These trajectories are
assumed to be real geometric paths of quantum particles that actually exist. However, no
experiment was able to detect these trajectories. To the contrary, the experiments of last
year’s Nobel laureates, those of Aspect [7–9] in particular, contradicted the existence of such
physical trajectories. Moreover, we could show theoretically [10] that there is an ambiguity
in the derivation of these trajectories that can be eliminated; but this inevitably leads to an
interpretation of these trajectories in terms of descriptive statistics, thereby providing a
complementary (but still probabilistic) aspect to the conventional interpretation of quantum
mechanics in terms of statistical inference. Therefore, the formalism, particularly the
computational aspect of Bohmian mechanics, is still very useful and has many fields of
application, as shown, for example, in the interesting review article by Benseny et al. [11].

As can be seen in Equation (3), the time-evolution of the amplitude
√

ρ of the wave
function ψ contains its phase, S/h̄, and Equation (4) for the phase contains the amplitude
via Vqu, so both equations are coupled.

In a recent paper [12], we have shown how this coupling affects the uncertainties
of position and momentum and their correlation, and particularly, how the momentum
uncertainty can be split into contributions from the amplitude and from the phase. In this
paper, we show the influences of a dissipative environment on these properties.

Let us first specify what we mean by environment and how this environment can
be taken into account in our case. In physics, one usually does not consider the whole
universe, only part of it that one calls the “system.” Ideally, we assume this system to be
isolated from the rest of the universe. This is the case, e.g., in classical and in quantum
mechanics. However, it can also be of interest to include interactions of this system with the
rest of the universe, or at least parts of it. This rest is usually called the environment, the
reservoir, a heat bath or something similar. These systems, which are no longer considered
isolated, are therefore also called open systems, and there are different approaches to
treating such systems.

The viewpoint of there being no artificial distinction between system and environment,
but of considering both together as a closed, isolated system, is closest taken by the so-called
system-plus-reservoir approach. In this case, the system of interest is explicitly coupled
to a (large) number of environmental degrees of freedom (often represented by harmonic
oscillators). In the end, however, the environmental degrees of freedom are averaged out,
and only their influence on the system is considered. This type of approach is often called
the Caldeira–Leggett model [13,14] but has also been considered independently by other
authors (for more details, see, e.g., [15,16]). The more environmental degrees of freedom are
taken into account (in the limit infinitely many, corresponding to the so-called Markovian
assumption, which actually artificially breaks the time symmetry of the system’s evolution),
the better the results.

As the system-plus-reservoir approach requires extensive calculations for a large
number of external degrees of freedom, possibly exceeding even the potential of powerful
computers when nonlinearities are involved, and the environmental degrees of freedom are
averaged out in the end anyway, a different type of approach, the effective one, takes into
account only the effect of the environment on the system of interest, but not the individual
interactions with the environmental degrees of freedom.
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There are various approaches in this direction in the literature [17–22] using modifi-
cations of the time-dependent Schrödinger Equation (1), but most of them suffer serious
shortcomings concerning their physical consequences with respect to irreversibility and
correct dissipation of the system. We chose an approach that does not have these problems
and start by breaking the time-reversal symmetry of the continuity Equation (3) by adding
a diffusion term, thereby changing it to a Fokker–Planck-type Equation (in position space
called Smoluchowski equation). With an additional separation condition, this real equa-
tion can be split into two (conjugate) complex Schrödinger-type equations with complex
logarithmic nonlinearity.

The nonlinearity vanishes on average, so no imaginary contribution to the energy ap-
pears, and normalization of the corresponding wave function is still guaranteed. However,
the nonlinearity has a significant influence on the analytic behavior of the time-dependence
of the exact Gaussian-shaped wave-packet solutions of this nonlinear equation. Therefore,
also the time-dependence of the phase and amplitude will be influenced by the additional
nonlinear term.

As in our previous paper without dissipative environment [12], we again consider
the uncertainties of position, momentum and their correlation; and the contributions of
amplitude and phase of the wave function, but now analyze the effects of the environmental
term on them.

We use these uncertainties to formulate their contributions to the energy of the system
and the Heisenberg uncertainty product and their time-dependence. Using the parameters
that connect the quantum system with a Brownian-motion environment, relations can also
be established with thermodynamic properties of this environment.

In Section 2, our complex hydrodynamic version of Madelung’s approach, proposed
in [23], will be introduced and applied in connection with the quantum uncertainties.
In particular, the explicit form for generalized coherent states, i.e., the analytical Gaussian
wave-packet solutions with time-dependent width will be shown.

The discussion in Section 3 focuses on the interaction with an environment. For this
purpose, a time-symmetry-breaking diffusion term is used in the continuity equation, and
using a particular separation condition, a nonlinear modification of the time-dependent
Schrödinger equation is obtained. The properties of the complex nonlinear additional term
are also pointed out.

The consequences are shown for the corresponding modified Hamilton–Jacobi equa-
tion and for the equations of motion for the wave packet maximum and width. This also
elucidates the influences of real and imaginary parts of the nonlinear term on the uncer-
tainties of position and momentum and the contributions of amplitude and phase to these
quantities. This is also investigated for the Gaussian wave-packet solutions that still exist
despite the logarithmic nonlinearity.

These results provide the foundation for Section 4. Based on them, the uncertainties
are used to construct their contributions to the energy of the system and to the Heisenberg
uncertainty product. In particular, the harmonic oscillator and the free motion, with-
out and with environment, are compared for selected initial conditions, followed by a
discussion about connections with thermodynamic properties of the environment, by way
of parameters characterizing this environment.

Finally, in Section 5 the results are summarized and conclusions drawn.

2. Complex Madelung Picture
2.1. Quantum Fluctuations in the Madelung Picture

In [23], it was shown how Madelung’s hydrodynamic version of quantum mechanics
can be formulated in terms of complex quantities that are obtained by applying a quantum
mechanical operator Fop onto a quantum state or wave function 〈a|ψ(x, t)〉 in the {|a〉}
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representation (in this paper “a” is position “x” and 〈x|ψ(x, t)〉 = ψ(x, t)) and dividing the
result by 〈a|ψ(x, t)〉—in our case,

F =
Fopψ(x, t)

ψ(x, t)
= FR + iFI. (6)

The result is, in general, complex; however, the mean value of the imaginary part always
vanishes, meaning 〈FI〉 = 0; i.e., it cannot be observed directly. Nevertheless, e.g., 〈F2

I 〉 6= 0
or 〈 ∂

∂x FI〉 6= 0 is possible; see Equation (32) (for further details see [12,23,24]).
In position space, the relevant operators and corresponding complex quantities are

Xop = x ∈ R −→ X = x ∈ R (7)

Pop = −ih̄
∂

∂x
−→ P =

∂

∂x
S− i

h̄
2

∂
∂x ρ

ρ
= PR + iPI (8)

Vop =
m
2

ω2
0X2

op −→ V =
m
2

ω2
0x2 (9)

Top = − h̄2

2m
∂2

∂x2 −→ T =
1

2m
(
P2) = 1

2m

[
(P)2 − h̄

i
∂

∂x
P
]

(10)

Eop = ih̄
∂

∂t
−→ E = − ∂

∂t
S + i

h̄
2

∂
∂t ρ

ρ
. (11)

The difference between the quantity corresponding to the square of an operator and the
square of the quantity corresponding to this operator does not vanish, (F2) 6= (F)2, as can
be seen in (10) for the momentum operator in the expression for the kinetic energy.

This difference originates from the non-locality of quantum mechanics, which was
already pointed out in [12].

In order to compute the uncertainty of an observable, expressed in a given representa-
tion by an operator Fop, one must calculate

σ2
F = 〈F2

op〉 − 〈Fop〉2 =
∫ +∞

−∞
dx ψ∗F2

opψ−
[ ∫ +∞

−∞
dx ψ∗Fopψ

]2

(12)

(here for position representation), where pointed brackets denote mean values. This can be
expressed in terms of our Madelung quantities as

σ2
F =

∫ +∞

−∞
dx ρ(x, t)

(
F2)− [ ∫ +∞

−∞
dx ρF

]2

. (13)

As mentioned above and in [12], the mean values of the imaginary parts always vanish,
〈FI〉 = 0, so only the real parts of the Madelung quantities are to be considered for
the uncertainties.

In the case of the momentum uncertainty, the real part of (P2) can be expressed via
the real part of the kinetic energy as

σ2
p = 2m

∫ +∞

−∞
dx ρ(x, t)TR − 〈p〉2 (14)

with
TR =

1
2m

(
P2

R − P2
I + h̄

∂

∂x
PI

)
=

1
2m

P2
R + Vqu, (15)

leading to

σ2
p =

[ ∫ +∞

−∞
dx ρ(x, t)P2

R − 〈p〉2
]
+ 2m

∫ +∞

−∞
dx ρ(x, t)Vqu = σ2

p,ph + σ2
p,am, (16)
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i.e., one contribution from the phase and one from the amplitude.
The contribution from the phase depends on PR = ∂

∂x S and vanishes if S does not
explicitly depend on position; the contribution from the amplitude is always present (in
general, plane wave-like functions are an exception).

Since the position operator is only a c-number, not a differential operator, there is no
contribution from the phase to σ2

x .
Finally, the correlation of position and momentum uncertainties, σxp, is given in the

Madelung picture. From

σxp =
1
2
〈XopPop − PopXop〉 − 〈x〉〈p〉 = 〈XopPop − i

h̄
2
〉 − 〈x〉〈p〉 (17)

follows with definitions (7) and (8)

σxp =
∫ +∞

−∞
dx ρ(x, t)xP− 〈x〉〈p〉 − i

h̄
2

. (18)

Taking into account the form of PI, as given in (8), and via integration by parts, it can be
shown that for square integrable wave functions,∫ +∞

−∞
dx ρ(x, t)xPI =

h̄
2

(19)

is fulfilled, guaranteeing that expression (18) remains real. The correlation of position and
momentum uncertainties can then be written in the form

σxp =
∫ +∞

−∞
dx ρ(x, t)xPR − 〈x〉〈p〉 =

∫ +∞

−∞
dxρ(x, t)(x− 〈x〉)(PR − 〈p〉). (20)

It is important to note that although 〈PR〉 = 〈 ∂
∂x S〉 = 〈p〉 is valid, the integral on the

very rhs of (20) does not necessarily vanish if the phase S/h̄ explicitly depends on the
position variable in a nonlinear way (as in the case of generalized coherent states, to be
discussed subsequently). Therefore, the correlation depends entirely on the phase of the
wave function and not at all on the amplitude.

For a more detailed illustration of the uncertainties and their correlations, we now
consider exact analytic solutions of the time-dependent Schrödinger equation, so-called
generalized coherent states, i.e., Gaussian shaped wave packets with time-dependent width.

2.2. Uncertainties and Their Correlations for Generalized Coherent States

For potentials that are at most quadratic in position variable (such as our potential
V in (9)), Gaussian wave packets with time-dependent maximum and width, also called
generalized coherent states, are exact analytic solutions of the time-dependent Schrödinger
equation. They can be written in the form

ψ(x, t) = N(t) exp

[
i
h̄

(m
2
C x̃2 + 〈p〉x̃ + K(t)

)]

= N(t) exp

[
− x̃2

σ2
x
+

i
h̄

(m
2
CR x̃2 + 〈p〉x̃ + K(t)

)]
(21)

with x̃ = x− 〈x〉 = x− η(t) and the complex time-dependent coefficient C(t) = CR + iCI of
the quadratic term in the exponent, which has the dimension of inverse time, i.e., frequency,
such as ω0 (see Equation (23)). N(t) is a time-dependent normalization factor, not relevant
for the following; this is also true for the purely time-dependent function K(t).

The maximum of the Gaussian function, located at 〈x〉 = η(t), follows the classical
Newtonian equation of motion:

η̈ + ω2
0η = 0 (22)
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the complex function C(t) fulfills the nonlinear Riccati equation

Ċ + C2 + ω2
0 = 0, (23)

where overdots denote time-derivatives.
The imaginary part of C is related with the position uncertainty via

CI =
h̄

2m
1
σ2

x
=

1
α2(t)

(24)

with σ2
x = 〈x2〉 − 〈x〉2 = 〈x̃2〉 and a new variable α(t) that is proportional to the wave

packet width and will be useful in our later discussion.
From the imaginary part of the Riccati equation,

ĊI + 2CRCI = 0, (25)

follows

CR = −1
2

d
dtCI

CI
=

1
2

d
dt σ2

x

σ2
x

=
α̇

α
. (26)

The real part of the Riccati equation can then be written in terms of α(t) as a so-called real
nonlinear Ermakov equation:

α̈ + ω2
0α2 =

1
α3 , (27)

that determines the time-evolution of the wave packet width.
The density ρ(x, t) corresponding to the wave packet (21) can be written as

ρ(x, t) = |N(t)|2 exp

[
− m

h̄
CI x̃2

]
=

√
1

2πσ2
x

exp

[
− x̃2

σ2
x

]
. (28)

Therefore, the position uncertainty is fixed by the width of the density ρ(x, t). This width,
however, can be time-dependent; and the time-dependence enters the coefficient CR(t) in
the phase of the wave function, thereby contributing to the momentum uncertainty. Using
our complex Madelung picture, this can be expressed as

σ2
p =

〈
(P2)R

〉
− 〈p〉2 = 〈P2

R − P2
I + h̄

∂

∂x
PI〉 − 〈p〉2 (29)

with
PR =

∂

∂x
S = mCR x̃ + 〈p〉 (30)

and

PI = −h̄
∂

∂x ρ

ρ
= mCI x̃ =

h̄
2

x̃
σ2

x
. (31)

As shown above, the momentum uncertainty has two contributions, one from the amplitude
and one from the phase. In our case, these now have the explicit form

σ2
p,am = 〈P2

I 〉 −
〈

h̄
∂

∂x
PI

〉
=

h̄2

4
1
σ2

x
=

mh̄
2

1
α2 (32)

and

σ2
p,ph = 〈P2

R〉 − 〈PR〉2 =
σ2

xp

σ2
x

= m
h̄
2

α̇2. (33)
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For the last expression on the rhs of (33), it has been taken, according to (20), that the
position-momentum correlation, σxp can be written as

σxp = 〈x̃PR〉 = mCR〈x̃2〉 = m
d
dt

σ2
x =

h̄
2

α̇α, (34)

from which it follows that CR can be expressed as

CR =
1
m

σxp

σ2
x

=
α̇

α
. (35)

Therefore, the uncertainty product can be written as

UL = σ2
x σ2

p = σ2
x
(
σ2

p,am + σ2
p,ph
)
=

h̄2

4

[
1 +

(2
h̄

σxp
)2
]
=

h̄2

4
[
1 + (α̇α)2]; (36)

i.e., the minimum uncertainty h̄2

4 only depends on the amplitude of the wave function and
is hence also guaranteed for time-independent width. If the uncertainty product is larger,
this additional contribution originates entirely from the phase and is, in the case of our
generalized coherent states, related to the time-dependence of the wave packet width that,
again, reflects the correlation of position and momentum.

Thus, the uncertainties that determine the evolution of the wave packet are essentially
the position uncertainty σ2

x , which guarantees the minimum uncertainty product, and the
position momentum correlation σxp, which provides additional contributions that essen-
tially depend on the phase of the wave packet. If at the initial time t = 0, the initial value
of α̇ vanishes, α̇0 = 0, which is usually the case for the harmonic oscillator and the free
motion, the contribution from σxp to the uncertainty product also vanishes, UL(0) = h̄2

4 ,
and the wave packet is initially a so-called minimum uncertainty coherent state (MUCS).

The complex quantity C(t) that determines the time-evolution of the uncertainties via
a complex Riccati equation can then be written using σ2

x , σxp and α and α̇ as

C = 1
m

σxp

σ2
x
+ i

h̄
2m

1
σ2

x
=

α̇

α
+ i

1
α2 . (37)

3. Open Systems with Irreversibility and Dissipation

There are different approaches to treating open systems classically and quantum
mechanically (for a survey, see, e.g., [16]). One possibility is to couple the system of interest
to a bath of environmental degrees of freedom, e.g., harmonic oscillators where the number
of these degrees of freedom must be very large in order to obtain physically sound results,
and in the end, they are averaged out. This leads to extensive and costly calculations that
can even go beyond the capacities of current computers when nonlinearities are involved.

A different viewpoint is taken by so-called effective approaches where the individ-
ual degrees of freedom of the environment are not taken into account explicitly, only
their effect on the system of interest. Amongst those are attempts to modify the classical
Lagrange–Hamilton formalism in a way that additional dissipative friction forces, usu-
ally linear proportional to velocity or momentum, can be incorporated into the equation
of motion of the system. In general, this involves non-canonical transformations with
corresponding challenges [16–18]. A quantum mechanical version is then obtained via
canonical quantization, leading to modified, often explicitly time-dependent but usually
linear, modifications of the Schrödinger equation.

A different class of effective approaches circumvents the problems with non-canonical
aspects and starts already on the quantum mechanical level by adding terms to the
Hamiltonian operator that yield the above-mentioned friction forces, leading to nonlinear
Schrödinger equations. One way of obtaining the additional terms is to require that these
provide, according to Ehrenfest, the desired friction force in the equation of motion. In our
Madelung picture, the equation that leads to the force is the modified Hamilton–Jacobi
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Equation (3). Taking the gradient of this equation and using ∂
∂x S = PR provides a kind of

Euler equation with substantial time-derivative D
Dt in a co-moving frame:( ∂

∂t
+

1
m

PR
∂

∂x

)
PR =

D
Dt

PR = − ∂

∂x
(
V + Vqu

)
. (38)

A friction force should appear as an additional term proportional to PR (with negative
sign) on the rhs of Equation (38). As this requirement leaves room for ambiguity, there are
several approaches in the literature to achieve this goal [19–22], but most of them suffer
serious shortcomings and produce unphysical results.

Another problematic aspect is the fact that (38) is related only to the real part of
the Schrödinger equation, so the additional friction force in (38) should originate from an
additional real term in the modified Schrödinger equation. However, since real terms do not
affect the Madelung equation representing the imaginary part of the Schrödinger equation,
this would still remain a reversible continuity equation, contradicting the observation that
dynamics of open system is irreversible, particularly if friction is involved.

Therefore, we use a different approach, starting in the Madelung picture with the con-
tinuity Equation (2) and breaking the time-reversal symmetry by introducing an additional
diffusion term:

∂

∂t
ρ +

∂

∂x

(
ρ

1
m

∂

∂x
S
)
− D

∂2

∂x2 ρ

=
∂

∂t
ρ +

∂

∂x

[
ρ

(
1
m

∂

∂x
S− D

∂
∂x ρ

ρ

)]
= 0. (39)

This turns the reversible continuity equation into an irreversible Fokker–Planck-type equa-
tion in position space called the Smoluchowski equation, which is known from the descrip-
tion of Brownian motion. An equivalent description of Brownian motion in the trajectory
picture via the Langevin equation involves the above-mentioned friction force that will also
be compatible with our approach, as will be shown below.

The convection velocity field 1
m

∂
∂x S = 1

m PR of (2) is now replaced by the total veloc-
ity field

υT =
1
m

∂

∂x
S− D

∂
∂x ρ

ρ
= υcon + υdiff (40)

with the additional diffusion velocity −D
∂

∂x ρ
ρ , where D is the diffusion coefficient charac-

terizing the environment.
In conventional quantum mechanics, the continuity equation for ρ = ψ∗ψ is ob-

tained by combining the Schrödinger equation for ψ with its complex conjugate for ψ∗.
Thus, the question arises of whether this procedure can also be reversed to obtain the
complex modified Schrödinger equation corresponding to (39) by separation of this equa-
tion. A way to achieve this without the diffusion term was shown by Madelung [25] and
Mrowka [26]. Unfortunately, due to the diffusion term, ψ and ψ∗ are coupled, and therefore,
the above-mentioned method cannot be applied in general. However, there might be
special conditions that can be fulfilled by the diffusion term to still allow separation.

One such separation condition is given by

−D
∂2

∂x2 ρ

ρ
= γ

(
ln ρ− 〈ln ρ〉

)
(41)

that is also fulfilled particularly for Gaussian functions—those we consider in our analysis.
The subtraction of the mean value of ln ρ is necessary to guarantee normalizability of the
solutions of the corresponding Schrödinger equation, as the diffusion term leads to an
imaginary contribution in the Hamiltonian, thereby turning it into a non-Hermitian one.
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Separation of (39), using (41), leads to a nonlinear Schrödinger equation with complex
logarithmic nonlinearity:

ih̄
∂

∂t
ψNL(x, t) =

{
− h̄2

2m
∂2

∂x2 + V + γ
h̄
i
(

ln ψ− 〈ln ψ〉
)}

ψNL(x, t)

= HNL,opψ(x, t) =
(
HL,op + W

)
ψ(x, t) (42)

with

W = γ h̄
i
(

ln ψ− 〈ln ψ〉
)
= γ

2
h̄
i

(
ln ψ

ψ∗ −
〈

ln ψ
ψ∗

〉)
− i γ

2 h̄
(

ln ρ− 〈ln ρ〉
)
= WR + iWI. (43)

Due to the appearance of the imaginary part iWI, the nonlinear Hamiltonian is non-
Hermitian. This usually leads to problems with the normalizability of the corresponding
wave functions. In a similar approach to describe open dissipative systems, Gisin [27,28],
via a Master equation for the wave function, also arrived at an imaginary term in the
Hamiltonian, but enforced normalizability via subtraction of its mean value. In our case,
this mean value consistently originates from the separation condition (41). Gisin’s approach
contains some ambiguities; and also his expression for the decay of the system’s energy
disagrees with the one known, but it was a step in the right direction.

A nonlinear Schrödinger equation, containing only our imaginary contribution with-
out the real (dissipative) term, was obtained independently by Beretta [29–31] (but in
the context of density operators) with the aim of describing non-equilibrium systems
(without dissipation).

In an attempt to reduce the treatment of the quantum mechanical many-body wave
function to a discussion in terms of a single-particle wave function, Oriols [32] also arrived
at an imaginary term in the corresponding Schrödinger equation. However, as admitted
in [11] concerning this imaginary term, the “numerical values are in principle unknown
and need some educated guesses” [32,33].

Further details concerning the derivation of Equation (42), its properties and connec-
tions with similar nonlinear approaches can be found in [16].

As a result of the subtraction of the mean value of ln ψ, the mean value of the nonlinear
term vanishes; therefore, the mean value of energy is still the mean value of the operators
of kinetic and potential energies. However, the mean values are now calculated with the
solution ψNL(x, t) of the nonlinear Schrödinger equation (Equation (42)). The nonlinear
term obviously influences the dynamics of phase and amplitude, and thus of the maximum
and width of the wave packet. The details will be obvious when the equations of motion of
these quantities are examined.

The additional nonlinear term also has a real contribution that is not arbitrary but fixed
by the separation condition and has a clear physical meaning. A first idea of this meaning
can be obtained by looking at the second of Madelung’s equations, the modified Hamilton–
Jacobi equation. Due to the real part of the nonlinear term, it turns into

∂

∂t
S +

1
2m

( ∂

∂x
S
)2

+ V + Vqu + γ
(
S− 〈S〉

)
= 0. (44)

Taking the gradient of this equation now yields the Euler Equation (38) with an additional
friction term that is linearly proportional to momentum, as known from the Langevin
equation, but without putting it in by the assumption of a corresponding “friction potential”,
like in similar approaches [19–22] mentioned above:( ∂

∂t
+

1
m

PR
∂

∂x

)
PR =

D
Dt

PR = − ∂

∂x

(
V + Vqu

)
− γPR. (45)

Considering now the Gaussian solutions of the nonlinear Schrödinger Equation (42) in the
form (21), the additional complex nonlinear term W can be expressed as
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W = γ
h̄
i
(

ln ψNL − 〈ln ψNL〉
)
= γ

{m
2

[
CR
(

x̃2 − 〈x̃2〉
)]

+ 〈p〉x̃
}

+ iγ
m
2
CI
(

x̃2 − 〈x̃2〉
)
= WR + iWI (46)

where the negative gradient (in one dimension) yields

− ∂

∂x
W = −γ

{
mCR x̃ + 〈p〉

}
− iγmCI x̃, (47)

showing that its mean value is real and provides the friction force in the Ehrenfest equation;
i.e., 〈

− ∂

∂x
W

〉
= −γ〈p〉. (48)

After inserting the Gaussian ansatz (21) into the nonlinear Schrödinger Equation (42),
the corresponding equations of motion for maximum and width of the wave packet can be
obtained as

η̈ + γη̇ + ω2
0η = 0 (49)

Ċ + γC + C2 + ω2
0 = 0. (50)

The friction force in (49) was already mentioned. Important for the uncertainties, however,
is the Riccati Equation (50) with the additional linear term γC. Splitting (50) into real and
imaginary parts from the imaginary part follows:

ĊI + 2CRCI + γCI = 0, (51)

or

CR = −1
2
ĊI

CI
− γ

2
=

α̇

α
− γ

2
, (52)

where the definition CI = 1
α2 has been unchanged, as in the case without environment.

This shows that CR, which is crucial for the contribution of the phase to the uncertainties,
is changed by γCI, which originates from the imaginary part of W, and thus from the
Smoluchowski equation for the amplitude!

On the other hand, the real part of (50) leads to

ĊR + γCR + C2
R − C2

I + ω2
0 = 0 (53)

which can be written with CI and CR expressed in terms of α as a modified Ermakov
equation:

α̈ +
(

ω2
0 −

γ2

4

)
α =

1
α3 , (54)

that is identical to (27); only ω2
0 is replaced by the correct reduced frequency Ω2 =

(
ω2

0−
γ2

4
)

of the damped harmonic oscillator.
Here, it is exactly the other way round; the equation for α, and thus the wave packet

width that characterizes the amplitude, is influenced by γCR, which originates from the
real part of W, the one that corresponds to the modified Hamilton–Jacobi equation for
the phase.

Thus, there is an additional coupling of phase and amplitude due to interaction with
the environment.
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4. Consequences for Energy and Uncertainty Product
4.1. Energy Contributions from Uncertainties

The calculation of the energy as mean value of the Hamiltonian, also for the open
system, is reduced to the calculation of the mean values of kinetic and potential energies,
as 〈W〉 = 0; i.e.,

E = 〈T〉+ 〈V〉 = 1
2m
〈p2〉+ m

2
ω2

0〈x2〉

=
1

2m
〈p〉2 + m

2
ω2

0〈x〉2 +
1

2m
〈 p̃2〉+ m

2
ω2

0〈x̃2〉 = Ecl + Ẽ. (55)

The classical contribution is determined by the mean values of position and momentum,
and thus by the solution of Equation (49) for η(t) = 〈x〉. The contribution from the
uncertainties depends on 〈 p̃2〉 = σ2

p and 〈x̃2〉 = σ2
x , which can be obtained by solving the

complex Riccati Equation (50). To consider the complete general solution of this equation
for all possible initial conditions would be much too complex and beyond the scope of this
paper (further details can be found in Appendix B of [16]). In the following, characteristic
examples shall be discussed, which show the influences of the environment on the dynamics
of the quantities that depend on the uncertainties.

First, the contribution to the energy of the harmonic oscillator is determined without
and with environmental effects, and the results are compared. In both cases, the energy
depends on the uncertainties via

Ẽ =
1

2m
σ2

p +
m
2

ω2
0σ2

x . (56)

Without environment, the Riccati equation (Equation (23)), obtained from the linear
Schrödinger equation, must be solved. A particular solution, C̃ can be found easily, assum-
ing it to be constant, leading to

C̃ = ±iω0 = iC̃I = i
1
α2

0
, (57)

where only the plus-sign is physically relevant, as the minus-sign would cause divergence
of the wave packet; the real part vanishes: C̃R = 0. Consequently, the uncertainties take
the form:

σ2
p,L =

mh̄
2

[
α̇2 +

1
α2

]
=

mh̄
2

1
α2

0
=

m
2

h̄ω0, (58)

σ2
x,L =

h̄
2m

α2
0 =

h̄
2mω0

, (59)

where the subscript L refers to the linear Schrödinger equation providing, via (56), simply
the energy of the ground state:

ẼL =
h̄
2

ω0. (60)

The general solution of Riccati Equation (23) can be found via C(t) = C̃ + V(t), where the
complex time-dependent function V(t) fulfills the homogeneous nonlinear Bernoulli equation:

V̇ + 2C̃V + V2 = 0. (61)

For the following discussion, however, the particular solution C̃ is sufficient. The general
solution is discussed in [16].
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Including the dissipative environment, the Riccati equation (Equation (50)) must be
solved. Considering, again, a constant particular solution C̃, one obtains

C̃ = −γ

2
± iΩ (62)

where for the negative imaginary part, the same applies as in the previous case, and

Ω =
√

ω2
0 −

γ2

4 (we restrict our discussion to undercritical damping, i.e., ω0 > γ
2 ).

With CR = − γ
2 and CI = Ω = 1

α2
0
, the uncertainties corresponding to the nonlinear

Schrödinger equation are

σ2
p,NL =

mh̄
2

[(
α̇2 − γ

2
α
)
+

1
α2

]
=

mh̄
2

[γ2

4
α2

0 +
1
α2

0

]
=

mh̄
2

ω0

Ω
(63)

σ2
x,NL =

h̄
2m

α2
0 =

h̄
2mΩ

, (64)

leading to

ẼNL =
h̄
2

ω2
0

Ω
=

h̄
2

ω0

(ω0

Ω

)
>

h̄
2

ω0 = ẼL, (65)

i.e., a ground state energy that is larger than without environment. That resembles the
situation in the case of Brownian motion where the final energy after dissipation of the
center of mass energy of the Brownian particle is not zero, but 1

2 kT due to the back-transfer
of energy from the environment at temperature T caused by a stochastic fluctuating force (k
means Boltzmann’s constant). The mean value of this force vanishes, but not its contribution
to the energy, which depends on the mean value of the square of this force.

It will now be shown how the excess energy in (65) relates to the properties of the
environment. For this purpose, ẼNL is rewritten in the form

ẼNL =
h̄
2

Ω
(

1 +
γ2

4
Ω2

)
=

h̄
2

Ω + m
γ2

4
σ2

x . (66)

By inserting our Gaussian wave packet into the separation condition (41) for ρ, one obtains
the diffusion coefficient D as

D =
γ

2
σ2

x . (67)

On the other hand, D is characteristic for the properties of the environment. Assuming a
Brownian motion situation, the diffusion coefficient is given by the Einstein relation:

D =
kT
mγ

. (68)

If we consider the environment that interacts with our quantum system to be such a
Brownian one, which is reasonable, since the friction force we obtain is the same as in the
Langevin equation, then D in (67) can be set equal to D in (68). Consequently, the excess
energy in (66) can be written as

m
γ2

4
σ2

x = m
γ

2
D = m

γ

2
kT
mγ

=
1
2

kT, (69)

which is in agreement with the aforementioned energy back-transfer from the environment
due to the stochastic fluctuations. In our case, this energy contribution is connected with
the diffusion coefficient in the Smoluchowski equation for ρ(t), where ρ also represents a
statistical aspect of the system similar to the properties of the stochastic force.

Next, the situation for the free motion, i.e., V = 0, shall be considered. For the linear
Schrödinger equation without environmental effects, there is no constant particular solution
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C̃, but also for time-dependent C(t), the corresponding Riccati equation can be solved easily,
leading to

σ2
x,L = σ2

x,0
[
1 + (β0t)2], (70)

σ2
p,L = σ2

p,0 =
mh̄
2

β0 = const. (71)

and
ẼL =

h̄
4

β0, (72)

where β0 = 1
α2

0
= h̄

2mσ2
x,0

has the dimension of a frequency and σ2
x,0 is the constant initial

position uncertainty.
Including the environmental effect, there are now, also for V = 0, constant particular

solutions for the Riccati Equation (50) corresponding to the nonlinear Schrödinger equation:

C̃ = −γ

2
± γ

2
, (73)

with C̃+ = 0 and C̃− = −γ, whereas for γ = 0, only C̃ = 0 exists; i.e., the environment
causes a kind of bifurcation.

For the uncertainties and energy contributions, this means that there are now two
different solutions.

For C̃+ = 0, one obtains (for details see [16]):

σ2
x,+ = σ2

x,0

[
eγt +

( β0

γ/2

)2
sinh2 γ

2
t

]
, (74)

σ2
p,+ =

mh̄
2

β0e−γt (75)

and
Ẽ+ =

h̄
4

β0e−γt, (76)

for C̃− = −γ, these quantities are

σ2
x,− = σ2

x,0

[
e−γt +

( β0

γ/2

)2
sinh2 γ

2
t

]
, (77)

σ2
p,− =

mh̄
2

β0

[
1 +

( γ

β0

)2
]

e−γt (78)

and

Ẽ− =
h̄
4

β0

[
1 +

( γ

β0

)2
]

e−γt. (79)

Obviously, Ẽ− is larger than Ẽ+, and both are decaying exponentially. We want to look at
the energy difference ∆Ẽ = Ẽ− − Ẽ+ at the initial time t = 0 and correlate it to physical
properties of the environment:

∆Ẽ0 = Ẽ−(0)− Ẽ+(0) =
h̄
4

γ2

β0
=

m
2

γ2σ2
x,0. (80)

Using again the equivalence between the diffusion coefficient (67) of our quantum me-
chanical description (here for t = 0) and the one of the Brownian motion, the Einstein
relation (68), this energy difference can be expressed as

∆Ẽ0 = kT, (81)
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i.e., it is also related to the thermal energy of the environment.
For, t = 0, the energy Ẽ+(0) is identical to ẼL, the one without environment, whereas

Ẽ−(0) obviously contains some energy transfer from the environment, similar to the situa-
tion for the damped harmonic oscillator.

4.2. Uncertainty Product without and with Environment

Now the uncertainty products U = σ2
x σ2

p for the cases discussed in the previous sub-
section are considered using the position and momentum uncertainties determined there.

First, the harmonic oscillator without environment yields

UL =
h̄

2mω0
· mh̄

2
ω0 =

h̄2

4
; (82)

including the environment, one obtains

UNL =
h̄

2mΩ
· mh̄

2
ω2

0
Ω

=
h̄2

4

(ω0

Ω

)2
>

h̄2

4
(83)

or

UNL =
h̄2

4

[
1 +

γ2/4
Ω2

]
=

h̄2

4

[
1 +

(γ/2
β0

)2]
. (84)

For the free motion, Equations (70) and (71) lead to

UL =
h̄

2mβ0

[
1 + (β0t)2]mh̄

2
β0 =

h̄2

4
[
1 + (β0t)2]. (85)

At the initial time, UL(0) = h̄2

4 ; i.e., the wave packet is at t = 0 an MUCS. For t −→ ∞,
UL goes to infinity, limt−→∞ U −→ ∞. Including again the environment, for C̃+ = 0
one obtains

U+ =
h̄2

4

[
1 +

{( β0

γ

)
(1− e−γt)2

}]
, (86)

for C̃− = −γ

U− =
h̄2

4

[
1 +

{( β0

γ

)
(1− e−γt)2 −

( γ

β0

)
e−γt

}2]
. (87)

For t = 0, the uncertainty product becomes

U−(0) =
h̄2

4

[
1 +

( β0

γ

)2
]
> U+(0) =

h̄2

4
; (88)

i.e., only U+(0) is the minimum uncertainty product; thus, the corresponding wave packet
is an MUCS.

In the limit t −→ ∞, both uncertainty products approach the same finite maximum value:

U±,max = U±(t −→ ∞) =
h̄2

4

[
1 +

( β0

γ

)2
]

, (89)

which, for γ −→ 0, goes to infinity; i.e., the result of the system without environment.
Interesting is the situation for γ −→ ∞, as in this case, both maximum values approach

the minimum uncertainty:

lim
γ−→∞

U±,max −→
h̄2

4
= Umin = UL(0). (90)
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The parameter γ corresponds to the frequency of collision between system and environment,
i.e., the interaction of the system with the environment. This brings to mind the so-called
quantum Zeno effect, a property of quantum systems that allows the slowing down of
the system’s time-evolution. This causes the evolution to “freeze” in the system’s initial
state by measuring it frequently. The meaning of this effect has been generalized to a
suppression of the time evolution of a system not only by measurement, but also by
interaction with the environment, stochastic fields, and so on. In this sense, the reduction
of our uncertainty product to h̄2

4 , which is the initial value of UL and U+ for γ −→ ∞,
i.e., continuous interaction, could be interpreted as belonging to this category (for U−, an
additional initial contribution from the environment must be taken into account).

Comparison with Zeno’s paradox was first made by Misra and Sudarshan [34] in 1977,
although the derivation of this effect was already presented by Degasperis et al. [35] in 1974.
The question of the name being appropriate for this effect was nicely addressed by Home
and Whitaker in [36]. To show the problematic aspect, we simply quote their comment:
“Should the effect be called “quantum Zeno”? The original Zeno paradox was expressed
in different form ([37], p. 394; [38], p. 308) both of which are based on the difficulty of
building up an idea of “motion” from a series of instantaneous snapshots. The quantum
Zeno effect is based on the idea of measurement freezing change. Thus there are rather
superficial similarities but rather more deep-seated differences between the sets of ideas.
More fundamentally, Newton’s second law is second order in time, while Schrödinger’s
equation is first order, so there may certainly be no direct comparison of these processes.
Provided this is recognised, the use of similar terminology should do no harm”.

The additional term
( β0

γ

)2 in the maximum value of U± can also be interpreted in
another way. Taking into account that the time-dependent Schrödinger equation can be
written as a diffusion equation with a purely imaginary diffusion coefficient, Dqm = h̄

2m ,
and the diffusion coefficient of our open system at initial time is given, according to (67),
by D0 = γ

2 σ2
x,0, the additional term can be written as

( β0

γ

)2
=

(
h̄

γ2mσ2
x,0

)2

=

(
1
2

h̄
2m

(γ/2)σ2
x,0

)2

=
(1

2
Dqm

D0

)2
; (91)

i.e., it depends essentially on the ratio of the two diffusion coefficients.
Another interesting formal similarity emerges if the Einstein relation D = kT

mγ is identi-

fied with the above-mentioned quantum diffusion coefficient Dqm = h̄
2m , i.e., D = kT

mγ = h̄
2m

(which would imply 1
2 kT = h̄

2
γ
2 , in agreement with Equation (69)). The application of

D = h̄
2m as a diffusion coefficient occurs in approaches that try to explain quantum physics

by classical physics. In the case of Bohmian mechanics, it was already mentioned above
that the explanation in terms of classical trajectories failed. Another model is Nelson’s
stochastic mechanics [39–42] based on Newtonian physics. There, a mysterious backward
diffusion process, combined with the usual forward diffusion process, provides the parti-
cle’s drift—i.e., its mean position as a dynamically determined quantity, not as a classically
independent variable (see also [43]). Nelson himself later on stated [42] “This makes it
unrealistic to regard the trajectories as physically real.” A possible way out of this problem
could be to assume “that a particle’s drift actually is a dynamically determined quantity,
albeit in a new framework. This framework [· · · ] would have to be some kind of steady-
state, maintained by a throughput of energy from the (“contextual”) environment” [44].
In this sense, quantum mechanics is considered an emergent phenomenon.

In other words, the quantum system is embedded in some kind of environment, e.g., a
random zero-point electromagnetic radiation field [45,46], a special superfluid medium [47]
or a thermal environment of non-zero average temperature [44,48–50]. Later on, Gröss-
ing et al. adapted their model to the experiments by Couder’s group [51–53]. In this model,
the constant energy of the quantum system necessary to remain in a non-equilibrium
steady-state is supplied from the (zero-point) oscillations of the vacuum; i.e., the quantum
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system is assumed “to be embedded in an environment comprising a corresponding energy
bath with both periodic and stochastic contributions” [50], thereby resembling a Brownian
motion situation. From these assumptions, the value D = h̄

2m for the diffusion coefficient
can be derived by comparing the diffusion constant of the sub-quantum Brownian motion
with the temperature and the energy of the oscillation of the sub-quantum heat bath.

Using the same comparison between our classical Brownian motion diffusion constant
and D = h̄

2m , the imaginary part WI of the logarithmic nonlinearity (43) becomes

WI = −iTk
(

ln ρ− 〈ln ρ〉
)
, (92)

where −k〈ln ρ〉 = −k
∫ +∞
−∞ dx ln ρ has a form similar to the statistical mechanics definition

of entropy, S . Thus, the mean value of (quantum) mechanical energy (calculated with ψNL),
〈HNL〉NL = 〈T〉NL + 〈V〉NL = E, together with the second term of (43) would resemble
E− iTS—i.e., similar to the expression for the free energy of thermodynamics, only here,
again, with the imaginary unit i appearing in the quantum mechanical context. Since recent
experiments have shown [54,55] that quantum mechanics necessarily has to be formulated
in terms of complex quantities, this might not be as strange as it appears at first sight,
but this aspect needs much more further investigation.

5. Conclusions

Using a polar ansatz for the wave function ψ(x, t) =
√

ρ exp
( i

h̄ S
)

in terms of am-
plitude

√
ρ and phase S/h̄, Madelung [3] proposed a formulation in terms of two real

equations that are formally similar to classical hydrodynamic equations, a continuity equa-
tion for the amplitude and a modified Hamilton–Jacobi equation for the phase, instead of
the complex Schrödinger equation. These two equations are coupled, as the gradient of
the phase occurs as a velocity (actually momentum) field in the continuity equation, and
the amplitude occurs in the form of the so-called quantum potential Vqu in the modified
Hamilton–Jacobi equation.

In a recent paper, we have shown how the Madelung picture can be formulated in
terms of complex quantities, not only allowing for the formulation in momentum space and
beyond [23], but also for its extension to other hydrodynamic properties [24]. In position
space (to which the discussion in this paper is restricted), the momentum operator and
its corresponding complex hydrodynamic quantity, P = PR + iPI, are of interest. The real
part PR only depends on the phase S/h̄; the imaginary part PI only on the amplitude

√
ρ.

The situation changes when nonlinear functions of P are considered, such as for the kinetic
energy, where the square of the momentum appears. The real part of the complex quantity
corresponding to the kinetic energy does not only contain contributions from PR, but also
from PI and its derivative. Although the mean value of PI, like all mean values of the
complex Madelung quantities, vanishes, this is not the case for the contributions of PI to
the real part of the kinetic energy.

Consequently, the uncertainty product of σ2
x and σ2

p has two contributions, one from
the amplitude and one from the phase. The contribution from the amplitude provides
the minimum uncertainty h̄2

4 . If the uncertainty product U = σ2
x σ2

p has a larger value, this
contribution originates from the phase and can be expressed in terms of the correlation of
position and momentum uncertainties via their anti-commutator.

To illustrate this situation, we use Gaussian wave packets that are exact analytic
solutions of the time-dependent Schrödinger equation for the systems we consider, and that
are completely determined by their maximum and width and the corresponding dynamics.
The time-evolution of the maximum η(t) is determined by the classical equation of motion
for the given potential; the time-evolution of the width by a complex nonlinear Riccati
equation for C(t). The imaginary part of this equation determines the real part of CR that
enters the phase of the wave function, and thus σ2

p,ph and σxp. The imaginary part of C(t)
can be expressed in terms of a new variable α(t) that is directly proportional to the wave
packet width, CI =

1
α2 . By inserting CI and CR in terms of α and α̇ into the real part of the
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Riccati equation, the time-evolution of the wave packet width can be directly obtained from
a real nonlinear equation for α(t), the so-called Ermakov equation.

Next, the influence of a dissipative environment on these systems was considered.
Amongst several possible approaches to treat such open systems, we chose an effective one
that is compatible with our hydrodynamic Madelung picture. Since the interaction with a
dissipative environment breaks the symmetry under time-reversal of the dynamics, this
should also be reflected in the corresponding equations of motion. Unlike other approaches
that are based on phenomenological friction forces, like the one in the Langevin equation
of Brownian motion, something that could be related to the modified Hamilton–Jacobi
equation (Equation (4)), our approach starts from the continuity Equation (3), breaking
the time symmetry by introducing an irreversible diffusion term, leading to a Fokker–
Planck-type equation, which in position space is a Smoluchowski equation. The attempt
to separate this equation for ρ = ψ∗ψ into two equations depending only on ψ or ψ∗ is
not successful in general due to the coupling of ψ and ψ∗ via the diffusion term. However,
introducing an additional separation condition, where ∂2

∂x2 ρ is related to ln ρ = ln ψ + ln ψ∗,
permits separation. Although this separation condition restricts the possible solutions of the
resulting modified Schrödinger equation, it still enables Gaussian wave packets, the ones
we consider in this paper, and also enables normalization of the solutions, though the
diffusion term leads to a (nonlinear) imaginary term in the Hamiltonian operator, thereby
changing it to a non-Hermitian one.

Due to separation, an additional real contribution is introduced into the Hamiltonian
that, according to Ehrenfest, provides the desired friction force proportional to velocity or
momentum, known from the Langevin equation, but, as a consequence of the separation
condition, it is not introduced as a starting requirement for the construction of the additional
interaction term in the Hamiltonian. Consequently, also in the second Madelung equation,
the modified Hamilton–Jacobi equation, this friction force proportional to momentum appears.

As the mean value of the additional nonlinear term vanishes, 〈W〉 = 0, no additional
observable term appears in the mean value of the Hamiltonian, and thus in the energy,
i.e., 〈HNL〉 = 〈HL〉 = 〈T〉+ 〈V〉. However, these mean values are now evaluated with
the solutions of the nonlinear Schrödinger equation (Equation (42)), leading to different
time-dependence of the mean values of the energy and the uncertainties.

That also means that Ẽ and U , as functions of σ2
x , σ2

p and σxp, or CI and CR, respectively,
are unchanged, but the time dependence of CI and CR that determines that of σ2

x , σ2
p and

σxp, definitely depends on the additional terms from W = WR + iWI. The imaginary part
WI, originating from the Smoluchowski equation (Equation (39)) for ρ, enters the imaginary
part of the Riccati equation (Equation (51)), changing CR according to (52). As CR is the
quantity that enters PR, the terms that are responsible for the addition to the minimum
uncertainty product via (σxp)2 are changed too.

The real part of the additional term, WR, corresponding to the modified Hamilton–
Jacobi equation for the phase, adds a linear term to the real part of the Riccati equation,
thereby changing the Ermakov equation for the width of the wave packet and the time-
dependence of the amplitude.

As examples, the harmonic oscillator and the free motion, without and with environ-
mental interaction, have been considered. For the harmonic oscillator, the interaction with
the environment provides an additional contribution to the energy that originates from the
quantum uncertainties, causing it to be larger than without environment. This is similar
to the situation of a Brownian particle in a bath of temperature T, where the final energy
is 1

2 kT due to the back-transfer of energy from the bath via stochastic, i.e., statistic, force,
the average value of which vanishes, similarly to 〈PI〉 = 0, the mean value of the imaginary
part of our complex momentum. The mean value of P2

I does not vanish, similarly to the
average value of the square of the stochastic force that supplies the final energy of the
Brownian particle.

For the free motion, the interaction with the environment causes a bifurcation, so there
are two states with different initial ground state energies and different uncertainty products.
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The parameter that connects the quantum system via the Smoluchowski equation
(Equation (39)) with the environment is the diffusion coefficient D. For different choices
of D, different environments can be taken into account. By choosing a Brownian motion
environment and taking into account for this case the Einstein relation D = kT

mγ , the excess
energy of the damped harmonic oscillator and the difference between the lowest energies
of the two states of the damped free motion, originating from bifurcation due to broken
time-reversal symmetry, can be expressed in terms of the parameters of the environment,
particularly in terms of its temperature T.

Taking the time-dependent Schrödinger equation for the free motion as a diffusion
equation with imaginary diffusion coefficient allows formal similarity between the imag-
inary part of the additional nonlinear term and the definition of entropy in statistical
mechanics; however, in the quantum mechanical context, the imaginary unit i appears.

In the paper concerning the uncertainties in our complex Madelung picture [12], we
considered position and momentum space. Treating the corresponding open systems with
our nonlinearity (43), the gradient of this term is proportional to momentum. In momen-
tum space, however, the gradient of the logarithm of the wave function with respect to
momentum would provide a friction force proportional to position, i.e., a totally different
physical situation. Therefore, the treatment of open systems in momentum space needs a
formally different approach that is beyond the scope of this paper but will be considered in
forthcoming work.
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