
Citation: Ling, H.; Zhu, X.; Zhu, T.;

Nie, M.; Liu, Z.; Liu, Z. A Parallel

Multiobjective PSO Weighted

Average Clustering Algorithm Based

on Apache Spark. Entropy 2023, 25,

259. https://doi.org/10.3390/

e25020259

Academic Editors: Kuo-Hui Yeh,

Shu-Chuan Chu and Trong-The

Nguyen

Received: 30 December 2022

Revised: 20 January 2023

Accepted: 29 January 2023

Published: 31 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

A Parallel Multiobjective PSO Weighted Average Clustering
Algorithm Based on Apache Spark
Huidong Ling, Xinmu Zhu, Tao Zhu, Mingxing Nie , Zhenghai Liu * and Zhenyu Liu

School of Computer Science, University of South China, Hengyang 421200, China
* Correspondence: fringelzh@usc.edu.cn

Abstract: Multiobjective clustering algorithm using particle swarm optimization has been applied
successfully in some applications. However, existing algorithms are implemented on a single machine
and cannot be directly parallelized on a cluster, which makes it difficult for existing algorithms to
handle large-scale data. With the development of distributed parallel computing framework, data
parallelism was proposed. However, the increase in parallelism will lead to the problem of unbalanced
data distribution affecting the clustering effect. In this paper, we propose a parallel multiobjective
PSO weighted average clustering algorithm based on apache Spark (Spark-MOPSO-Avg). First,
the entire data set is divided into multiple partitions and cached in memory using the distributed
parallel and memory-based computing of Apache Spark. The local fitness value of the particle
is calculated in parallel according to the data in the partition. After the calculation is completed,
only particle information is transmitted, and there is no need to transmit a large number of data
objects between each node, reducing the communication of data in the network and thus effectively
reducing the algorithm’s running time. Second, a weighted average calculation of the local fitness
values is performed to improve the problem of unbalanced data distribution affecting the results.
Experimental results show that the Spark-MOPSO-Avg algorithm achieves lower information loss
under data parallelism, losing about 1% to 9% accuracy, but can effectively reduce the algorithm time
overhead. It shows good execution efficiency and parallel computing capability under the Spark
distributed cluster.

Keywords: multiobjective clustering; Apache Spark; multiobjective particle swarm optimization
(MOPSO)

1. Introduction

The clustering algorithm is an unsupervised learning process with many applications
in academia and industry. Among the various clustering techniques [1,2], partitioned
clustering [3] is widely used because of its low computational requirements. The partition
clustering process can be viewed as an optimization problem where the goal is to find the
optimal clustering center. McDowell uses a single objective function to evaluate the quality
of clustering. Most of these clustering methods use a single objective function to evaluate
the clustering results [4]. However, in some real-world problems, it is often necessary to
optimize multiple objective functions at the same time [5]. In order to improve the quality
of clustering, clustering methods use multiple objective functions to evaluate the generated
clusters [6]. This converts the clustering problem into a multiobjective problem (MOP).
Research has shown that many multiobjective optimization algorithms have been used in
the field of clustering [7–9]. Gong proposed an improved multiobjective clustering particle
swarm optimization framework [10]. Abubaker proposed a new automatic clustering
algorithm based on multiobjective PSO and simulated annealing (MOPSOSA) [11]. Armano
and Farmani proposed a multiobjective clustering PSO that can automatically discover the
optimal number of clusters [12].

Entropy 2023, 25, 259. https://doi.org/10.3390/e25020259 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25020259
https://doi.org/10.3390/e25020259
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-2720-0470
https://doi.org/10.3390/e25020259
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25020259?type=check_update&version=1

Entropy 2023, 25, 259 2 of 14

However, with the explosive growth of data, many emerging optimization problems
involve handling this data and reducing run time. Traditional data clustering algorithms
based on a single machine serial model require scanning and iterative computation of
the entire training set, and this process consumes a large amount of computation time
and, therefore, cannot be directly applied to large-scale data [13,14]. Yasin Ortakci pro-
posed a multithreaded parallel particle swarm algorithm and applied it to the clustering
problem [15]. However, this approach suffers from the problem that when the amount
of data is too large, a single machine may not be able to handle it. Hadoop and Spark
are some of the new distributed computing frameworks for dealing with big data, and
many scholars have successfully applied them to particle swarm clustering problems. Al-
jarah proposes a clustering method based on parallel particle swarm optimization based
on the MapReduce programming model [16]. However, MapReduce requires frequent
reads and writes to the hard disk, which makes it unsuitable for iterative processes. On
the other hand, Spark is the preferred method for parallel stochastic search optimization
algorithms due to its advantages, such as memory-based computing, which makes it faster
than Hadoop processing [17]. Wang proposed a parallel clustering algorithm on Apache
Spark to deal with the text problem [18]. Chen proposed a Spark Parallel Binary Moth
Flame Optimization (SPBMFO)-based algorithm and applied it to the feature selection
problem [19]. Govindarajanet proposes data clustering in parallel PSO processing learning
analytics system on Spark [20]. In parallel optimization based on a spark, most of them
are applied to parallel single-objective optimization algorithms, but few are applied to
parallel multiobjective optimization algorithms [21]. Although the distributed computing
framework can reduce the running time of algorithms, with the increase of parallelization,
how to deal with the uneven data distribution of multiobjective clustering algorithms,
which affects the clustering effect, needs further analysis and exploration.

In this paper, we propose a multiobjective PSO weighted average clustering algorithm
based on apache Spark (Spark-MOPSO-Avg). First, we propose taking advantage of the
benefits of Spark to reduce the iterative reads and writes of the data to improve efficiency
by using in-memory operations. Then, we improve the efficiency of the data in the serial
port of the algorithm by dividing the whole dataset into multiple partitions, and each
particle computes the fitness function on each partition in parallel. Then, a weighted
average of the fitness values of all partitions is calculated as the final fitness value to solve
the problem caused by random partitioning with unbalanced data distribution when the
data are in parallel. In the multiobjective clustering process, Spark-MOPSO-Avg uses
the overall clustering deviation metric and the clustering connectivity metric as objective
functions to help find the optimal clustering solution and uses accuracy to evaluate the
final obtained clustering solution. Based on the accuracy metric, the MOPSO algorithm
based on single-machine (Single-MOPSO) and the MOPSO algorithm based on particle
parallelism on Spark (Spark-MOPSO-Particle) are then compared.

This paper is organized as follows. In Section 2, we present the mathematical descrip-
tion of the multiobjective clustering problem, the multiobjective particle swarm algorithm,
and the basic conceptual background of Apache Spark. In Section 3, the Spark-MOPSO-Avg
method is introduced in detail. In Section 4, the experimental study of Spark-MOPSO-
Avg on different datasets is discussed. Finally, Section 5 concludes with a summary of
the algorithm.

2. Background
2.1. Mathematical Description of the Multiobjective Clustering Problem

In real life, many problems require considering multiobjective simultaneously to
obtain better results. There are many effective methods in the literature to evaluate the
effectiveness of clustering. However, since clustering mostly possesses multiple conflicting
objectives, finding a general and effective criterion to solve all clustering schemes is difficult.
In order to better solve clustering problems, many scholars have considered clustering
problems with multiobjective formulations instead of using multiple clustering criteria to

Entropy 2023, 25, 259 3 of 14

optimize simultaneously. Thus, a multiobjective clustering problem [22] can be formalized
as (1):

C∗ = arg min
c∈Ω

f(C) (1)

where f(C) = [f1C, f2C, ..., fmC]T is the target function vector, and fi : Ω → R is the ith
different (single) optimization criterion, i ∈ {1, ..., m}.

To obtain clusters with good compactness and separation. In this paper, two conflicting
validity metrics are used as objective functions: one on the compactness of clusters and the
other on the connectivity of clusters. A balanced solution is generated by two conflicting
clustering objectives, both of which need to be minimized to obtain a better clustering
result. The first objective function is called the overall clustering deviation metric [23],
which calculates the total distance between data object instances to their corresponding
clustering centers. The formula is as follows:

Dev(C) = ∑
Ck∈C

∑
i∈Ck

δ(i, µk) (2)

where C is the set of all clusters, i denotes a data point, µk is the centroid of cluster Ck, and
δ(., .) is the distance function (e.g., Euclidean distance). (2) shows that the more compact
objects in the same class indicate more similar objects in the class and better clustering, so
the algorithm aims at minimizing this indicator function. This objective function is biased
toward spherical clusters.

We use the clustering connectivity metric [24] to measure how often neighboring
objects are assigned to the same cluster as the second objective function. The formula is
as follows:

Conn(X) =
n

∑
i=1

L

∑
j=1

a
(
xi, nnij

)
(3)

xi,j =

{
1/j, i f /∈ Ck : r, s ∈ Ck

0, otherwise

where n is the size of the dataset, nnij(j) is the jth nearest neighbor of xi, L is a constant
indicating the number of nearest neighbors of a data point. This objective function empha-
sizes the nearest neighbor relationship of the data objects, and this objective function can
detect galaxy clusters of arbitrary shapes. It can be seen from (3) that this metric should
be minimized.

2.2. Multiobjective Particle Swarm Optimization Algorithm

The particle swarm algorithm [25] is a heuristic optimization algorithm proposed by
Kennedy and Eberhart by simulating the migration and flocking behavior of a flock of
birds during foraging. In the particle swarm algorithm, each particle has its velocity and
position, where the position information of the particle indicates the potential solution to
the problem. The particle finds the optimal solution by the evolution of its position. The
velocity Vi and the position Pi of the particle are updated as follows:

vd
i = wt · vd

i + c1 · r1 ·
(

pbestd
i − xd

i

)
+ c2 · r2 ·

(
gbestd

i − xd
i

)
(4)

xd
i = xd

i + vd
i (5)

where d = 1, 2, 3, ..., D is the particle dimension, xi is the position of the ith particle, vi is
the velocity of the ith particle, t denotes the number of generations, wt is the inertia weight,
c1 and c2 are the local learning factor and the global learning factor, respectively, r1 and r2
are random numbers between [0, 1], pbesti denotes the best position before particle i, and
gbest denotes the global best position currently found in the whole population.

Entropy 2023, 25, 259 4 of 14

The multiobjective particle swarm optimization algorithm was first proposed by
Coello [26]. The basic framework of MOPSO is similar to the criterion of velocity and posi-
tion update rules for particles and uses a set of external archives to maintain nondominated
solutions. Gong [10] proposed a multiobjective clustering framework using particle swarm
optimization. In this paper, we use the MOPSO-CD algorithm [27] as a multiobjective
optimization framework, where CD stands for crowding distance.

2.2.1. Particle Encoding and Initialization Process for Clustering

In general, particle representation is essential, as each particle represents a solution. In
order to solve clustering problems with multiobjective particle swarm algorithms, suitable
particle encoding is needed to represent the potential solutions. We use particles as cluster-
ing centers so that a single particle encoding representation consists of a two-dimensional
matrix of size K * D, where K and D denote the number of clusters and the dimensionality
of data instances, respectively. For example, a dataset has four attributes and three clusters.
Then, the position information of each particle is represented in Figure 1.

5.1 3.5 1.4 0.2

7.0 3.2 4.7 1.4

6.3 3.3 6.0 2.5

Cluster 1

Cluster 2

Cluster 3

Figure 1. Particle position coding.

A suitable particle swarm initialization mechanism can sufficiently reduce the search
space to reach the global best quickly and promote the diversity of solutions. Since the
positions in a particle swarm correspond to the cluster centers in a multiobjective clustering
problem, the initialization of particle swarm positions may yield undesirable results if they
are too random. If the points in the same class are selected as cluster centers simultaneously,
this will increase the algorithm time and decrease the algorithm’s efficiency. This paper
uses the maximum–minimum distance criterion [28] to initialize the particles. Selecting
sample points as close to the clustering center as possible reduces the possibility of using
points of the same class as the initial clustering center at the same time.

2.2.2. Crowding Distance

The multiobjective particle swarm base on crowding distance algorithm [29] uses the
concept of Pareto dominance to update the external archive and to find the best nondomi-
nated solution for the particles. Pareto dominance classifies solutions into dominated and
nondominated solutions, and then all nondominated solutions are inserted into the external
profile. We also need to update the external archive to ensure the diversity of the data,
and after determining the crowding degree values for each particle, we rank the particles
according to the crowding distance. The particle with minor crowding is deleted until the
external profile is no longer flooded. In addition, to select the global best position, the
crowding distance of each particle is first calculated, avoiding the two infinity endpoints,
and then the other particles are sorted. The particle with the largest crowding distances is
selected as the global best position for subsequent evolution in less crowded regions and
thus the diversity of nondominated solutions in the external archive.

2.3. Apache Spark

Apache Spark is an open-source distributed computing platform implemented based
on the MapReduce programming model. Spark provides an abstract object Resilient
Distributed Dataset (RDD) based on in-memory computing. It is known for its scalability,
flexibility, and speed [30]. Users only need to read and write their data once and cache it in

Entropy 2023, 25, 259 5 of 14

memory, which can be used repeatedly in later computations. The results of intermediate
calculations can be saved in memory, reducing the need for recurrent data reading and
writing and drastically improving processing performance. Therefore, Apache Spark has a
natural advantage when it is necessary to perform iterative processes, and its performance
on some algorithms is more than 10 times that of Hadoop [31].

3. Method

A multiobjective particle swarm algorithm is an optimization algorithm in which each
iteration relies on the global best solution obtained in the previous iteration as the basis for
the evolution of the next particle. As the number of data increases, it becomes impractical
for the particles to take longer execution time to compute the fitness values of the objective
function in succession. In this section, we propose a parallel multiobjective PSO weighted
average clustering algorithm based on apache Spark (Spark-MOPSO-Avg). We reduce the
execution time of the algorithm by dividing the data into multiple partitions and computing
the fitness values of the particles in parallel. Our goal is to improve computational efficiency
while maintaining the clustering quality. In this section, we describe the main components
of the proposed method in detail, giving the pseudocode of Spark-MOPSO-Avg.

3.1. Fitness Evaluation

The proposed fitness values parallel computation incorporates a weighted average
operation on the data, which can also effectively extract information about the local fitness
values when the data distribution is unbalanced. The fitness values parallel calculation is
divided into two portions in this article. The first part calculates the local fitness values.
Since each node has a part of the overall data, the data in each node is only involved in the
local fitness values calculation. There is no need to transmit many data objects between
nodes in the clustering process, reducing the communication of data in the network. The
main idea of the algorithm is: in the master node, the initialized particle swarm will be to
broadcast each worker node. Each worker node first uses the position information of the
particle as the cluster center and predicts the data in the partition by k-means to get the
clustered index corresponding to the data object in that partition at the particle position.
Then, the clustering indexes of the data objects of each node are calculated according
to (2) and (3) to obtain the local fitness values. This process does not need to transmit a
large amount of data, only the data of particle clusters, so the network communication is
small, and the execution is efficient.

In the second part, after calculating the local fitness values, we obtain different local
fitness values for each particle in each node. Then, we need to aggregate the different local
fitness values obtained from each node to the master node by Spark’s collect() function.
Since the data quality of each node is different, in this paper, we consider adding up the
fitness values of particles i for each working node in the master node to obtain the total
fitness value of particles Fi. It can be formalized as (6).

Fi =
n

∑
c=1

fc,i ∗
Nc

N
(6)

where f(c,i) denotes the local fitness value obtained by training particle i in partition c, Nc
denotes the number of samples in partition c, and n denotes the total number of samples in
all partitions.

3.2. Spark Implementation of Multi-Objective Particle Swarm Algorithm

Figure 2 depicts the general framework for parallel particle swarm-based multiobjec-
tive clustering on Spark. First, an initial particle swarm is generated in the master node, and
then all particles are sent to each node’s executor via the cluster manager using broadcast
variables. Each executor then reads a portion of the HDFS data and caches it in the memory
of its respective worker, which is encapsulated in an RDD. Each executor reads a portion of
the data from the memory of their respective worker and the particle information obtained

Entropy 2023, 25, 259 6 of 14

from the broadcast to perform the particle fitness calculation. When the computation task
of all the executors is completed, the particle fitness values are weighted and aggregated
in the master node. Then, operations such as updating the external archive, the optimal
solution, and the particle population are performed. Then, the updated particle swarm
is rebroadcast to the actuators of each node to start a new iteration. Until the maximum
number of iterations is reached, the cycle ends and belongs to the final Pareto solution set.

Worker Node 1

C
a
l lo

c
al

fitn
e
ss

C
a
ch

e

Executor 1

Worker Node 2

C
a
l lo

c
al

fitn
e
ss

C
a
ch

e

Executor 2

Worker Node n

C
a
l lo

c
al

fitn
e
ss

C
a
ch

e

Executor n

Master Node

SparkContext

Cal Fitness Avg

Particle swarm

(1)
(3)

(3)

(3)

Update Archive

（5）

Update particle

swarm

H
D

F
S

Network Communications

Local Communications

Update Archive

（6）

（7）

Figure 2. Spark-MOPSO-Avg Architecture.

Algorithm 1 shows the proposed multiobjective particle swarm clustering algorithm
based on Apache Spark, which mainly consists of the following steps. A related implemen-
tation of this algorithm is available on GitHub https://github.com/HadwinLing/Apache-
Spark-MOPSO-Clustering (29 December 2022).

Step 1: Read HDFS data and create RDD. Read the dataset to be trained from HDFS to
create dataRDD with n partitions, each partition with m/n data instances.

Step 2: Initialize the population. Generate Np initial clustering centers from dataRDD
as a particle’s position information. Moreover, randomly generate the velocity information
of the particles. Broadcast from the master node to each worker node.

Step 3: Compute the fitness values of the particles in parallel. Broadcast the particle
swarm and calculate the fitness values of the particles in parallel using Algorithm 2.

Step 4: Update pbest. Suppose the current particle fitness dominates the current
pbest′s. If it does, replace the pbest′s fitness value and position with the particle’s fitness
value and position. Otherwise, no change.

Step 5: Update the archive. Copy all the particles in the particle swarm to the archive,
then use the Pareto dominance concept to find the best nondominated solution for the par-
ticles and insert all the nondominated solutions into the external archive. After calculating
the crowding degree value for each particle, the ranking is done based on the crowding
distance. The particles crowding the minimum crowding distance are eliminated until the
external archive is overflowing.

Step 6: Determine whether the number of iterations reaches the specified number, and
if so, output the external archive; if not, proceed with the following evolution:

1. Update the optimal global solution. The choice of the optimal global solution
affects the evolutionary direction and diversity of the particles. The optimal solution is
computed by first calculating the crowding distance of each particle, then avoiding the two
infinity endpoints and ranking them. Those particles with the largest crowding distances
are selected as the optimal solutions for subsequent evolution in less crowded regions and
thus the diversity of nondominated solutions in the Archive.

https://github.com/HadwinLing/Apache-Spark-MOPSO-Clustering
https://github.com/HadwinLing/Apache-Spark-MOPSO-Clustering

Entropy 2023, 25, 259 7 of 14

2. Update particle swarm. The position and velocity of the updated particles are
performed according to (5) and (4).

Step 7: Iteration number +1, return to step 3.

Algorithm 1 Spark-MOPSO-Avg.
Input: dataset, Repository, Archive, Itermax, n, Np
Output: a group of external archives
1: // Run in Master Node
2: dataRDD← sc.textFile(hdfs).repartition(n).persist()
3: particleSwarm← Initialize particle swarm
4: Archive← Initialize Archive
5: particleSwarmBC← sc.broadcast(particleSwarm)
6: // Calculate the fitness value of the particle using Algorithm 2 and localDatac is the

data cached in the working node c
7: localFitnessRDD← dataRDD.mapPartition(calFitness(localDatac, particleSwarmBC))
8: localFitness← localFitnessRDD.collect()
9: for each particle in particleSwarm do

10: particle’s Fitnessi ← ∑n
c=1 localFitnessc,i ∗ Nc

N
11: end for
12: particleSwarm.map(Update pbest)
13: Archive← Update Archive
14: for each iter = 1, 2, ..., Itermax do
15: gbest← Select Global Best Fitness
16: for each particle in particleSwarm do
17: Update particle velocity by (4)
18: Update particle position by (5)
19: end for
20: particleSwarmBC← sc.broadcast(particleSwarm)
21: // Calculate the fitness value of the particle using Algorithm 2 and localDatac is

the data cached in the working node c
22: localFitnessRDD←

dataRDD.mapPartition(calFitness(localDatac, particleSwarmBC))
23: localFitness← localFitnessRDD.collect()
24: for each particle in particleSwarm do
25: particle’s Fitnessi ← ∑n

c=1 localFitnessc,i ∗ Nc
N

26: end for
27: for each particle in particleSwarm do
28: if particle’s Fitness Pareto dominates pbest then
29: Update pbest
30: end if
31: end for
32: particleSwarm.map(Update pbest)
33: Update Archive
34: end for
35: return Archive

Entropy 2023, 25, 259 8 of 14

Algorithm 2 calFitness Algorithm.
Input: localDatac, particleSwarmBC
Output: particleSwarmFitness
1: // Run in worker Node c
2: function CALFITNESS(localDatac, particleSwarmBC)
3: particleSwarmBCValue = particleSwarmBC.value
4: for 1 ≤ i ≤ particleSwarmBCValue do
5: dataWithClusterK← K-means clustering with particlei.position as the cluster

center using localDatac
6: Calculate the objective function value as the local fitness value based on (2) and

the dataWithClusterK
7: Calculate the objective function value as the local fitness value based on (3) and

the dataWithClusterK
8: end for
9: return particleSwarmFitness

10: end function

4. Experiment

This section summarizes the methods used to evaluate and compare the experiments
and describes the data set, setup, and experimental conditions used during this study.

4.1. Experimental Environment

The platform is built and experimentally validated in the Spark framework. The
platform consists of one master node and four slave nodes, which all have the same
hardware and software configuration. All nodes have Inter(R) Xeon(R) Glod 5215 CPUs
with 40-core and 240 GB of RAM on the hardware side. On the software side, each node
has 18.04.1 Ubuntu OS, JDK version 1.8.0.131, Hadoop version 2.10.0, Spark version 3.0.0,
and Scala version 2.12.10 installed.

4.2. Datasets

The experiment has been validated on several real datasets. We have used datasets
from the OpenML datasets repository https://www.openml.org/ (29 December 2022).
Table 1 summarizes the main features of these datasets, including the number of attributes,
the number of instances, and the number of clusters.

Table 1. Properties of Data Sets.

Name of the Dataset Objects Feature Class

Phoneme 5404 5 2
Kin8nm 8192 8 2
mozilla4 15,545 5 2

4.3. Parameter Setting

Table 2 gives the values of the critical parameters of Spark-MOPSO-Avg, which are
used to tune the algorithm’s performance. Np parameter indicates the number of par-
ticles in the particle swarm algorithm. The Itermax parameter indicates the maximum
number of iterations of the algorithm. The Repository parameter indicates the maximum
number of nondominated solutions stored in the Archive. n represents the number of
partitions. w parameter indicates the weight factor. c1 and c2 parameters are the particle
learning parameters.

https://www.openml.org/

Entropy 2023, 25, 259 9 of 14

Table 2. Parameter settings of Spark-MOPSO-Avg algorithm.

Description Parameters Value

Particle number Np 50
Maximum iterations Itermax 30

Archive number Repository 15
Partition Number n 200

Weight factor w 3
learning parameters c1 1.49445
learning parameters c2 1.49445

4.4. Comparing Clustering Algorithms

On the above dataset, the proposed Spark-MOPSO-Avg algorithm is compared with
the MOPSO algorithm base on single-machine (MOPSO-Single), the MOPSO algorithm
base on particle parallelism based on Spark (Spark-MOPSO-Particle), and the MOPSO
algorithm based on label partitioning on Spark (Spark-MOPSO-labelPartition).

The MOPSO algorithm based on a single machine (MOPSO-Single) is written in Scala,
and the optimization functions are consistent with Spark-MOPSO-Avg, while the algorithm
runs on a single machine.

The MOPSO algorithm-based particle parallelism on Spark (Spark-MOPSO-Particle) is
to parallelize particles and uses the same optimization function. The particles are initialized
to generate a particleRDD, and the broadcasted data is then used for iterative computation.

The MOPSO algorithm based on label partitioning on Spark (Spark-MOPSO-labelPartition)
is the same as Spark-MOPSO-Avg. Since Spark-MOPSO-Avg has the problem of unbalanced
data distribution when partitioning data randomly, Spark-MOPSO-labelPartition partitions
the data based on labels only to simulate this situation.

4.5. Results and Analysis

To test the effectiveness of the parallelized Spark-MOPSO-Avg algorithm, we perform
tests on the Phoneme, Kin8nm, and mozilla4 datasets. Each record of these three datasets
has a corresponding label. We compared the accuracy of the proposed Spark-MOPSO-Avg,
Spark-MOPSO-Particle, and MOPSO-Single by putting them to the test on the above three
datasets. During the experiments, the three datasets are run 10 times, and the average value
is taken as the final experimental result data to reduce the effect of random errors.

4.5.1. Experiment 1: Running Time Comparison

The running time metricis used to evaluate whether the improved algorithm improves
the effectiveness of the algorithm, and it determines how fast the algorithm runs. In this paper,
we use runtime to measure the execution efficiency of the Spark-MOPSO-Avg algorithm.

Figure 3 shows the execution time of the above three algorithms under Phoneme,
Kin8nm, and mozilla4 datasets. It can be seen that Spark-MOPSO-Particle reduces the
clustering time more than MOPSO-Single. However, as the data size increases, the efficiency
improvement of Spark-MOPSO-Particle is not significant. In contrast, for Spark-MOPSO-
Avg, the computational efficiency is greatly improved over MOPSO-Single and Spark-
MOPSO-Particle. Spark-MOPSO-Avg will first partition the data and cache it in memory.
Apache Spark broadcasts the particles to each node, and each node reads data from local
memory for calculation each time. The algorithm only calculates local data, which reduces
the communication overhead of data in each node, so it greatly reduces the clustering time.
Spark-MOPSO-Particle reads the dataset from a file and uses Spark’s Broadcast to broadcast
the entire dataset to all nodes and cache it in memory. When it encounters an execution
operator, it reads the data directly from memory and computes it. However, when the data
volume is large, the memory of a node cannot cache all the data, and the algorithm scans
the whole data for computation when executing a serial algorithm, which greatly reduces
the operational efficiency and even prevents the algorithm from running.

Entropy 2023, 25, 259 10 of 14

phoneme kin8nm mozilla4
0

200

400

600

800

1000

R
un

ni
ng

 T
im

e(
m

)

257.867

539.983

1039.983

4.012 9.147 32.985
0.598 0.672 0.74

MOPSO-Single
Spark-MOPSO-labelPartition
Spark-MOPSO-Avg

Figure 3. Running Time values for each algorithm processing dataset.

Table 3 shows the results of the statistical analysis of the Wilcoxon test results of the
running time metric between the Spark-MOPSO-Avg algorithm and other algorithms. In the
Wilcoxon test, 8 indicates when the p-value is greater than 0.05 and the same distribution
may exist between the two algorithms; otherwise, 4 is used to indicate that there may be
significant differences between the two algorithms. Based on the Wilcoxon test results of
the running time metric, there is a significant difference between the running time of the
Spark-MOPSO-Avg algorithm and other algorithms on the three datasets.

Table 3. Wilcoxon test results for the Running time metric, the symbol 4 means that there is significant
difference.

Dataset Spark-MOPSO-Avg vs.
MOPSO-Single

Spark-MOPSO-Avg vs.
Spark-MOPSO-Particle

Spark-MOPSO-Avg vs.
Spark-MOPSO-
labelPartition

phoneme 4 4 4

Kin8nm 4 4 4

Mozilla4 4 4 4

4.5.2. Experiment 2: Accuracy Rate Comparison

In order to evaluate clustering results, therefore, an accuracy rate is used to evaluate
the clustering result algorithm. This paper uses datasets with labels. The accuracy rate is
defined in (7).

p =
R
N

(7)

where R is the number of data objects with the same labels as the labels of the corresponding
clusters, and N is the total number of data objects. The accuracy rate can visually evaluate
the clustering results of the algorithm. When the value of P is larger, it indicates that the
clustering results are more accurate and reasonable.

Table 4 gives the accuracy rate of Spark-MOPSO-Avg, Spark-MOPSO-Particle and
MOPSO-Single for three different datasets with five nodes. Table 4 shows that MOPSO-
Single and Spark-MOPSO-Particle are more accurate than Spark-MOPSO-Avg in handling
the clustering problem because both algorithms involve all sample data of the entire
dataset in the iterative computation process. For Spark-MOPSO-Avg, only the data in the
partitions are involved in each iteration, so the accuracy is not as good as that of MOPSO-
Single and Spark-MOPSO-Particle, which use all the data in the computation. However,
Spark-MOPSO-Avg obtains lower information loss when dealing with clustering problems
than MOPSO-Single and Spark-MOPSO-Particle, with only about 1% to 9% accuracy loss

Entropy 2023, 25, 259 11 of 14

compared to MOPSO-Single. This indicates that Spark-MOPS-Avg achieves low error in
processing the clustering problem.

Table 4. The Statistical results of accuracy measures in each data set for Spark-MOPSO-Avg, Spark-
MOPSO-Particile and MOPSO-Single.

Dataset Algorithm Best Worst Average StDev.

phoneme
Spark-MOPSO-Avg 0.7756 0.5973 0.6973 0.0595

Spark-MOPSO-Particle 0.7296 0.6737 0.6907 0.0197
MOPSO-Single 0.7285 0.7507 0.6843 0.0282

Kin8nm
Spark-MOPSO-Avg 0.6980 0.5966 0.6317 0.0342

Spark-MOPSO-Particle 0.6854 0.5871 0.6391 0.0362
MOPSO-Single 0.6611 0.6118 0.6355 0.0157

Mozilla4
Spark-MOPSO-Avg 0.6480 0.5935 0.6381 0.0165

Spark-MOPSO-Particle 0.8024 0.6910 0.7468 0.0407
MOPSO-Single 0.8062 0.6833 0.7347 0.0389

Table 5 gives the accuracy of Spark-MOPSO-Avg and Spark-MOPSO-labelParition.
From the table, it can be seen that the accuracy loss of Spark-MOPSO-labelPartition is about
3% to 5% compared to Spark-MOPSO-Avg. This indicates that Spark-MOPSO-avg can also
obtain lower loss in the data skewing problem caused by Spark partitioning.

Table 5. The Statistical results of accuracy measures in each dataset for Spark-MOPSO-Avg and
Spark-MOPSO-label Partition.

Dataset Algorithm Best Worst Average StDev.

phoneme Spark-MOPSO-Avg 0.7756 0.5973 0.6973 0.0595
Spark-MOPSO-labelPartition 0.7089 0.5719 0.6471 0.0365

Kin8nm Spark-MOPSO-Avg 0.6980 0.5966 0.6317 0.0342
Spark-MOPSO-labelPartition 0.6612 0.5870 0.6211 0.0330

Mozilla4 Spark-MOPSO-Avg 0.6480 0.5935 0.6381 0.0165
Spark-MOPSO-labelPartition 0.6132 0.5930 0.6071 0.0064

Table 6 shows the Wilcoxon test result for the accuracy rate metric between the Spark-
MOPSO-Avg algorithm and other algorithms. For the two datasets, phoneme and Kin8nm,
there is the same distribution in accuracy rate metric between the algorithm proposed
in this paper and the other algorithms. For the Mozilla4 dataset, although the p-value
between Spark-MOPSO-Avg and the other algorithms is less than 0.05, the combination of
running time metric and accuracy rate metric considerations shows that Spark-MOPSO-
Avg significantly reduces the processing time in the algorithm runtime. Therefore, based on
the accuracy rate metric, the Spark-MOPSO-Avg algorithm obtains a lower accuracy loss
relative to the other algorithms but significantly improves computation time, indicating
that the algorithm is capable of accomplishing the task of big data clustering.

Table 6. Wilcoxon test results for the accuracy rate metric

Dataset Spark-MOPSO-Avg vs.
MOPSO-Single

Spark-MOPSO-Avg vs.
Spark-MOPSO-Particle

Spark-MOPSO-Avg vs.
Spark-MOPSO-
labelPartition

phoneme 8 8 8

Kin8nm 8 8 8

Mozilla4 4 4 4

Entropy 2023, 25, 259 12 of 14

4.5.3. Experiment 3: Scalability Comparison

In order to evaluate the scalability of the Spark-MOPSO-Avg algorithm, the speedup
ratio is used to evaluate the algorithm. The scalability of Spark-MOPSO-Avg is evaluated
by varying the number of nodes in the cluster. This experiment uses different sizes of data
object sets for comparative analysis. The experimental data are generated using standard
Blobs data generated by Python Sklearn’s make_blobs() function in a square region in the
x-range [−10, 10] and y-range [−10, 10], and the sizes and data volumes of the data object
sets are shown in Table 7.

Table 7. Detailed table of experimentaldata sets.

Name of the Dataset Objects Feature Class

Dataset1 10,000 2 3
Dataset2 50,000 2 3
Dataset3 100,000 2 3
Dataset4 200,000 3 3

The Speedup rate metric measures the parallelization capability of an algorithm by
calculating the ratio of the running time on a single node to the running time on parallel
nodes. The rate of Speedup is determined as follows, where the data set size is constant,
and the number of nodes is gradually raised. The Speedup is defined as in (8).

Speedup =
T1

Tm
(8)

where T1 denotes the algorithm’s running time on a single node, Tm denotes the running
time of parallel computation, and m is the number of nodes. A larger Speedup indicates
the higher parallelization efficiency of the algorithm. To verify the parallel performance of
the Spark-MOPSO-Avg algorithm, four datasets of different magnitudes in Table 7 are used
in the experiments. The experiments are conducted by controlling the number of Spark
clusters at the number of nodes 1–5, respectively. The experimental results are shown in
Figure 4.

1 2 3 4 5
Number of node

0

5

10

15

20

Sp
ee

d
up

DataSet1
DataSet2
DataSet3
DataSet4

Figure 4. Speedup results of Spark-MOPSO-Avg on simulated data sets.

From the comparison in Figure 4, we can see that for four different datasets, the
Spark-MOPSO-Avg algorithm has varying degrees of parallel running time reduction
as the number of nodes increases and the speedup ratio also rises. This means that the
algorithm’s parallel speedup effect is also better as the number of Spark cluster nodes rises.
Theoretically, each time the number of Spark cluster nodes is doubled, the parallel execution
time of the algorithm should be reduced by half. However, as the number of running nodes
increases, the network communication overhead between nodes also increases the running
time. Thus, the speedup ratio grows slowly with the number of nodes. The larger the
dataset is, the more significant the speedup effect is for the same nodes. This experiment

Entropy 2023, 25, 259 13 of 14

can show that the Spark-MOPSO-Avg has good parallel performance when performing
operations on large data sets in parallel.

5. Conclusions

In big data research, the clustering problem has been an important area. In this paper,
we propose a parallel multiobjective PSO weighted average clustering algorithm based
on Spark (Spark-MOPSO-Avg). The algorithm uses the multiobjective particle swarm
algorithm as the basic framework, employs two conflicting validity metrics as the objective
functions, and computes the fitness values in parallel using Spark. The proposed method
was evaluated on real and simulated datasets and showed promising results based on
running time, accuracy rate, and speedup metrics. It is shown that the multiobjective
particle swarm algorithm for data clustering can perform well in a parallel environment. In
future work, we propose to use streaming data in multiobjective PSO or other multiobjective
population intelligence optimization algorithms for data clustering or apply it to other real
big data applications that may have more diverse benefits.

Author Contributions: Conceptualization, H.L., T.Z.; methodology, H.L.; software, H.L.; validation,
H.L.; formal analysis, H.L. and T.Z.; investigation, H.L.; resources, T.Z., M.N., Z.L. (Zhenghai Liu)
and Z.L. (Zhenyu Liu); data curation, H.L. and X.Z.; writing—original draft preparation, H.L.;
writing—review and editing, T.Z., M.N., Z.L. (Zhenghai Liu) and Z.L. (Zhenyu Liu); visualization,
H.L.; supervision, T.Z. and Z.L. (Zhenyu Liu); funding acquisition, T.Z., M.N. All authors have read
and agreed to the published version of the manuscript.

Funding: National Natural Science Foundation of China: 62006110; Natural Science Foundation
of Hunan Province: 2021JJ30574; Research Foundation of Education Bureau of Hunan Province:
21B0424; Hengyang Science and Technology Major Project: 202250015428

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The article contains the data which are also available from the corre-
sponding authors upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Filippone, M.; Camastra, F.; Masulli, F.; Rovetta, S. A survey of kernel and spectral methods for clustering. Pattern Recognit. 2008,

41, 176–190. [CrossRef]
2. Govender, P.; Sivakumar, V. Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review

(1980–2019). Atmos. Pollut. Res. 2020, 11, 40–56. [CrossRef]
3. Jain, A.K.; Murty, M.N.; Flynn, P.J. Data clustering: A review. ACM Comput. Surv. (CSUR) 1999, 31, 264–323. [CrossRef]
4. McDowell, I.C.; Manandhar, D.; Vockley, C.M.; Schmid, A.K.; Reddy, T.E.; Engelhardt, B.E. Clustering gene expression time series

data using an infinite Gaussian process mixture model. PLoS Comput. Biol. 2018, 14, e1005896. [CrossRef]
5. Chen, C.Y.; Ye, F. Particle swarm optimization algorithm and its application to clustering analysis. In Proceedings of the 2012 17th

Conference on Electrical Power Distribution, Tehran, Iran, 2–3 May 2012; IEEE: Piscataway Township, NJ, USA, 2012; pp. 789–794.
6. Mukhopadhyay, A.; Maulik, U.; Bandyopadhyay, S. A survey of multiobjective evolutionary clustering. ACM Comput. Surv.

(CSUR) 2015, 47, 1–46. [CrossRef]
7. Paul, D.; Saha, S.; Mathew, J. Improved subspace clustering algorithm using multi-objective framework and subspace optimization.

Expert Syst. Appl. 2020, 158, 113487. [CrossRef]
8. Tian, Y.; Si, L.; Zhang, X.; Cheng, R.; He, C.; Tan, K.C.; Jin, Y. Evolutionary large-scale multi-objective optimization: A survey.

ACM Comput. Surv. (CSUR) 2021, 54, 1–34. [CrossRef]
9. Chen, C.; Qi, F. An Automatic Multi-Objective Clustering Based on Hierarchical Method. In Recent Developments in Data Science

and Business Analytics; Springer: Berlin/Heidelberg, Germany, 2018; pp. 341–350.
10. Gong, C.; Chen, H.; He, W.; Zhang, Z. Improved multi-objective clustering algorithm using particle swarm optimization. PLoS

ONE 2017, 12, e0188815. [CrossRef]
11. Abubaker, A.; Baharum, A.; Alrefaei, M. Automatic clustering using multi-objective particle swarm and simulated annealing.

PLoS ONE 2015, 10, e0130995. [CrossRef]
12. Armano, G.; Farmani, M.R. Multiobjective clustering analysis using particle swarm optimization. Expert Syst. Appl. 2016,

55, 184–193. [CrossRef]

http://doi.org/10.1016/j.patcog.2007.05.018
http://dx.doi.org/10.1016/j.apr.2019.09.009
http://dx.doi.org/10.1145/331499.331504
http://dx.doi.org/10.1371/journal.pcbi.1005896
http://dx.doi.org/10.1145/2742642
http://dx.doi.org/10.1016/j.eswa.2020.113487
http://dx.doi.org/10.1145/3470971
http://dx.doi.org/10.1371/journal.pone.0188815
http://dx.doi.org/10.1371/journal.pone.0130995
http://dx.doi.org/10.1016/j.eswa.2016.02.009

Entropy 2023, 25, 259 14 of 14

13. Zhang, Z.; Wang, W.; Pan, G. A Distributed Quantum-Behaved Particle Swarm Optimization Using Opposition-Based Learning
on Spark for Large-Scale Optimization Problem. Mathematics 2020, 8, 1860. [CrossRef]

14. Wang, X.; Sun, Q. Research on Clustream Algorithm Based on Spark. In Proceedings of the 2017 10th International Symposium
on Computational Intelligence and Design (ISCID), Hangzhou, China, 9–10 December 2017; IEEE: Piscataway Township, NJ,
USA, 2017; Volume 2, pp. 219–222.

15. Ortakci, Y. Parallel Particle Swarm Optimization in Data Clustering. Available online: https://www.semanticscholar.org/paper/
PARALLEL-PARTICLE-SWARM-OPTIMIZATION-IN-DATA-Ortakci/ea1c918d904c94b039e8b7ac1de96a99052aba6a (accessed
on 29 December 2022).

16. Aljarah, I.; Ludwig, S.A. Parallel particle swarm optimization clustering algorithm based on mapreduce methodology. In
Proceedings of the 2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC), Mexico City, Mexico,
5–9 November 2012; IEEE: Piscataway Township, NJ, USA, 2012; pp. 104–111.

17. Lei, M.; Wen, B.; Gan, J.; Wang, J. Clustering algorithm of ethnic cultural resources based on spark. Int. J. Perform. Eng. 2019,
15, 756. [CrossRef]

18. Wang, H.; Zhou, C.; Li, L. Design and Application of a Text Clustering Algorithm Based on Parallelized K-Means Clustering. Rev.
D’Intelligence Artif. 2019, 33, 453–460. [CrossRef]

19. Chen, H.; Fu, H.; Cao, Q.; Han, L.; Yan, L. Feature selection of parallel binary moth-flame optimization algorithm based on
spark. In Proceedings of the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference
(ITNEC), Chengdu, China, 15–17 March 2019; IEEE: Piscataway Township, NJ, USA, 2019; pp. 408–412.

20. Govindarajan, K.; Boulanger, D.; Kumar, V.S.; et al. Parallel particle swarm optimization (PPSO) clustering for learning analytics.
In Proceedings of the 2015 IEEE International Conference on Big Data (Big Data), Santa Clara, CA, USA, 29 October–1 November
2015; IEEE: Piscataway Township, NJ, USA, 2015; pp. 1461–1465.

21. Li, C.; Wen, T.; Dong, H.; Wu, Q.; Zhang, Z. Implementation of parallel multi-objective artificial bee colony algorithm based on
spark platform. In Proceedings of the 2016 11th International Conference on Computer Science & Education (ICCSE), Nagoya,
Japan, 23–25 August 2016; IEEE: Piscataway Township, NJ, USA, 2016; pp. 592–597.

22. Nayak, S.K.; Rout, P.K.; Jagadev, A.K. Multi-objective clustering: A kernel based approach using Differential Evolution. Connect.
Sci. 2019, 31, 294–321. [CrossRef]

23. Hancer, E. A new multi-objective differential evolution approach for simultaneous clustering and feature selection. Eng. Appl.
Artif. Intell. 2020, 87, 103307. [CrossRef]

24. Dai, H.; Sheng, W. A multi-objective clustering ensemble algorithm with automatic k-determination. In Proceedings of the 2019
IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, 12–15 April 2019;
IEEE: Piscataway Township, NJ, USA, 2019; pp. 333–337.

25. Ibrahim, R.A.; Ewees, A.A.; Oliva, D.; Abd Elaziz, M.; Lu, S. Improved salp swarm algorithm based on particle swarm
optimization for feature selection. J. Ambient Intell. Humaniz. Comput. 2019, 10, 3155–3169. [CrossRef]

26. Coello, C.A.C.; Pulido, G.T.; Lechuga, M.S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol.
Comput. 2004, 8, 256–279. [CrossRef]

27. Ding, S.; Chen, C.; Xin, B.; Pardalos, P.M. A bi-objective load balancing model in a distributed simulation system using NSGA-II
and MOPSO approaches. Appl. Soft Comput. 2018, 63, 249–267. [CrossRef]

28. Sefidian, A.M.; Daneshpour, N. Missing value imputation using a novel grey based fuzzy c-means, mutual information based
feature selection, and regression model. Expert Syst. Appl. 2019, 115, 68–94. [CrossRef]

29. Zhang, Y.; Gong, D.w.; Sun, X.y.; Guo, Y.n. A PSO-based multi-objective multi-label feature selection method in classification. Sci.
Rep. 2017, 7, 1–12. [CrossRef]

30. Shyam, R.; HB, B.G.; Kumar, S.; Poornachandran, P.; Soman, K. Apache spark a big data analytics platform for smart grid.
Procedia Technol. 2015, 21, 171–178. [CrossRef]

31. Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J.; McCauly, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Resilient distributed
datasets: A {Fault-Tolerant} abstraction for {In-Memory} cluster computing. In Proceedings of the 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12), San Jose, CA, USA, 25–27 April 2012; pp. 15–28.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/math8111860
https://www.semanticscholar.org/paper/PARALLEL-PARTICLE-SWARM-OPTIMIZATION-IN-DATA-Ortakci/ea1c918d904c94b039e8b7ac1de96a99052aba6a
https://www.semanticscholar.org/paper/PARALLEL-PARTICLE-SWARM-OPTIMIZATION-IN-DATA-Ortakci/ea1c918d904c94b039e8b7ac1de96a99052aba6a
http://dx.doi.org/10.23940/ijpe.19.03.p4.756762
http://dx.doi.org/10.18280/ria.330608
http://dx.doi.org/10.1080/09540091.2019.1603201
http://dx.doi.org/10.1016/j.engappai.2019.103307
http://dx.doi.org/10.1007/s12652-018-1031-9
http://dx.doi.org/10.1109/TEVC.2004.826067
http://dx.doi.org/10.1016/j.asoc.2017.09.012
http://dx.doi.org/10.1016/j.eswa.2018.07.057
http://dx.doi.org/10.1038/s41598-017-00416-0
http://dx.doi.org/10.1016/j.protcy.2015.10.085

	Introduction
	Background
	Mathematical Description of the Multiobjective Clustering Problem
	Multiobjective Particle Swarm Optimization Algorithm
	Particle Encoding and Initialization Process for Clustering
	Crowding Distance

	Apache Spark

	Method
	Fitness Evaluation
	Spark Implementation of Multi-Objective Particle Swarm Algorithm

	Experiment
	Experimental Environment
	Datasets
	Parameter Setting
	Comparing Clustering Algorithms
	Results and Analysis
	Experiment 1: Running Time Comparison
	Experiment 2: Accuracy Rate Comparison
	Experiment 3: Scalability Comparison

	Conclusions
	References

