
Citation: Liu, Z.; Song, Y.; Cheng, Y.

Robust Variable Selection with

Exponential Squared Loss for the

Spatial Durbin Model. Entropy 2023,

25, 249. https://doi.org/10.3390/

e25020249

Academic Editor: Yuehua Wu

Received: 29 November 2022

Revised: 25 January 2023

Accepted: 28 January 2023

Published: 30 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Robust Variable Selection with Exponential Squared Loss for
the Spatial Durbin Model
Zhongyang Liu , Yunquan Song * and Yi Cheng

College of Science, China University of Petroleum, Qingdao 266580, China
* Correspondence: statistics99@163.com; Tel.: +86-0532-8698-2921

Abstract: With the continuous application of spatial dependent data in various fields, spatial econo-
metric models have attracted more and more attention. In this paper, a robust variable selection
method based on exponential squared loss and adaptive lasso is proposed for the spatial Durbin
model. Under mild conditions, we establish the asymptotic and “Oracle” properties of the proposed
estimator. However, in model solving, nonconvex and nondifferentiable programming problems
bring challenges to solving algorithms. To solve this problem effectively, we design a BCD algorithm
and give a DC decomposition of the exponential squared loss. Numerical simulation results show
that the method is more robust and accurate than existing variable selection methods when noise is
present. In addition, we also apply the model to the 1978 housing price dataset in the Baltimore area.
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1. Introduction

In recent years, spatial section data have been widely used in geography, politics,
environment, and other fields. Therefore, spatial econometrics, a model initially used in
the economic area, has also attracted much attention. Anselin (1988) [1] divides spatial
econometric models into spatial error models, spatial hysteresis models, and spatial Durbin
models (SDM). Among them, the spatial Durbin model is represented as y = ρWy + Xβ +
WXδ + ε. The spatial Dubin model considers the influence of the independent variable
and the dependent variable of the spatial lag on the dependent variable simultaneously
and can more easily estimate the unbiased coefficient. At the same time, the spatial Dubin
model can also calculate spatial spillover effects based on panel data. In spatial regression
analysis, the influence of regional locations on observations is expressed employing spatial
weight matrix W, and the appropriate setting of spatial weight matrix is an essential basis
for spatial econometric analysis. There are two main ways to select a spatial weight matrix:
The first method is to select a spatial weight matrix from an optional set of spatial weight
matrices. Kelejian (2008) [2] uses GMM estimation to select an actual spatial weight matrix.
A non-nested J test method is proposed to test a set of alternative models with different
spatial weight matrices for the empty SAR model. The second type of method estimates
the weight matrix by averaging different spatial weight matrices. Zhang and Yu (2018) [3]
propose a model averaging process to reduce estimation error. This approach overcomes
the difficulty that the actual spatial weight matrix is not in the candidate matrix.

In the field of classical linear regression, much work has contributed to variable selec-
tion. Among them, the most popular method is to add penalty functions to the model for
variable selection. These punishment regression methods have a unified theoretical frame-
work, such as most minor absolute shrinkage and selection operators (lasso, Tibshirani,
1996) [4], smoothly clipped absolute deviation (SCAD, Fan and Li, 2001) [5], and adaptive
lasso (Zou, 2006) [6]. Since SDM has spatial autocorrelation, the above variable selection
method can be directly applied to the SDM model.

Due to noise and outliers, the classical variable selection methods in regression models
often face the problem of instability, so many scholars have proposed some robust variable
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selection algorithms. The Huber loss function was widely used in early studies, but this
function has some limitations in efficiency and solution. Wang et al. (2013) [7] proposed a
robust parameter estimation method based on the exponential squared loss function, which
is widely used in boosting algorithms (Friedman et al., 2000) [8]. When γ is small, the loss
of experience caused by a larger |t| value is close to 1; therefore, the loss function is robust
to parameter estimation. Wang et al. (2013) [7] also point out that this method is more
robust than other robust variable selection methodsm such as Huber estimation, quantile
regression estimation (Koenker and Bassett, 1978) [9], and compound quantile regression
estimation (Zou and Yuan, 2008) [10], and proposed the selection method of parameter γ.

Our research focuses on variable selection for spatial Durbin models. The spatial
Durbin model combines the spatial interaction of dependent and explanatory variables,
but only a few researchers use and study this model. Beer and Rield (2011) [11] used the
maximum likelihood estimation to estimate the parameters of the spatial Durbin model.
They used the Monte Carlo method to analyze the characteristics of the estimator. Mustaqim
(2018) [12] discusses instrumental variable efficiency in simultaneous spatial Durbin models.
Estimation methods are 2SLS and GMM-S2SLS. The analysis results show that the GMM-
S2SLS method produces less bias than the 2SLS method. Zhu, Yanli (2020) [13] proposed
parameter estimation of the spatial Durbin model based on Markov Chain Monte Carlo
(MCMC). Wei, Lili (2021) [14] proposed a within-group spatial two-stage least squares
estimator. However, the existing variable selection methods are affected by outliers in
limited samples and are not robust enough. Therefore, it is imperative to study a robust
variable selection method.

Considering robustness, we combine parameter penalty with exponential square loss
and assume that the errors of the model are independent and identically distributed. For
the parameter penalty method, we use adaptive lasso. We applied the robust selection
method based on the exponential squared loss variable to the spatial autoregressive model
and achieved satisfactory results [15]. The spatial autoregressive model is one of the special
cases of the spatial Durbin model. In this paper, we aim to study the application of the
robust selection method based on the exponential squared loss variable in the spatial
Durbin model.

A robust variable selection method for the spatial Durbin model based on adaptive
lasso penalty and exponential square loss function is proposed in this paper. This method
cannot only estimate the regression coefficient but also has the function of variable selection.
Next, we show the framework of the paper.

1. We build a robust variable selection method for SDM, equipped with an exponential
squared loss, resistant to the influence of outliers in the observed values and errors
estimating the space weight matrix.

2. To solve the optimization problem of SDM, we propose a block coordinate descent
(BCD) algorithm. Secondly, to solve the subproblems generated by the BCD algo-
rithm, we design the DC decomposition of exponential square loss and construct the
CCCP program. Finally, to obtain the BCD algorithm’s convergence, we analyze the
algorithm’s convergence rate to the stagnation point under mild conditions.

3. We proved the “Oracle” property of the robust variable selection method and con-
ducted numerical experiments to verify the robustness and effectiveness of the model.
Numerical studies show that when there are outliers in the observed data, the method
proposed in this paper is superior to the comparison method in correctly identifying
zero coefficients, nonzero coefficients, and MedSE incorrectly.

The structure of this paper is as follows. Section 2 introduces the spatial Durbin model
and gives the exponential square loss function based on adaptive lasso. In Section 3, we
propose an effective algorithm to complete the variable selection process. In order to check
the performance of the model under limited samples, we have carried out a numerical
simulation in Section 4. In Section 5, we apply our model to real-world datasets. We
summarize the full text in Section 6.
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2. Variable Selection and Estimation
2.1. Spatial Durbin Model

The observed dependent variable Yi ∈ R1×1, and the corresponding independent
vector Xi =

(
Xi1, . . . , Xip

)
, where the p is a fixed constant. Let the dependent variable

vector Y = (Y1, . . . , Yn)
T and the independent variable matrix X = (X1, . . . , Xn)

T ∈ Rn×p.
The spatial Durbin model is as follows:

Y = ρWY + Xβ + WXδ + ε. (1)

where the regression coefficient vector β =
(

β1, . . . , βp
)T ∈ Rp×1, the spatial autocor-

relation coefficient ρ ∈ R1×1, the regression coefficient vector of exogenous variables
δ =

(
δ1, . . . , δp

)T ∈ Rp×1, and the error vector ε = (ε1, . . . , εn)
T ∈ Rn×1. WX is a spatial

lag term that reflects the interaction of independent variables between individuals. Wy
embodies the interaction between the strain variable y and its surrounding y. We assume
that noises ε all obey N

(
0, σ2) and are independent of each other. y can be expressed as the

following formula:

Y = (In − ρW)−1(Xβ + WXδ + ε). (2)

Since the maximum eigenvalue of W is 1 after normalization, to guarantee (In − ρW)
reversibility, we order |ρ| < 1. Additionally, in this article, we ignore the endogenous
nature of the model.

2.2. Variable Selection Method for SDM

Rewrite model (1) as model (3) in the following form:

εi(θ) = Yi − (ρWYi + Xiβ + WXiδ). (3)

Take the variable selection for the SDM into consideration. In practical applications,
the regression coefficient vector β∗ is usually sparse. At the same time, sparse solutions
can find useful dimensions and reduce redundancy, as well as improve the accuracy and
robustness of regression prediction (Fan and Li, 2001 [5]; Tibshirani, 1996 [4]). Applying
the penalized method to variable selection is natural, which can select essential variables
and estimate the regression coefficient. In this article, we punish the loss function using the
adaptive lasso penalty function. The adaptive lasso penalty is described as follows:

p

∑
j=1

P
(∣∣β j

∣∣) = p

∑
j=1

ηj
∣∣β j
∣∣. (4)

where ηj = 1
|β̂ j |

, β̂ j is generally given by least squares estimates. Considering that the

exponential square loss function has good robustness, we use it as the model’s loss function
in this paper. The exponential square loss expression is as follows:

φγ(t) = 1− exp
(
−t2/γ

)
. (5)

Here, γ is a parameter that controls the robustness of the loss function. γ limits the
effect of outliers on the model but also reduces the accuracy of the model. Therefore, it is
essential to choose the right γ. The method of selecting the right γ is shown in Section 2.4.

The model is constructed on the basis of the above model (3). The objective function
to be solved is as follows:

min
β∈Rp ,δ∈Rp ,ρ∈[0,1]

L(β, δ, ρ) =
1
n

n

∑
i=1

φγ(Yi − ρYi − Xiβ−WXiδ) + λ
p

∑
j=1

ηj|β
j

|+ λ
p

∑
j=1

σj|δ
j

|. (6)

We may as well order
Ỹ = WY,
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X̃ = [X, WX],

β̃ =
[

βT , δT
]T

.

We can obtain a simplified expression of (6) as follows as (7):

min
β̃∈R2p ,ρ∈[0,1]

L(β̃, ρ) =
n

∑
i=1

φγ

(
Yi − ρỸi − X̃i β̃

)
+ λ

2p

∑
j=1

ηj

∣∣∣β̃ j

∣∣∣, (7)

where λ > 0 is a regularization parameter. φγ(.) is exponential squared loss.

2.3. Oracle Properties and Large Sample Properties

In this section, we discuss the large sample properties and oracle properties of the
proposed spatial Durbin model parameter estimation method.

First of all, let us make the true value of β̃ββ be β̃ββ0 =
(

β̃10, . . . , β̃2p0
)T . Additionally,

because β̃ββ0 =
[
βββ0

T , δδδ0
T
]T

, where βββ0 = (βββ10
T , βββ20

T)T , δδδ0 = (δδδ10
T , δδδ20

T)T . Based on the

sparsity assumed above, we assume that βββ20 = 000, δδδ20 = 000. So, β̃ββ0 = [βββ10
T , 000T , δδδ10

T , 000T ]T .
For the convenience of expression, we make a transformation to the β̃ββ0, so that β̃ββ0 =

[βββ10
T , δδδ10

T , 000T , 000T ]T = [β̃ββ’
10

T
, 000T ]T . In order to adapt to this transformation in β̃ββ0, X̃ needs

to make a similar transformation. In the following, we all assume that X̃ was transformed
accordingly. For convenience, we express β̃ββ’

10 as β̃ββ10 in the following text. Let ˆ̃βββ =(
ˆ̃βββT

1 , ˆ̃βββT
2

)T
be the resulting estimator of (4), suppose that the ˆ̃βββ here has also undergone

the above transformation. I(β̃ββ, γ) = 2
γ

∫
ZZTe−r2/γ

(
2r2

γ − 1
)

dF(Z, y), where r = Y−

(In − ρW)−1X̃β̃ββ = Y − Zβ̃, Z = (In − ρW)−1X̃, an = max
{

p′λnj

(∣∣β̃0j
∣∣) : β̃0j 6= 0

}
, bn =

max
{

p′′λnj

(∣∣β̃0j
∣∣) : β̃0j 6= 0

}
. Let the true value of ρ be ρ0. Thus, θθθ0 = (ρ0, β̃ββ0). For ease of

presentation, let β̃10 = ρ and β̃1j = β̃1j, j = 1, 2, . . . , s, then denote β̃1 =
(
ρ, β̃11, . . . , β̃1s

)T

and β̃01 =
(
ρ0, β̃01, . . . , β̃0s

)T .
We prove the asymptotic and oracle properties of the proposed penalty estimators.

Before we can prove it, we need the following hypothesis.

Assumption 1. Σ = E
(
ZZT) is positive definite and E‖Z‖3 < ∞.

Assumption 2. The matrix In − ρW is nonsingular with |ρ| < 1.

Assumption 3. The row and column sums of the matrices Wn and I− ρWn are bounded uniformly
in absolute value.

Assumption 4. For matrix Gn = W(I − ρW)−1, there exists a constant λ̃c such that λ̃c In −
GnGT

n is positive semidefinite for all n.

Assumption 5. 1/ mins+1≤j≤p λj = op (1). Additionally, with probability 1,

lim infn→∞ lim inft→0+

{
mins+1≤j≤p

p′
λj(t)

λj

}
> 0.

Assumption 6.
√

nan = op(1), bn = oP(1).

Assumption 7. (γn − γ0) = op(1) for some γ0 > 0.
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Assumption 8. There are constants C1 and C2 such that, when θ1, θ2 > C1λj

∣∣∣p′′λj
(θ1)− p′′λj

(θ2)
∣∣∣ ≤

C2|θ1 − θ2|, for j = 0, 1, . . . , p.

For our proposed estimator, we give the following sample properties. The following
theorem gives the consistency and “oracle" property of the proposed estimator.

Theorem 1. If Assumptions 1− 8 are true, then there is a local maximizer θ̂θθ such that
∥∥∥θ̂θθ − θθθ0

∥∥∥ =

Op

(
n−1/2 + an

)
.

Theorem 2. (Oracle Property). Suppose that Assumptions 1− 8 hold, and I
(
β̃ββ0, γ0

)
is negative

definite. If γn − γ0 = op(1) for some γ0 > 0, θ̂ =
(

ρ̂, ˆ̃βT
1 , ˆ̃βT

2

)T
must satisfy:

(1) sparsity, that is, ˆ̃βββn2 = 0 with probability 1;
(2) asymptotic normality:

√
n
(

I1
(
β̃ββ01, γ0

)
+ Σ1

){( ˆ̃βββn1 − β̃ββ01

)
+
(

I1
(
β̃ββ01, γ0

)
+ Σ1

)−1
∆
}
→ N(000, Σ2),

where ˆ̃βn1 =
(

ρ̂, ˆ̃β11, . . . , ˆ̃β1s

)T
, and β̃01 =

(
ρ0, β̃01, . . . , β̃0s

)T ,

Σ1 = diag
{

p′′λ1

(∣∣β̃01
∣∣), . . . , p′′λs

(∣∣β̃0s
∣∣)}

Σ2 = cov
(

exp
(
−r2/γ0

) 2r
γ0

Zi1

)
∆ =

(
p′λ1

(∣∣β̃01
∣∣) sign

(
β̃01
)
, . . . , p′λs

(∣∣β̃0s
∣∣)× sign

(
β̃0s
))T

I1
(

β̃01, γ0
)

=
2

γ0
E
[

exp
(
−r2/γ0

)(2r2

r0
− 1
)]
×
(

EZi1ZT
i1

)
.

The detailed proofs of Theorem 1 and Theorem 2 are shown in the Appendixes A and B.

2.4. The Selection of Parameter γ

Parameter γ can control the robustness and efficiency of the robust variable selection
method. Wang et al. (2013) [7] proposed a parameter selection method based on normal
regression. In this paper, we extend the selection method of parameter γ to the spatial
Durbin model. The specific process is as follows:

Step 1. Initialize ρ̂ = ρ(0) and ˆ̃β = β̃(0). Set ρ(0) = 1
2 , β̃(0) a robust estimator. Rewrite

the model Y = ρWY + Xβ̃ ++WXδ + ε as Y∗ = X∗ β̃∗ + ε, where Y∗ = Y − ρWY ,X∗ =
[X WX], β̃∗ = [β̃, δ]T .

Step 2. Find the pseudo-outlier set of the sample: Let Dn =
{(

X∗1 , Y∗1
)
, . . . , (X∗n, Y∗n )

}
.

Calculate ri(
ˆ̃∗β) = Y∗i − X∗i

ˆ̃∗β, i = 1, . . . , n and Sn = 1.4826 × mediani | ri(
ˆ̃β∗)−

medianj

(
rj(

ˆ̃β∗)
)
|. Then, there exist the pseudo-outlier set Dm =

{
(Xi, Yi) :

∣∣∣ri(
ˆ̃β∗)
∣∣∣ ≥ 2.5Sn

}
,

set m = ]
{

1 ≤ i ≤ n :
∣∣∣ri(

ˆ̃β∗)
∣∣∣ ≥ 2.5Sn}, and Dn−m = Dn\Dm.

Step 3. Select the tuning parameter γn : construct V̂(γ) = { Î( ˆ̃β∗)}−1Σ̃2{ Î( ˆ̃β∗)}−1,
in which

Î( ˆ̃β∗) =
2
γ

{
1
n

n

∑
i=1

exp
(
−r2

i (
ˆ̃β∗)/γ

)(2ri(
ˆ̃β∗)

γ
− 1

)}
·
(

1
n

n

∑
i=1

XiXT
i

)
,
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Σ̃2 = Cov

{
exp

(
−r2

1(
ˆ̃β∗)/γ

)2r1(
ˆ̃β∗)

γ
X1, . . . , exp

(
−r2

n(
ˆ̃β∗)/γ

)2rn(
ˆ̃β∗)

γ
Xn

}
.

Next, let γn be the minimizer of det(V̂(γ)) in the set G = {γ : ζ(γ) ∈ (0, 1]}, where
ζ(·) enjoys the common definition with that in Wang et al. (2013) [7].

Step 4. Update ρ̂ and β̂ as the optimal solution of minβ̃∈Rp ,ρ∈[0,1]
1
n ∑n

i=1 φγ

(
Yi − ρỸi − X̃i β̃

)
,

where Ỹ = WY, X̃ = [X WX], β̃ = [β, δ]T . Go to Step 2 until convergence.
In the above process, the initial step requires an initial value β̃(0) . In practice, the

estimate of LAD loss is usually used as β̃(0).

2.5. The Selection of Parameter λ and ηj

We order λi = λ · ηi, in which λ and ηi are from model (7). Usually, researchers use
cross-validation, AIC, and BIC criteria to select λi. In this paper, considering the complexity
of computation and the consistency of variable selection, we adopt the method of Wang,
Li, and Tsai (2007) [16] to consider regularization parameters by minimizing the BIC-type
objective function. The BIC-type objective function is as follows:

n

∑
t=1

[
1− exp

(
Yi − ρỸi − X̃i β̃

)2
/γ

]
+ n

2p

∑
j=1

λi
∣∣β̃j
∣∣− 2p

∑
j=1

log
(
0.5nλj

)
log(n),

The selection method of parameter γ is given above. This makes λi = log(n)/n|θi|. In
practice, let θi = θ̂i, where θ̂i is the exponential square loss estimator without penalty term.
Note that this choice satisfies the condition λ̂i → 0 for i ≤ d0, and λ̂i → ∞ for i > d0, with
d0 as the number of nonzero value in the θ0. Therefore, the final estimator can ensure the
consistency of variable selection.

3. Algorithm for Model Solving

In this section, we focus on designing algorithms to solve model (7). This optimization
problem has two optimization variables, β̃ ∈ R2p and ρ ∈ [0, 1]. So, the block coordinate
descent algorithm becomes our first choice. However, the subproblems used to solve β̃ are
nonconvex functions and are not differentiable, and the convergence of the block coordinate
drop algorithm is difficult to guarantee. In this case, we used bump decomposition and
CCCP algorithms to deal with it. Finally, regarding the processing of penalty terms in the
optimization model, we use the ISTA algorithm. This is reflected below.

3.1. Block Coordinate Descent Algorithm Frame

We present the framework of the block coordinate descent algorithm in Algorithm A.
Next, we need to solve subproblems (8) and (9).

3.2. Solving the Subproblem (8)

Subproblem (8) minimizes the univariate function at the interval [0,1], so it can be
solved using a golden section algorithm based on parabolic interpolation. For more
information about the algorithm, see Forsythe et al. (1977) [17]. It is not repeated in
this article.

3.3. Solving the Subproblem (9)

For subproblem (9), by observation, we can see that the penalty term part of the
optimization model is the convex function, and the loss function part φγ can also be
decomposed into the difference between the two convex functions, that is, the DC function.
So, subproblem (8) is DC programming. We can construct corresponding algorithms to
solve the problem.
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Algorithm 1: Block coordinate descent algorithm

1. Set initial value for 0 ∈ R2p and ρ0 ∈ (0, 1);
2. repeatrepeatrepeat{ For k = 0, 1, 2, · · · }

3. Solve the subproblem about ρ with initial point ρk :

ρk+1 ← min
ρ∈[0,1]

L
(

β̃k, ρ
)

(8)

4. Solve the subproblem with initial value β̃k,

βk+1 ← min
β̃∈R2p

L
(

β̃, ρk+1
)

(9)

to obtain a solution β̃k+1, ensuring that L
(

β̃k, ρk+1
)
− L

(
β̃k+1, ρk+1

)
≤ 0,

and β̃k+1 is a stationary point of L
(

β̃, ρk+1
)

.
5. untiluntiluntil convergence.

We can first perform a DC decomposition of the loss function φγ(t) = 1− exp
(
−t2/γ

)
.

Suppose there are two convex functions F(t) and G(t), make F(t)− G(t) = φγ(t). Because
F(t) = G(t) + φγ(t) is a convex function, F′′(t) = φ′′γ(t) + G′′(t) > 0, ∀t ∈ R. We
may as well order G′′(t) = 2

γ
2
γ t2. So, we can make G(t) = 1

3γ2 t4, F(t) = G(t) + φγ(t) =

1− exp
(
−t2/γ

)
+ 1

3γ2 t4. It can be verified that both F(t) and G(t) are convex functions.
The DC decomposition of φγ(t) is as follows:

F(t) = 1− exp
(
−t2/γ

)
+

1
3γ2 t4, (10)

G(t) =
1

3γ2 t4, (11)

φγ(t) = F(t)− G(t). (12)

We can use the CCCP algorithm to solve the problem after DC decomposition. Next,
define the following two functions:

Jvex(β̃) =
1
n

n

∑
i=1

F
(

Yi − ρk+1〈wi, Y〉 − Xi β̃
)
+ λ

2p

∑
j=1

P
(∣∣β̃ j

∣∣), (13)

Jcav(β̃) =
1
n

n

∑
i=1

G
(

Yi − ρk+1〈wi, Y〉 − Xi β̃
)

. (14)

wi is the i th row of the weight matrix W, and ∑
p
j=1 P

(∣∣β̃ j
∣∣) is a convex penalty with respect

to β̃. Then, Jvex(·) and Jcav (·) are a convex function and concave function, respectively. So,
the suboptimization problem (9) can be rewritten as

min
β̃∈R2p

L(β̃, ρk+1) = Jvex(β̃) + Jcav(β̃). (15)

At this point, it can be found that the optimization problem (15) can be solved by
the CCCP(Concave–Convex Procedure) algorithm. The CCCP algorithm framework is
shown below (Algorithm 2):
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Algorithm 2: The Concave–Convex Procedure (CCCP)

1. Initialize β̃0. Set k = 0.
2. repeatrepeatrepeat
3.

β̃k+1 = argminβ̃ Jvex(β̃) + J′cav

(
β̃k
)
· β̃ (16)

4. untilluntilluntill convergence of β̃k.

It is easy to know that the optimization problem (16) is a convex optimization problem.
The CCCP algorithm minimizes the problem (15) by iteratively solving a series of convex
problems (16). Therefore, the solving method of subproblem (16) directly affects the iterative
efficiency of the CCCP algorithm.

Observe subproblem (16): J′cav

(
β̃k
)
· β̃ is a linear function about β̃. Jvex(β̃) contains

the convex function 1
n ∑n

i=1 F
(

Yi − ρk+1〈wi, Y〉 − Xi β̃
)

and penalty term λ ∑
2p
j=1 P

(∣∣β̃ j
∣∣) for

β̃. We might as well order

ψ(β̃) =
1
n

n

∑
i=1

F
(

Yi − ρk+1〈wi, Y〉 − Xi β̃
)
+ J′cav

(
β̃k
)
· β̃, (17)

where ψ(β̃) is a convex function about β̃. So, subproblem (16) can be represented as

min
β̃∈Rp

ψ(β̃) + λ
p

∑
i=1

P
(∣∣β̃i

∣∣). (18)

Optimization problems (17) are composed of convex functions and adaptive lasso
penalty terms, and we can use the ISTA algorithm to solve such problems.

For all L > 0, ISTA approximates the function F(β) = ψ(β̃) + λ ∑
2p
i=1 ηi

∣∣β̃i
∣∣ at β̃ = ξ as

QL(β̃, ξ) = ψ(ξ) + 〈β̃− ξ,∇ψ(ξ)〉+ L
2
‖β̃− ξ‖2 + λ

2p

∑
i=1

ηi
∣∣β̃i
∣∣. (19)

This function has the following minimum point:

ΘL(ξ) = argminβ̃∈R2p QL(β̃, ξ)

= argminβ̃∈R2p

{
λ

2p

∑
i=1

ηi
∣∣β̃i
∣∣+ L

2

∥∥∥∥β̃−
(

ξ − 1
L
∇ψ(ξ)

)∥∥∥∥2
}

= Sλη/L

(
ξ − 1

L
∇ψ(ξ)

)
.

(20)

With η =
[
η1, . . . , η2p

]
∈ R2p, and for ν = λη/L ∈ Rp

+,Sα : R2p → R2p the vector-
formed soft-thresholding operator Sv(β̃) = ¯̃β, ¯̃βi =

(∣∣β̃i
∣∣− vi

)
+ sgn

(
β̃i
)
, i = 1, . . . , 2p.

Thus, the solution of problem (11) can be simply expressed as β̃k = ΘL

(
β̃k−1

)
.

In this article, we use the FISTA algorithm with a faster convergence speed than ISTA
(Beck and Teboulle, 2009) [18]. The FISTA algorithm framework with backtracking steps is
given below (Algorithm 3):
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Algorithm 3: FISTA with Backtracking Step for solving (17)

Require: A, ξ, wλ > 0 Ensure: solution β̃
1: Step 0. Select L0 > 0, η > 1, β̃0 ∈ R2p Let ξ1 = β̃0, t1 = 1
2: Step k(k ≥ 1).
3: Determine the smallest non-negative integer ik which make L̄ = ηik Lk−1

satisfy
4

F
(

ΘL̄

(
ξk
))
≤ QL̄

(
ΘL̄

(
ξk
)

, ξk
)

.

5: Let Lk = ηik Lk−1 according to (19), calculate:
6: β̃k = ΘLk

(
ξk
)

7: tk+1 = 1
2

[
1 +

√
1 + 4

(
tk
)2
]

8: ξk+1 = β̃k + tk−1
tk+1

(
β̃k − β̃k−1

)
9: Output β̃ := β̃k.

So far, we completed the solution of subproblem (9).

4. Numerical Examples

We designed five numerical experiments to verify the performance and accuracy of
variable selection methods under different conditions. For example, there are abnormal
values in dependent variable Y and too many insignificant covariates.

Data generation will be based on model (1). We make the covariance matrix X an n×
(q+ 3) matrix , and the X obeys the (q+ 3)-dimensional normal distribution, the mean value
is zero, and the covariance matrix is

(
σij
)
, where σij = 0.5|i−j|. This means that the number

of samples is n, the number of significant covariates is 3, and the number of insignificant
covariates is q. In the following experiments, we set n and q to n ∈ {200, 360, 500} and
q ∈ {5, 20, 40, 60}. For the spatial regression coefficient ρ, in the experiment, we set it to
ρ ∈ {0.2, 0.5, 0.8}.

We define the spatial weights matrix as a k-diagonal matrix, i.e., a matrix with only the
main diagonal and the k-1 skew diagonals around it as element 1, and the other elements
as 0. In numerical experiments, we set k = 7.

The regression coefficient β is set to: β = (β1, β2, β3, 0q), where (β1, β2, β3) = (3, 2, 1.5).
The regression coefficient vector of exogenous variables δ is set to: δ = (δ1, δ2.δ3, 0q), where
(δ1, δ2.δ3) = (1.5, 1.2, 1), and where 0q is a zero vector and its dimension is q; this means
that the number of 0 elements of β and δ that we set in the experiment is the same, both of
which are q. The dependent variable Y is generated by the model (2).

For the error term, let ε ∼ N
(
0, σ2 In

)
, σ2 obeys uniform distribution, and its generation

interval is [σ1 − 0.1, σ1 + 0.1] with σ1 ∈ {1, 2}. Of course, in practice, the observation noise
does not completely conform to the Gaussian distribution, and there may be abnormal
values in the response. The abnormal values in the response are discussed in Section 4.3.

To reflect the excellence of this model, we also used square loss and LAD to compare
with our exponential square loss. To ensure the accuracy of the experiment, we repeated
each experiment 100 times. The following results are the results of MSE in the middle of
100 repeated experiments.We express the median of MSE as MedSE.

4.1. Nonregular Estimation of Normal Data

In this section, we conduct experiments on the condition that q = 5, the noise is
Gaussian noise, and the penalty term is not set for the parameter estimation model. The
results are shown in Table 1. Square, Exp, and LAD represent square loss, exponential
square loss, and LAD loss, respectively. (1) This shows that Exp, Square, and LAD made
estimates of βand δ, which are close to typical values (the means of the true values of beta1,
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β2, and β3 are 3.0, 2.0, and 1.6, then, the mean sof the true values of δ1, δ2, and δ3 are 2.0,
1.5, and 1.0.). By comparison, the estimated value obtained by the square loss model is
the best. (2) For MedSE, the square loss model also performs the best. (3) The three loss
functions can give accurate estimates of the spatial autoregressive coefficients ρ.

Table 1. Nonregular estimation of normal data (q = 5).

n = 200, 2q = 10 n = 360, 2q = 10 n = 500, 2q = 10

Exp Square LAD Exp Square LAD Exp Square LAD

ρ = 0.8, σ = 1
β1 3.0904 2.6866 3.2503 3.1335 2.8487 3.0801 2.8084 2.7947 2.9486
β2 2.0303 1.9449 1.8899 1.9594 1.9498 2.0897 2.0949 2.1354 2.0207
β3 1.6422 1.4689 1.8394 1.5725 1.5409 1.3781 1.6174 1.7394 1.6394
δ1 1.242 1.3382 1.3069 1.504 1.6117 1.3924 1.4604 1.2156 1.3616
δ2 1.5109 1.3963 1.3582 1.1245 1.132 1.3174 1.1786 1.1139 1.111
δ3 0.8155 1.0711 1.0625 1.1101 1.0575 0.9693 1.0903 1.0092 1.0871
ρ̂ 0.8001 0.8011 0.7999 0.7999 0.8006 0.7997 0.8002 0.7979 0.7981
MedSE 0.5994 0.4158 0.4693 0.2518 0.2827 0.3432 0.248 0.234 0.3086

ρ = 0.5, σ = 1
β1 3.0854 3.0349 3.0617 3.1254 2.8039 3.0451 2.8058 3.1899 3.2542
β2 2.0058 2.1532 1.927 1.9556 2.1823 2.2277 2.0986 1.9975 2.0256
β3 1.6799 1.3788 1.6744 1.5702 1.4268 1.7227 1.6208 1.6813 1.303
δ1 1.2338 1.219 1.7939 1.4848 1.1814 1.3734 1.458 1.4145 1.6612
δ2 1.4943 1.4233 1.5202 1.1322 1.3266 1.3411 1.186 0.9884 1.3373
δ3 0.8849 1.0766 0.5961 1.1036 0.9614 0.8644 1.0966 0.9671 0.9961
ρ̂ 0.5021 0.4999 0.5 0.5003 0.5 0.5 0.4998 0.4999 0.4999
MedSE 0.6007 0.388 0.4564 0.2808 0.2829 0.3287 0.2452 0.2262 0.2939

ρ = 0.2, σ = 1
β1 3.0072 2.7008 2.7579 3.0283 2.9572 2.9077 2.635 2.8836 3.0321
β2 1.8903 1.7081 1.93 1.8152 2.081 1.9718 1.8603 2.0794 1.4453
β3 1.5386 1.4297 1.571 1.4646 1.2788 1.3697 1.4512 1.5486 1.5858
δ1 0.8622 1.2241 0.9667 1.2297 1.2184 1.015 1.0963 1.184 1.1689
δ2 1.4427 1.0584 0.7845 0.8279 0.8104 1.2721 0.7684 0.889 1.0247
δ3 0.6609 0.5715 1.1202 1.0265 0.9351 0.4027 0.7551 0.8819 0.9224
ρ̂ 0.2417 0.2419 0.2519 0.2271 0.2365 0.2437 0.25 0.2216 0.2317
MedSE 0.9037 0.8134 0.9757 0.5492 0.6286 0.7235 0.9921 0.5287 0.6407

ρ = 0.8, σ = 2
β1 3.0727 2.8882 3.0548 3.2634 2.7795 3.423 2.6808 3.1902 3.0531
β2 2.1164 1.8141 2.0596 2.0387 1.6757 2.1636 2.1004 1.9817 1.9528
β3 1.6747 1.3996 1.4515 1.7457 1.7597 1.7635 1.5395 1.3549 1.2795
δ1 0.9807 1.5773 1.6723 1.4112 1.3493 1.5103 1.4831 1.6088 1.5378
δ2 1.7814 0.8604 0.9949 1.0979 1.1257 1.0441 1.1439 1.0058 1.3651
δ_3 0.7301 0.9358 0.8807 1.0707 0.6032 1.0806 1.0423 1.0172 0.8286
ρ̂ 0.801 0.8045 0.7943 0.7996 0.8042 0.7978 0.7989 0.7989 0.7897
MedSE 1.2058 0.7731 0.9502 0.5131 0.5493 0.6914 0.5536 0.4719 0.5597

ρ = 0.5, σ = 2
β1 3.0762 3.1916 3.1159 3.2325 3.0528 2.8093 2.6731 3.0178 3.0432
β2 2.0839 2.2408 1.5295 1.8826 1.9422 2.1974 2.1207 2.1175 1.9125
β3 1.7169 1.384 1.8689 1.6075 1.7206 1.5534 1.5565 1.355 1.2292
δ1 0.9706 1.3618 1.483 1.437 1.5269 1.7395 1.4862 1.3611 1.1453
δ2 1.7802 1.1337 1.2179 1.0509 1.0885 1.4445 1.1825 1.2947 1.3262
δ3 0.8067 1.2863 1.0691 1.2173 0.8635 0.901 1.0777 0.9428 0.9601
ρ̂ 0.5044 0.5035 0.5 0.5007 0.4996 0.4986 0.4994 0.4973 0.4998
MedSE 1.2459 0.8065 0.9201 0.6033 0.5434 0.6822 0.5387 0.4699 0.5622

ρ = 0.2, σ = 2
β1 2.9838 3.0811 3.0512 3.1253 2.965 2.7197 2.5382 2.8219 2.7438
β2 1.9525 1.8371 2.3438 1.7215 1.9963 2.2379 1.8893 1.886 1.8351
β3 1.5477 1.5198 1.2998 1.4741 1.6448 1.0015 1.4075 1.7982 1.7257
δ1 0.5511 1.5501 1.1878 1.1662 1.1816 0.8059 1.1623 1.0545 1.1654
δ2 1.6614 0.7911 1.9069 0.6863 0.9868 1.2406 0.8082 1.0211 1.3427
δ3 0.5739 0.3887 0.1885 1.1021 0.8204 0.8706 0.7875 0.5343 0.8185
ρ̂ 0.2624 0.2341 0.2342 0.235 0.2307 0.2313 0.2472 0.2349 0.238
MedSE 1.5138 1.1417 1.5123 0.8143 0.816 0.907 1.0921 0.7422 0.8705

4.2. Nonregular Estimation for High-Dimensional Data

In this subsection, we made q ∈ {20, 40, 60}, and the parameter estimation results of
the model on normal data with huge sample dimensions are explained. The results are
shown in Table 2. It can be found that the estimation of β, δ, and ρ of any model is far
less effective than that of q = 5. The results of MedSE are also not satisfactory. Due to the
insufficient number of samples, such results can be expected.
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Table 2. Nonregular estimation for high-dimensional data.

n = 200, 2q = 40 n = 360, 2q = 80 n = 500, 2q = 120

Exp Square LAD Exp Square LAD Exp Square LAD

ρ = 0.8, σ = 1
β1 2.9991 2.9355 2.8898 3 3.1579 3.273 2.1076 2.8197 3.0519
β2 1.87 1.8534 2.148 2.2471 2.097 1.7728 1.4959 2.1326 2.4031
β3 1.6641 1.7286 1.3997 1.7933 1.4782 1.3566 1.2695 1.5688 1.1838
δ1 1.5449 1.4123 1.2135 1.1743 0.9747 1.6914 0.8435 1.4414 1.6309
δ2 1.1133 1.2998 1.4747 1.193 1.006 0.6772 1.5524 1.0102 1.3473
δ3 1.104 1.0165 0.8516 1.5647 0.6918 0.8134 0.9871 0.8072 0.3043
ρ̂ 0.7841 0.7976 0.7812 0.7814 0.7626 0.7698 0.7785 0.7921 0.7578
MedSE 1.0389 1.1975 2.4913 3.9024 1.3519 3.216 3.5719 1.4983 3.4753

ρ = 0.5, sigma = 1
β1 2.9674 3.0461 3.0203 2.8981 3.3433 2.8355 3.0614 3.0561 2.7106
β2 1.9594 1.956 2.2012 2.2222 1.8716 2.041 2.1271 2.0035 2.1597
β3 1.7014 1.5528 1.4707 1.698 1.5486 1.533 1.4004 1.8345 1.5845
δ1 1.401 1.4171 1.8907 1.4537 1.3244 1.4937 1.4151 1.6572 1.516
δ2 1.3144 1.3097 1.1209 1.3471 1.0562 1.4014 1.2555 1.1235 0.9392
δ3 1.1186 1.0907 0.9799 0.9439 0.977 1.1517 1.3021 1.2148 1.0304
ρ̂ 0.4984 0.499 0.5 0.5008 0.5004 0.5 0.4997 0.5007 0.5
MedSE 0.7268 0.8361 1.0131 0.846 0.8735 1.0286 1.152 0.9011 1.1143

ρ = 0.2, σ = 1
β1 2.6774 2.7337 2.2269 2.7222 2.6372 2.5639 2.7679 2.625 2.3669
β2 1.8758 1.5391 2.0274 1.9726 1.4435 1.4924 1.7517 1.8328 1.7334
β3 1.6073 1.1691 1.5513 1.5515 1.4517 1.9718 1.3588 1.4107 1.5919
δ1 0.6648 0.1578 −0.522 1.3422 0.5994 0.0136 0.4778 0.5541 0.5164
δ2 1.3401 0.5349 0.2749 1.0115 0.1372 0.3757 −0.186 −0.095 −0.533
δ3 0.8527 0.2299 1.1821 0.4795 0.6847 −0.254 0.4057 0.9201 −0.205
ρ̂ 0.2731 0.368 0.424 0.309 0.3721 0.4449 0.429 0.4203 0.4601
MedSE 1.6545 3.3194 4.2853 2.3481 3.2567 4.9894 5.0342 3.9322 4.9488

ρ = 0.8, σ = 2
β1 3.0412 2.9279 3.2539 3.0001 2.9425 3.3778 3.0661 2.9154 2.9285
β2 1.8198 1.731 1.3838 2.2004 2.009 1.6173 2.0961 1.7923 1.9155
β3 1.5695 1.6793 1.9783 1.818 1.7579 2.1066 1.3409 1.8222 1.9951
δ1 1.3762 1.8133 0.6013 1.0067 1.2925 1.0236 1.2358 1.3486 1.1922
δ2 1.4344 1.0001 1.841 1.3286 1.3243 1.0053 1.0631 1.0136 1.148
δ3 0.9648 1.2588 1.7202 1.4715 1.123 1.021 1.629 0.9606 0.9799
ρ̂ 0.7775 0.7886 0.7847 0.7808 0.7977 0.7196 0.787 0.7941 0.7652
MedSE 1.9747 1.9176 3.2383 4.2531 2.1049 3.9547 2.641 2.139 4.1654

ρ = 0.5, σ = 2
β1 2.9924 3.127 3.3996 2.9071 2.9556 3.2707 3.1224 2.9192 2.7059
β2 1.937 1.7325 2.2317 2.1674 2.1939 1.9265 2.1034 2.0763 2.0959
β3 1.6366 1.9284 1.3111 1.7516 1.5356 1.6939 1.329 1.2335 1.5695
δ1 1.1814 1.3155 1.5799 1.3022 1.3435 1.781 1.3229 1.2476 1.5013
δ2 1.6792 1.4335 1.1793 1.5096 1.4914 0.8587 1.1117 1.3711 0.9883
δ3 1.0417 0.9891 1.1182 0.8649 0.8226 1.0424 1.6105 0.9617 1.3937
ρ̂ 0.4982 0.5005 0.5 0.5013 0.5015 0.5 0.4992 0.4996 0.5
MedSE 1.7761 1.6992 2.0438 1.9405 1.7439 2.1404 2.3691 1.8227 2.2753

ρ = 0.8, σ = 2
β1 2.7126 2.463 3.0218 2.7365 2.6766 2.3112 2.819 2.7498 2.8593
β2 1.8389 1.7703 1.1025 1.9165 1.625 1.8649 1.7335 1.7638 1.7436
β3 1.5575 1.302 1.5166 1.5931 1.1868 1.3592 1.299 1.4037 1.2125
δ1 0.5004 0.375 1.4855 1.1763 0.9432 −0.186 0.4655 0.406 0.846
δ2 1.6485 0.5337 −0.864 1.0869 0.1892 −0.044 −0.227 0.1407 −1.145
δ3 0.8129 0.676 −0.697 0.4247 −0.641 0.3875 0.6011 −0.289 0.6946
ρ̂ 0.2716 0.3598 0.5 0.311 0.355 0.4821 0.4261 0.4147 0.4469
MedSE 2.1955 3.5415 5.0709 2.8997 3.8662 5.2612 5.3588 4.256 5.583

4.3. Nonregular Estimation of Data with Outliers in Dependent Variable y

In this subsection, we make the error term ε obey the mixed Gaussian distribution
(1− ξ1) · N (0, 1) + ξ1 · N

(
10, 62) , where ξ1 ∈ {0.01, 0.05}. In this case, the observed y will

have many outliers. We illustrate the results (Table 3) of the estimated coefficients of β and
δ when the observations of y have outliers. (1) For MedSE, unlike the results in Table 1,
where y has no outliers, in almost all tests in Table 3, exponential square loss performed the
best. (2) By comparison, the estimated values of β and δ obtained by the exponential square
loss model are the best. (3) For the estimation of ρ, the exponential square loss is also the
best. Therefore, we can conclude that when y has outliers, the SDM based on exponential
square loss has good robustness.
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Table 3. Nonregular estimation of data with outliers in dependent variable y.

n = 200, 2q = 10 n = 360, 2q = 10 n = 500, 2q = 10

Exp Square LAD Exp Square LAD Exp Square LAD

ρ = 0.8, σ = 1, ξ = 0.01
β1 3.053 3.333 2.873 3.02 3.237 2.754 2.882 3.102 2.827
β2 2.213 1.48 1.958 2.125 2.048 1.836 2.126 1.948 1.754
β3 1.577 1.579 2.046 1.57 1.857 1.908 1.604 1.677 1.757
δ1 1.341 1.983 0.811 1.444 0.966 1.7 1.464 1.165 1.344
δ2 1.311 0.959 1.736 1.127 1.113 1.199 0.962 0.906 1.722
δ3 0.876 1.224 0.644 1.182 1.284 0.752 1.119 0.382 0.954
ρ̂ 0.801 0.791 0.798 0.8 0.8 0.786 0.794 0.756 0.799
MedSE 0.609 1.866 1.009 0.398 1.392 0.755 0.405 1.268 0.623

ρ = 0.5, σ = 1, ξ = 0.01
β1 3.035 3.371 3.049 3.036 3.123 3.179 2.874 3.031 2.972
β2 2.217 2.19 2.259 2.094 1.672 1.981 2.14 1.687 2.249
β3 1.561 1.875 1.646 1.555 2.008 1.582 1.699 1.474 1.436
δ1 1.143 1.37 1.623 1.448 1.432 1.227 1.492 1.464 1.264
δ2 1.395 0.621 1.193 1.136 1.642 0.954 1.075 1.472 1.079
δ3 0.929 0.918 0.768 1.119 0.742 1.213 1.186 1.161 1.138
ρ̂ 0.5 0.497 0.5 0.5 0.499 0.499 0.501 0.5 0.5
MedSE 0.738 1.341 0.84 0.347 1.097 0.627 0.341 0.959 0.511

ρ = 0.2, σ = 1, ξ = 0.01
β1 3.032 2.817 2.936 2.961 3.077 3.17 2.7 3.333 2.752
β2 2.085 2.497 1.757 1.946 1.646 1.802 1.869 1.9 1.853
β3 1.52 1.224 1.654 1.441 1.817 1.329 1.506 1.614 1.479
δ1 0.882 1.381 1.323 1.216 0.883 1.478 1.151 1.654 1.018
δ2 1.667 1.117 0.84 0.879 0.785 0.688 0.631 1.323 1.034
δ3 0.723 0.49 1.022 0.996 1.207 0.72 0.809 0.618 1.096
ρ̂ 0.213 0.207 0.222 0.225 0.23 0.223 0.256 0.188 0.232
MedSE 1.091 1.509 1.065 0.556 1.076 0.807 1.061 1.052 0.625

ρ = 0.8, σ = 1, ξ = 0.05
β1 2.845 2.064 3.28 2.914 3.493 3.116 2.935 3.857 3.369
β2 2.228 3.473 1.405 2.148 2.501 1.688 2.109 2.336 1.564
β3 1.85 1.076 2.271 1.703 0.18 1.86 1.675 2.19 1.487
δ1 1.41 2.957 0.344 1.361 0.522 0.856 1.791 1.181 1.062
δ2 0.863 0.258 2.166 1.05 -0.3 2.015 0.899 0.782 2.052
δ3 0.869 3.323 0.661 1.255 2.546 0.566 0.95 1.568 1.107
ρ̂ 0.796 0.788 0.782 0.799 0.794 0.793 0.788 0.77 0.789
MedSE 0.984 4.778 2.45 0.716 3.707 1.366 0.835 3.077 1.048

ρ = 0.5, σ = 1, ξ = 0.05
β1 2.894 3.636 2.978 2.8 3.655 2.922 2.882 3.027 3.152
β2 2.169 1.293 2.131 2.177 2.57 2.54 2.149 1.971 2.333
β3 1.766 0.053 1.419 1.572 1.919 1.607 1.705 2.184 1.673
δ1 1.215 -0.05 0.866 1.436 1.79 1.238 1.729 0.58 0.811
δ2 1.283 1.593 2.262 1.02 0.449 1.381 1.01 1.381 1.316
δ3 0.833 0.489 0.595 1.068 -0.27 0.837 1.042 -0.14 1.032
ρ̂ 0.497 0.473 0.5 0.499 0.494 0.501 0.499 0.499 0.5
MedSE 0.627 3.878 1.536 0.506 2.989 0.996 0.799 2.467 0.803

ρ = 0.2, σ = 1, ξ = 0.05
β1 3.111 2.373 3.24 2.597 3.516 2.797 2.784 3.617 2.885
β2 2.294 3.955 2.314 2.195 2.032 1.871 2.013 1.844 2.128
β3 1.791 0.154 1.293 1.335 1.097 1.344 1.589 1.296 1.467
δ1 1.687 2.849 1.613 1.542 2.57 1.161 1.418 1.035 1.627
δ2 1.536 1.503 0.8 0.98 1.2 1.125 0.8 0.872 1.222
δ3 0.805 1.732 1.143 0.884 0.344 0.76 0.934 1.147 1.145
ρ̂ 0.133 0.034 0.183 0.189 0.088 0.226 0.221 0.174 0.189
MedSE 0.975 3.461 1.326 1.074 2.428 0.822 0.81 2.047 0.67

4.4. Nonregular Estimation of Data with Noise in Spatial Weight Matrix

In this section, we simulate the presence of noise in the spatial weight matrix. We
added a minor disturbance term ε

′
to each nonzero element in the spatial weight matrix

W, where ε
′ ∼ (1− ξ2) · N (0, 0.001) + ξ2 · N (0, 1), ξ2 ∈ {0.01, 0.03, 0.05}, and all the

simulated data are generated with ρ = 0.5, σ = 1. The test results are shown in Table 4.
Compared with normal data (Table 1), the MedSE value increased. Additionally, for each
loss function, the estimation of β, δ, and ρ also worsens. When the weight matrix has noise,
the exponential square loss and LAD loss have good performance. Compared with the
square loss, they have more accurate estimates of the parameters and smaller MedSE values.
However, it cannot be denied that LAD loss performs better than exponential square loss.
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Table 4. Nonregular Estimation of Data with Noise in Spatial Weight Matrix.

n = 200, 2q = 10 n = 360, 2q = 10 n = 500, 2q = 10

Exp Square LAD Exp Square LAD Exp Square LAD

ρ = 0.5, σ = 1, ξ = 0.01
β1 3.125 3.143 2.909 3.286 2.614 3.142 2.82 2.138 2.895
β2 1.692 1.89 1.934 1.3 2.39 2.025 2.07 2.367 1.826
β3 1.919 1.633 1.597 1.68 0.716 1.622 1.651 2.761 1.473
δ1 1.167 0.737 1.612 0.997 1.4 1.418 1.365 0.86 1.452
δ2 1.422 1.235 1.059 −0.28 0.584 1.318 1.247 0.485 1.191
δ3 0.898 0.038 1.076 2.083 1.16 1.273 0.978 0.799 1.164
ρ̂ 0.501 0.492 0.496 0.501 0.477 0.5 0.5 0.486 0.5
MedSE 0.636 2.596 0.562 2.657 2.623 0.411 0.275 2.591 0.341

ρ = 0.5, σ = 1, ξ = 0.03
β1 2.941 1.728 2.955 1.38 2.193 3.15 2.83 2.295 2.963
β2 1.143 2.575 2.278 0.298 2.322 1.952 1.88 2.292 2.002
β3 1.771 2.299 1.386 1.195 0.383 1.267 1.867 1.809 1.619
δ1 1.008 −0.63 1.607 0.019 0.211 1.156 0.396 2.348 1.218
δ2 0.605 2.475 1.326 0.255 0.283 0.961 0.974 1.317 0.994
δ3 0.579 0.146 0.922 0.58 0.826 0.921 0.881 0.699 1.136
ρ̂ 0.503 0.468 0.495 0.503 0.449 0.499 0.494 0.45 0.498
MedSE 1.561 3.925 0.819 3.645 3.922 0.547 1.227 4.972 0.454

ρ = 0.5, σ = 1, ξ = 0.05
β1 3.02 1.981 3.046 3.183 2.054 2.849 2.893 2.507 3.187
β2 1.479 0.857 2.072 1.259 0.636 2.253 1.911 0.865 2.265
β3 1.978 0.753 0.897 1.721 1.649 1.299 1.827 2.039 1.362
δ1 0.837 0.645 1.349 0.785 0.67 1.362 0.61 0.934 0.962
δ2 1.557 −0.56 1.26 0.551 −0.68 1.275 0.813 1.384 1.135
δ3 −0.23 −0.13 0.379 1.105 0.509 0.536 1.067 −1.56 1.24
ρ̂ 0.502 0.431 0.489 0.504 0.431 0.493 0.493 0.459 0.491
MedSE 1.922 5.079 1.207 2.191 4.588 0.805 1.034 5.232 0.69

4.5. Estimation with Adaptive-l1 Regularizer

We add adaptive L1 regularization to the loss function in this section and conduct
experiments. We also record the average number of zero coefficients correctly selected by
the model as “Correct” and the average number of nonzero coefficients incorrectly judged
by the model as “Incorrect”.

Table 5 shows the results of adaptive lasso regularization on normal data with q = 5.
The results show that, under almost all test results, the SDM model with exponential square
loss and adaptive lasso cannot only identify more true zero coefficients (“Correct” with
exponential square loss model is almost twice as much as that with square loss and LAD
loss model) and nearly zero ‘Incorrect’ numbers but also has the best MedSE and accurate
estimation of ρ̂.

Table 6 shows the results of adaptive lasso regularization on normal data with q ∈
{20, 40, 60}. The results show that when there are too many insignificant covariates, the
accuracy of the results of the Square loss model with adaptive lasso and the LAD loss
model with adaptive lasso decreases significantly. However, the model with adaptive lasso
and exponential square loss is still accurate. It can identify more true “Correct” numbers
and nearly zero “Incorrect" numbers and has the best MedSE and precise estimation of ρ̂.

Table 7 shows the results of estimation with adaptive-l1 regularization when the
observations of y have outliers. The results show that, in almost all test results, the
exponential square loss model with adaptive L1 has identified more true zero coefficients
(“Correct”) and, in most cases, has lower MedSE. Compared with the model without
regularization term (Table 3), the model with adaptive L1 has a better effect. In the test,
the exponential square loss model with adaptive L1 identified at least 8 zero coefficients
and, in most cases, determined 10 zero coefficients. For MedSE, the exponential square loss
model with adaptive L1 has the smallest MedSE in all cases, except that when n = 500 and
2q = 10, the MedSE in some cases is slightly larger than the LAD loss model with adaptive
L1. This shows that the SDM using exponential square loss and adaptive lasso has excellent
variable selection ability and strong robustness when the Y observation has outliers.
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Table 5. Estimation with adaptive-l1 regularizer on normal data (q = 5).

n = 200, 2q = 10 n = 360, 2q = 10 n = 500, 2q = 10

Exp Square LAD Exp Square LAD Exp Square LAD

ρ = 0.8, σ = 1
Correct 10 5.23 5.78 10 5.53 5.61 10 5.61 5.64
Incorrect 0 0 0 0 0 0 0 0 0
ρ̂ 0.8008 0.8035 0.8011 0.7999 0.8014 0.7982 0.7997 0.7995 0.801
MedSE 0.3747 0.3887 0.4697 0.1468 0.2843 0.3259 0.1316 0.2374 0.2944

ρ = 0.5, σ = 1
Correct 10 5.27 5.61 10 5.47 5.74 10 5.69 5.75
Incorrect 0 0 0 0 0 0 0 0 0
ρ̂ 0.5013 0.5008 0.502 0.5001 0.5003 0.5005 0.4999 0.4997 0.5005
MedSE 0.3575 0.3514 0.4354 0.1342 0.2751 0.3161 0.1207 0.2217 0.2699

ρ = 0.2, σ = 1
Correct 10 5.42 5.52 9.98 5.42 5.36 9 5.3 5.46
Incorrect 0 0.05 0.14 0 0.01 0.03 0 0 0
ρ̂ 0.2351 0.2375 0.2508 0.2257 0.231 0.2426 0.245 0.2265 0.2407
MedSE 0.7905 0.8637 1.0335 0.4758 0.6328 0.7898 0.8372 0.5565 0.6443

ρ = 0.8, σ = 2
Correct 10 5.34 5.12 10 5.1 5.42 9 5.17 5.18
Incorrect 0 0 0 6 0 0 0 0 0
ρ̂ 0.8017 0.7992 0.8087 0.5033 0.7988 0.8018 0.8002 0.8036 0.7986
MedSE 0.8202 0.7826 0.9687 4.5219 0.5524 0.6503 0.2753 0.4729 0.5452

ρ = 0.5, σ = 2
Correct 10 5.34 5.21 10 5.4 5.27 9 5.27 5.23
Incorrect 0 0 0 0 0 0 0 0 0
ρ̂ 0.5034 0.5014 0.4998 0.5005 0.5001 0.5001 0.4997 0.4988 0.4998
MedSE 0.813 0.75 0.9107 0.3039 0.5554 0.6583 0.2723 0.4426 0.5261

ρ = 0.2, σ = 2
Correct 8 5.17 5.11 9 5.51 5.29 9 5.31 5.27
Incorrect 0 0.03 0.23 0 0.01 0.02 0 0 0
ρ̂ 0.2601 0.2382 0.2301 0.2359 0.2241 0.2535 0.2432 0.246 0.246
MedSE 1.3903 1.0942 1.3318 0.6905 0.7508 1.0301 0.8508 0.7031 0.8261

Table 6. Estimation with adaptive-l1 regularizer on normal data of high dimension.

n = 200, 2q = 40 n = 360, 2q = 80 n = 500, 2q = 120

Exp Square LAD Exp Square LAD Exp Square LAD

ρ = 0.8, σ = 1
Correct 40 21.32 21.19 80 42.42 42.63 119.01 65.11 64.21
Incorrect 0 0.02 0.04 0 0 0.03 0 0.02 0.07
ρ̂ 0.7991 0.8011 0.769 0.8 0.788 0.775 0.7995 0.773 0.773
MedSE 0.1818 1.091 1.746 0.1553 1.348 1.969 0.2672 1.478 1.992

ρ = 0.5, σ = 1
Correct 40 21.61 22.4 80 43.52 45.49 119.99 66.78 69.73
Incorrect 0 0 0 0 0 0 0 0 0
ρ̂ 0.4984 0.5018 0.5 0.5003 0.5 0.5 0.5005 0.5 0.5
MedSE 0.1826 0.8458 0.767 0.1489 0.867 0.788 0.2289 0.915 0.809

ρ = 0.2, σ = 1
Correct 39.99 20.74 21.06 73.99 41.98 42.53 109.99 62.69 63.91
Incorrect 0 0.65 0.89 0 0.72 1.15 0.99 0.72 1.14
ρ̂ 0.2206 0.3554 0.375 0.2476 0.3644 0.437 0.3424 0.371 0.431
MedSE 0.4032 2.9396 3.381 0.8237 3.4479 3.853 2.6921 3.691 3.975

ρ = 0.8, σ = 2
Correct 38 20.31 20.9 77.98 41.06 42.05 117.99 62.58 62.78
Incorrect 0 0.02 0.05 0 0.01 0.01 0 0 0.16
ρ̂ 0.7962 0.7944 0.785 0.8002 0.7937 0.778 0.7982 0.793 0.753
MedSE 0.4685 1.7795 1.959 0.3963 2.0106 2.263 0.7239 2.123 2.766

ρ = 0.5, σ = 2
Correct 38.02 20.51 21.13 76.99 41.76 43.31 118.01 63.37 65.18
Incorrect 0 0 0 0 0 0 0 0 0
ρ̂ 0.4963 0.5009 0.5 0.5006 0.4987 0.5 0.5008 0.499 0.5
MedSE 0.4416 1.6128 1.464 0.3987 1.7193 1.522 0.6623 1.776 1.571

ρ = 0.8, σ = 2
Correct 38.99 20.73 20.87 75 41.22 42.04 115 62.43 63.03
Incorrect 0 0.81 1.22 0 0.59 1.05 0 0.8 1.1
ρ̂ 0.219 0.3583 0.461 0.2383 0.3523 0.434 0.2962 0.413 0.462
MedSE 0.5759 3.656 3.804 0.7593 3.6017 3.887 1.8711 4.392 4.039
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Table 7. Estimation with adaptive-l1 regularization when the observations of y have outliers.

n = 200, 2q = 10 n = 360, 2q = 10 n = 500, 2q = 10

Exp Square LAD Exp Square LAD Exp Square LAD

ρ = 0.8, σ = 1, ξ = 0.01
Correct 10 5.3 5.47 10 5.05 5.45 9.8 5 5.5
Incorrect 0 0.23 0.01 0 0.07 0 0 0.09 0
ρ̂ 0.8016 0.7759 0.781 0.7997 0.7978 0.7949 0.7957 0.7606 0.7991
MedSE 0.4001 1.8977 0.5016 0.2229 1.6261 0.3415 0.2547 1.4235 0.287

ρ = 0.5, σ = 1, ξ = 0.01
Correct 10 5.23 5.53 10 5.11 5.68 10 5.03 5.74
Incorrect 0 0.1 0 0 0.02 0 0 0.01 0
ρ̂ 0.4999 0.5003 0.5024 0.4997 0.4967 0.4987 0.5004 0.4981 0.4999
MedSE 0.5384 1.4093 0.4443 0.1554 1.2247 0.3282 0.1962 1.1521 0.2811

ρ = 0.2, σ = 1, ξ = 0.01
Correct 9.9 5.15 5.43 10 5.11 5.44 9.1 5.33 5.62
Incorrect 0 0.17 0.14 0 0.02 0.03 0 0.01 0
ρ̂ 0.2096 0.2569 0.2543 0.2236 0.2091 0.2362 0.2513 0.2344 0.2358
MedSE 0.7234 1.5711 1.0847 0.4201 1.1447 0.8001 0.857 0.9537 0.6616

ρ = 0.8, σ = 1, ξ = 0.05
Correct 9 5.56 0.7973 10 5.33 0.7993 8.2 5.23 0.7991
Incorrect 0.2 0.73 5.34 0 0.5 5.43 0 0.42 5.73
ρ̂ 0.797 0.7892 0 0.7998 0.7954 0 0.7857 0.7892 0
MedSE 0.9265 4.6649 0.4994 0.3901 3.7479 0.3404 0.5873 2.9429 0.2881

ρ = 0.5, σ = 1, ξ = 0.05
Correct 10 5.31 0.5 9.8 5.24 0.4999 8,2 5.13 0.5002
Incorrect 0.1 0.45 5.34 0 0.23 5.87 0 0.18 5.76
ρ̂ 0.4969 0.4999 0 0.4991 0.4974 0 0.4994 0.4961 0
MedSE 0.475 3.8028 0.4602 0.2339 2.9176 0.332 0.4473 2.4682 0.2825

ρ = 0.8, σ = 1, ξ = 0.05
Correct 10 5.15 0.2815 8.2 5.06 0.2357 9.1 5.04 0.2364
Incorrect 0 0.25 5.34 0 0.09 5.47 0 0.03 5.34
ρ̂ 0.1366 0.1648 0.25 0.1762 0.1159 0.02 0.2152 0.1538 0
MedSE 0.4858 3.1858 1.0803 0.2833 2.4497 0.7324 0.5134 2.1076 0.6375

Table 8 shows the results of adaptive lasso regularization for data that q = 5, rho = 0.5,
and spatial weight matrix has noise. For all test results, the exponential square loss with
adaptive L1 identifies more zero coefficients than other models (‘Correct’). Compared with
the results of the model without regularization term (Table 4), the model with adaptive L1
has a better effect. However, for MedSE, when n = 200, 2q = 10, the exponential square loss
with adaptive L1 is the best; when n = 500, 2q = 10, the LAD loss with adaptive L1 is the
best; when n = 360, 2q = 10, the LAD loss with adaptive L1 and the exponential square loss
with adaptive L1 have little difference. However, since the exponential square loss with
adaptive L1 can identify more nonzero coefficients, we believe that the exponential square
loss with adaptive L1 is better than the LAD loss with adaptive L1. The results show that
when the spatial weight matrix has estimation error, the SDM with exponential square loss
and adaptive lasso has excellent variable selection ability and robustness.

Table 8. Estimation with adaptive-l1 regularization with noisy weighting matrix W.

n = 200, 2q = 10 n = 360, 2q = 10 n = 500, 2q = 10

Exp Square LAD Exp Square LAD Exp Square LAD

ρ = 0.5, σ = 1, ξ = 0.01
Correct 8.1 5.24 5.4 10 5.04 5.45 10 5.11 5.54
Incorrect 0 0.34 0 0 0.41 0 0 0.24 0
ρ̂ 0.4991 0.4974 0.5 0.5005 0.489 0.4989 0.5 0.4835 0.5001
MedSE 1.1925 2.4503 0.54 0.1897 2.5552 0.3621 0.1557 2.2579 0.2916

ρ = 0.5, σ = 1, ξ = 0.03
Correct 9.8 5.54 5.4 6.3 5.61 5.3 6.1 5.14 5.76
Incorrect 0 0.87 0 1.1 0.84 0 1.9 0.72 0
ρ̂ 0.5012 0.4644 0.4996 0.4982 0.4665 0.4998 0.4974 0.476 0.4976
MedSE 0.7048 4.6858 0.6433 1.724 3.5277 0.4495 3.0656 3.7178 0.3789

ρ = 0.5, σ = 1, ξ = 0.05
Correct 9.96 5.2 5.43 7.02 5.37 5.38 6.02 5.29 5.77
Incorrect 0.04 1.21 0 0 1.2 0 1 1.04 0
ρ̂ 0.5019 0.4653 0.4993 0.4993 0.4758 0.4953 0.4974 0.4491 0.495
MedSE 0.832 4.9396 0.806 1.3822 4.3962 0.5848 2.2125 4.0998 0.4734
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5. Application of Practical Examples

In this part, we apply the model to actual data to verify the accuracy and efficiency of
variable selection and parameter estimation.

We selected a dataset with 211 observations. The dataset describes house sales in
the Baltimore area in 1978 and contains home prices and other relevant features. Original
data were made available by Robin Dubin [19], Weatherhead School of Management, Case
Western Research University, Cleveland, OH. The characteristics of this data are described
in Table 9. We mainly study the relationship between price and several other variables.
We let the dependent variable be log(PRICE), and the independent variables are NROOM,
DWELL, NBATH, PATIO, FIREPL, AC, BMENT, NSTOR, GAR, AGE, CITCOU, LOTSZ,
and SQFT.

Table 9. Variable description.

Variable Description

STATION ID variable
PRICE sales price of house iin $1000 (MLS)

NROOM the number of rooms
DWELL 1 if detached unit, 0 otherwise
NBATH the number of bathrooms
PATIO 1 if patio, 0 otherwise
FIREPL 1 if fireplace, 0 otherwise

AC 1 if air conditioning, 0 otherwise
BMENT 1 if basement, 0 otherwise
NSTOR number of stories

GAR number of car spaces in garage (0 = no garage)
AGE age of dwelling in years

CITCOU 1 if dwelling is in Baltimore County, 0 otherwise
LOTSZ lot size in hundreds of square feet
SQFT interior living space in hundreds of square feet

X x coordinate on the Maryland grid
Y y coordinate on the Maryland grid

We set the spatial weight matrix W by geographic location relationship. The geo-
graphic location can be determined by features X and Y. The expression for wij looks
like this:

wij =
1

(Xi − Xj)2 + (Yi −Yj)2 . (21)

In addition, we normalize the spatial weights matrix.
Table 10 shows the variable selection results of SDM for square loss, exponential

square loss, and LAD loss with adaptive lasso and no penalty. To make variable selection
results more intuitive, we designed Table 11. In Table 11, if the model believes that the
independent variable has a positive effect on the dependent variable, we mark it as “+”; if
the model believes that the independent variable is negatively correlated to the dependent
variable, we mark it as “−”; and if the model considers the independent variable not to
affect the dependent variable (the absolute value of the parameter estimate is less than
0.001), we do not label it. Additionally, we let the total number of “+” features be count
“+”; Let the total number of “−” features be count “−”; make the total number of all
independent variables related to the dependent variable count. We can find that the BIC
index, with or without regularization, is the lowest exponential square loss. As seen
from Tables 10 and 11, our variable selection method has a smaller BIC index than other
variable selection methods and selects fewer independent variables, making the model
more accurate and more straightforward. This fully illustrates the excellence of the variable
selection method proposed in this paper.
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Next, we analyze our regression results. For the variable NROOM, the six models all
think it positively correlates with the house price, so the more rooms, the higher the house
price. For variables DWELL, EXP+adaptive-l1, Square+adaptive-l1, and LAD+adaptive-l1,
it is not considered that they will impact house prices, while EXP+null, Square+null, and
LAD+null think that they have a specific positive correlation with housing prices. The
three models believe that if it is a detached unit, it will make the house price higher. For
the variable NBATH, all models believe it positively correlates with the housing price.
Therefore, the more bathrooms, the higher the house price. For the variables PATIO and
FIREPL, the models with regularization term are considered independent of house price;
however, the model without regularization term believes that it is related to house price, the
regression coefficients are very small, and the signs of regression coefficients are different.
Therefore, we believe that these two characteristics have little impact on house price. For
the variable AC, the model, without adding the with no regularization term, thinks that it is
positively related to the house price; that is, the house price with air conditioning is higher
than that without air conditioning. For the variable BMENT, except for EXP+adaptive-l1,
other models believe it positively relates to the house price; that is, houses with basements
tend to have higher prices. For the variable CITCOU, the nonregularized model considers
that it positively correlates with the house price; in Baltimore, houses in the city will be more
expensive. For the spatial autocorrelation coefficient, the six models’ estimated values are
close to 0.5. It can be seen that the rise in house price will lead to an increase in surrounding
house prices. Additionally, we can see that NROOM_W, BMENT_W, and CITCOU_W,
under the estimation of the six models, all have negative regression coefficients. Therefore,
we can know that the spatial regression coefficients of NROOM, BMENT, and CITCOU
are negative. As a result, houses with a lot of rooms, houses with basements, and houses
in urban areas can have a negative impact on house prices around them. This is also
customary. After all, if all the configurations of a house perform well, people will naturally
expect more from the houses around them.

Table 10. Variable section on real data.

EXP Square LAD

Adaptive-l1 Null Adaptive-l1 Null Adaptive-l1 Null

NROOM 0.49674002 0.20409727 0.01051881 0.1929546 0.0037123 0.2362159
DWELL −1.3922 ×

10−17 0.45980677 0.00075831 0.4703206 0.00029162 0.5097926
NBATH 0.030063578 0.36030577 0.00385469 0.3514846 0.0012552 0.4254525
PATIO 4.91478 ×

10−18 0.01072777 0.00097357 0.017285 0.00014135 −0.092123

FIREPL −9.5477 ×
10−18 −0.01059 0.0002972 0.0013726 0.00012271 −0.077913

AC −1.2919 ×
10−17 0.3021609 0.001 0.311554 0.00020267 0.3138447

BMENT −2.2645 ×
10−17 0.1187834 0.0044111 0.1235361 0.00116474 0.1317025

NSTOR −9.9947 ×
10−17 0.47809045 0.00359286 0.503778 0.00129079 0.4164672

GAR −2.2383 ×
10−17 −0.1040092 0.00038606 −0.099652 0.00039553 −0.0844

AGE 4.72988 ×
10−17 0.01105389 0.03319136 0.0113282 0.02091404 0.0100436

CITCOU −6.0274 ×
10−17 0.68202393 0.00093599 0.6868509 0.00025428 0.4701451

LOTSZ 1.04997 ×
10−17 0.0011463 0.002195 0.0011849 0.00443912 4.606×10−5

SQFT −7.0764 ×
10−17 −0.0362982 0.0316769 −0.037256 0.01075005 −0.034887

NROOM_W −0.28507527 −0.1092328 −0.012775 −0.098775 −0.0059391 −0.17384
DWELL_W 1.61355 ×

10−33 −0.1051101 −0.0010685 −0.102124 −0.0005411 −0.107508

NBATH_W −7.3257 ×
10−18 −0.1575366 −0.0033218 −0.159341 −0.0014154 −0.095605

PATIO_W −8.7577 ×
10−18 0.0642994 −8.43 × 10−5 0.0601125 1.1236 × 10−5 0.1341514

FIREPL_W −4.6005 ×
10−34 −0.0387668 0.00068287 −0.036572 −2.587 ×

10−5 −0.042569

AC_W −3.3933 ×
10−17 −0.2098427 −0.001 −0.223255 −0.0004486 −0.187274

BMENT_W −0.02780421 −0.111448 −0.0074127 −0.117315 −0.0032221 −0.1317
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Table 10. Cont.

EXP Square LAD

Adaptive-l1 Null Adaptive-l1 Null Adaptive-l1 Null

NSTOR_W −2.6009 ×
10−32 −0.1648658 −0.0047893 −0.159493 −0.0023109 −0.178134

GAR_W 1.94949 ×
10−17 0.15495116 0.001 0.1566788 0.00017173 0.1186948

AGE_W 5.87444 ×
10−33 −0.0069188 −0.0228056 −0.007876 −0.0204497 −0.001951

CITCOU_W −0.06178084 −0.4116914 −0.0030172 −0.426973 −0.001 −0.240381
LOTSZ_W −2.2196 ×

10−32 −0.0005826 −0.0034412 −0.000541 −0.0057558 −0.000449

SQFT_W 2.75575 ×
10−17 0.01072435 −0.0207167 0.0098465 −0.0112853 0.0143746

ρ 0.498613719 0.49970041 0.49571237 0.4997043 0.49780529 0.499992
MSE 0.121911727 0.11475312 0.13792606 0.1149259 0.14467343 0.114829
BIC −304.892336 −317.66083 −278.85061 −317.3434 −268.77299 −317.5214

Table 11. Visual representation of variable selection on real data.

EXP Square LAD

Adaptive-l1 Null Adaptive-l1 Null Adaptive-l1 Null

NROOM + + + + + +
DWELL + + +
NBATH + + + + + +
PATIO + + −
FIREPL − + −
AC + + +
BMENT + + + + +
NSTOR + + + + +
GAR − − −
AGE + + + + +
CITCOU + + +
LOTSZ + + + +
SQFT − + − + −
NROOM_W − − − − − −
DWELL_W − − − −
NBATH_W − − − − −
PATIO_W + + +
FIREPL_W − − −
AC_W − − −
BMENT_W − − − − − −
NSTOR_W − − − − −
GAR_W + + +
AGE_W − − − − −
CITCOU_W − − − − −
LOTSZ_W − −
SQFT_W + − + − +

count “+” 2 13 7 14 7 11
count “−” 3 12 9 11 7 13
count 5 25 16 25 14 24
BIC −304.892336 −317.66083 −278.85061 −317.3434 −268.77299 −317.5214

6. Conclusions

This paper constructs a robust method for SDM variable selection based on adaptive
lasso and exponential square loss. We established the “oracle” nature of the proposed
estimators. For the nondifferentiable and nonconvex problems when the model is solved,
we design the BCD algorithm, DC decomposition, and CCCP algorithm to solve them.
Numerical simulations show that our method has good robustness and accuracy when
there is noise in the observed data. Additionally, when the spatial weight matrix estimation
is inaccurate, our method also has some robustness. In variable selection, our method
is significantly better than exponential squared loss and LAD loss, and almost all zero
coefficients can be identified in numerical simulations. Taking the housing price dataset
of the Baltimore region in 1978 as an example, the excellence and accuracy of the variable
selection method of the SDM proposed in this paper are verified. Our analysis demonstrates
the difference between our robust variable selection approach and other penalty regression
methods, demonstrating the importance of developing robust variable selection methods.
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Appendix A. Proof of Theorem 1

Let ξn = n−1/2 + an and set ‖u‖ = C, where u is d-dimensional vector and C is a large
enough constant. Similar to Fan and Li (2001), we first show that

∥∥∥ ˆ̃β− β̃0

∥∥∥ = Op(ξn). It
suffices to show that, for any given ε > 0, there is a large constant C such that, for large n,

P

{
sup
|u|=C

`n(θ0 + ξnu) < `n(θ0)

}
≥ 1− ε. (A1)

Define Z = (I − ρW)−1X̃T , ε∗ = (I − /rhoW)−1εn, and then we can represent model (1) as

Y = (I − ρW)−1X̃T β̃ + (I − ρW)−1ε = ZT β + ε∗. (A2)

For the optimization model (7)
min

β̃∈R2p ,ρ∈[0,1]
L(β̃, ρ),

we know that this is equivalent to

max˜̃β∈R2p ,ρ∈[0,1]
−L(β̃, ρ),

which can be expressed as

`n(θ) =
n

∑
i=1

exp
{
−
(
Yi − Zi β̃

)
/γn

}
− n

2p

∑
j=1

pλj

(∣∣β̃ j
∣∣). (A3)

Let Dn(θ, γ) = ∑n
i=1 exp

{
−
(
Yi − Zi β̃

)2/γ
}

2(Yi−Zi β̃)
γ Zi. Since pλj(0) = 0 for j =

1, 2, . . . , p, we have

`n(θ0 + ξnu)− `n(θ0)

=
n

∑
i=1

exp
{
−
(
Yi − Zi

(
β̃0 + ξnu

))
/γn

}
−

n

∑
i=1

exp
{
−
(
Yi − Zi β̃0

)
/γn

}
−

2p

∑
j=1

{
pλj

(∣∣∣β̃ j0 + ξnuj

∣∣∣)− pλj

(∣∣β̃ j0
∣∣)}

≤
n

∑
i=1

exp
{
−
(
Yi − Zi

(
β̃0 + ξnu

))
/γn

}
−

n

∑
i=1

exp
{
−
(
Yi − Zi β̃0

)
/γn

}
−

s

∑
j=1

{
pλj

(∣∣∣β̃ j0 + ξnuj

∣∣∣)− pλj

(∣∣β̃ j0
∣∣)}

= Sn(u) + Kn(u).

(A4)

Note that
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Sn(‖u‖) =
n

∑
i=1

exp

{
−
(
Yi − Zi

(
β̃0 + ξnu

))2

γn

}
−

n

∑
i=1

exp

{
−
(
Yi − Zi β̃0

)2

γn

}

= ξn

n

∑
i=1

{
exp

{
−
(
Yi − Zi β̃0

)2

γn

}
2
(
Yi − Zi β̃

)
γn

ZT
i

}T

u− 1
2

uT
{
− 2

γn

∫
ZZTe−(Y−Zβ̃0)

2
/γn

×
(

2
(
Y− Zβ̃0

)2

γn
− 1

)
dF(Z, y)

}
unξ2

n
{

1 + op(1)
}

= ξnDn(β0, γn)
Tu− 1

2
uT{−I

(
β̃0, γn

)}
unξ2

n
{

1 + op(1)
}

.

(A5)

Additionally,

Kn(u) = n
s

∑
j=0

{
pλj

(∣∣β̃ j0 + ξnuj
∣∣)− pλj

(∣∣β̃ j0
∣∣)}

= nξn

s

∑
j=0

p′λj

(∣∣β̃ j0
∣∣) sign

(
β̃ j0
)
uj + nξ2

n

s

∑
j=0

p′′λj

(∣∣β̃ j0
∣∣)u2

j {1 + o(1)}

≤ annξn

s

∑
j=0

∣∣uj
∣∣+ bnnξ2

n

s

∑
j=0

u2
j {1 + o(1)} ≤ annξn

s

∑
j=0

∣∣uj
∣∣+ 2bnnξ2

n‖u‖2

≤
√

sannξn

s

∑
j=0

∣∣uj
∣∣+ bnnξ2

n‖u‖2.

(A6)

Since γn − γ0 = op(1), by Taylor’s expansion, we have

`n(θ0 + ξnu)− `n(θ0)

≤ ξnDn(θ0, γn)
Tu− 1

2
uT [−I(θ0, γn)]unξ2

n
{

1 + op(1)
}
−
√

sannξn

s

∑
j=0

∣∣uj
∣∣+ bnnξ2

n‖u‖2.
(A7)

Note that n−1/2Dn(θ0, γ0) = OP(1). So, there is Op

(
n1/2ξn

)
= Op

(
nξ2

n
)

in the last equa-
tion of (A.7). By choosing a sufficiently large C, the second term dominates the first term
uniformly in ‖u‖ = C. Since bn = op(1), the third term is also dominated by the second
term of (A.7). Therefore, (A.1) holds by choosing a sufficiently large C.

Appendix B. Proof of Theorem 2

Appendix B.1. Proof of Theorem 2(i)

Here, we show the proof of the first point of Theorem 2. For this, we need only prove
that, as n → ∞, there is any beta1 satisfying β̃1 − β̃01 = Op

(
n−1/2

)
, and for some small

εn = Cn−1/2 and j = s + 1, . . . , p , we have

∂`n(β̃)

∂β̃ j
=

{
> 0, for 0 < β̃ j < εn

< 0, for − εn < β̃ j < 0
. (A8)

First, let us make

Qn(β̃, γ) =
n

∑
i=1

exp
{
−
(

Yi − ZT
i β̃
)2

/γ

}
. (A9)

Then,
∂`n(β̃)

∂β̃ j
=

∂Qn
(

β̃, γn
)

∂β̃ j
− np′λj

(∣∣β̃ j
∣∣) sign

(
β̃ j
)
. (A10)
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By Taylor expansion, we can obtain

∂`n(β̃)

∂β̃ j
=

∂Qn
(

β̃0, γn
)

∂β̃ j
+

p

∑
l=1

∂2Qn
(

β̃0, γn
)

∂β̃ j∂β̃l

(
β̃l − β̃l0

)
+

p

∑
l=1

p

∑
k=1

∂3Qn
(

β̃∗, γn
)

∂β̃ j∂β̃l∂β̃k

(
β̃l − β̃l0

)(
β̃k − β̃k0

)
− np′λj

(∣∣β̃ j
∣∣) sign

(
β̃ j
)

= R11 + R12 + R13 − np′λj

(∣∣β̃ j
∣∣) sign

(
β̃ j
)
.

(A11)

where β̃∗ lies between β̃ and β̃0. Moreover, because

n−1 ∂2Qn
(

β̃0, γ0
)

∂β̃ j∂β̃l
= E

{
∂2Qn

(
β̃0
)

∂β̃ j∂β̃l

}
+ op(1),

n−1 ∂Qn
(

β̃0, γ0
)

∂β̃ j
= Op

(
n−1/2

)
.

So there is R11 = Op(
√

n), R12 = Op(
√

n), and R13 = Op(
√

n). Additionally, because of

bn = op(1) and
√

nan = op(1) , we are able to make β̃− β̃0 = Op

(
n−1/2

)
.

Since 1/ mins+1≤j≤d
(√

nλj
)

= op(1) and limn→∞ inf limt→0+

inf
{

mins+1≤j≤d pλj(|t|)/λj

}
> 0 with probability 1 , the sign of the derivative is com-

pletely determined by that of β j. This completes the proof of Theorem 1 (i).

Appendix B.2. Proof of Theorem 2(ii)

Here, we show the proof of the second point of Theorem 2. For brevity, let β̃∗10 = ρ

and β̃∗1j = β̃1j, j = 1, . . . , s, then denote β̃∗1 =
(
ρ, β̃11, . . . , β̃1s

)T and β̃∗0 =
(
ρ0, β̃10, . . . , β̃0s

)T .

We known that θ̂ minimizes Qn(θ). We showed that there exists a
√

n-consistent local
maximizer of `n

{(
β̃1, 0

)}
. satisfying that

∂`n

{(
ˆ̃β1, 0

)}
∂β̃ j

= 0, for j = 1, . . . , s.

Since ˆ̃β1 is a consistent estimator, we have

∂Qn

{(
ˆ̃β1, 0

)
, γn

}
∂β j

− np′λj

(∣∣∣ ˆ̃β j

∣∣∣) sign
(

ˆ̃β j

)
=

∂Qn
(

β̃0, γn
)

∂β̃ j
+

s

∑
l=1

{
∂2Qn

(
β̃0, γn

)
∂β̃ j∂β̃l

+ op(1)

}(
ˆ̃βl − β̃01

)
− n

[
p′λj

(∣∣β̃0j
∣∣) sign

(
β̃0j
)
+
{

p′′λj

(∣∣β0j
∣∣)+ op(1)

}(
ˆ̃β j − β̃0j

)]
= 0.

(A12)

The above equation can be rewritten as follows:

∂Qn
(

β̃0, γn
)

∂β̃ j
=

s

∑
l=1

{
E

{
∂2Qn

(
β̃0, γn

)
∂β̃ j∂β̃l

}
+ op(1)

}(
ˆ̃βl − β̃01

)
+ n∆ + n

[
Σ1 + Op(1)

]( ˆ̃βn1 − β̃01

)
, (A13)
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nI1
(

β̃01, γ0
)( ˆ̃βn1 − β̃01

)
+ n∆ + n

[
Σ1 + Op(1)

]( ˆ̃βn1 − β̃01

)
= n

[
I1
(

β̃01, γ0
)
+ Σ1

]( ˆ̃βn1 − β̃01

)
+ n∆

= n
[
I1
(

β̃01, γ0
)
+ Σ1

]( ˆ̃βn1 − β̃01

)
+ n

[
I1
(

β̃01, γ0
)
+ Σ1

][
I1
(

β̃01, γ0
)
+ Σ1

]−1∆

= n
[
I1
(

β̃01, γ0
)
+ Σ1

]{( ˆ̃βn1 − β̃01

)
+ n

[
I1
(

β̃01, γ0
)
+ Σ1

]−1∆
}

= −
∂Qn

(
β̃0, γn

)
∂β̃ j

+ op(1).

(A14)

Since
√

n(γn − γ0) = op(1), invoking Slutsky’s lemma and the Lindeberg–Feller central
limit theorem, we have

√
n
(

I1
(

β̃01, γ0
)
+ Σ1

){( ˆ̃βn1 − β̃01

)
+
(

I1
(

β̃01, γ0
)
+ Σ1

)−1∆
}
→ N(0, Σ2),

where ˆ̃βn1 =
(

ρ̂, ˆ̃β11, . . . , ˆ̃β15

)T
, andβ̃01 =

(
ρ0, β̃01, . . . , β̃0s

)T ,

Σ1 = diag
{

p′′λ1

(∣∣β̃01
∣∣), . . . , p′′λs

(∣∣β̃0s
∣∣)}, Σ2 = cov

(
exp

(
−r2/γ0

) 2r
γ0

Zi1

)
,

∆ =
(

p′λ1

(∣∣β̃01
∣∣) sign

(
β̃01
)
, . . . , p′λs

(∣∣β̃0s
∣∣)× sign

(
β̃0s
))T

,

I1
(

β̃01, γ0
)
=

2
γ0

E
[

exp
(
−r2/γ0

)(2r2

γ0
− 1
)]
×
(

EZi1ZT
i1

)
.

Then, the proof of part (ii) is completed.
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