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Abstract: The main motivation of this work is to study and obtain some reversible and DNA codes
of length n with better parameters. Here, we first investigate the structure of cyclic and skew cyclic
codes over the chain ring R := F4[v]/〈v3〉. We show an association between the codons and the
elements ofR using a Gray map. Under this Gray map, we study reversible and DNA codes of length
n. Finally, several new DNA codes are obtained that have improved parameters than previously
known codes. We also determine the Hamming and the Edit distances of these codes.
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1. Introduction

DNA is a nucleic acid used for carrying genetic information in living organisms.
It is a double-strand molecule formed from two possible nitrogenous bases—Purines
(Adenine and Guanine) and Pyrimidines (Cytosine—and Thymine) and two chemically
polar ends, namely, 5′ and 3′. The Watson–Crick complementary (WCC) relation, which
is characterized as Ac = T, Gc = C, and vice versa, is used to bind the bases of DNA. In
1994, Adleman [1] discussed the Hamiltonian path problem using DNA molecules. This
(NP-complete) problem is solved by encoding a small graph in DNA molecules where all
the operations were carried out using standard protocols such as the WCC relation. Due
to massive parallelism, DNA computing emerged as a powerful tool among researchers
to solve computationally difficult problems. Further, the experiments are performed on
synthesized DNA and RNA molecules to control their combinatorial constraints such as
constant GC-content and Hamming distance.

Linear codes over finite fields have been explored for almost three decades, but this
research area experienced an astonishing rate after the remarkable work of Hammons
et al. [2] when they established a relation between linear codes over Z4 with other non-
linear binary codes. Afterward, many authors [3–6] considered alphabets endowed with a
ring structure and found many good linear codes over finite fields via specific Gray maps.
Within the class of linear codes, cyclic codes are the pivotal and the most studied codes due
to their theoretical richness and practical implementation. Recently, many authors [7–13]
constructed DNA codes using cyclic codes over rings. For instance, Bayram et al. [7] and
Yildiz and Siap [13] explored DNA codes over the rings F4 + vF4, v2 = v and F2[v]/〈v4− 1〉,
respectively. In 2019, Mostafanasab and Darani [12] discussed the structure of cyclic DNA
codes over the chain ring F2 + uF2 + u2F2. Liu et al. [14] worked on cyclic DNA codes of an
odd length over F4[u]/〈u3〉. On the other hand, Boucher et al. [15] introduced skew cyclic
codes and discovered many new linear codes. Further, in [16,17], more properties of these
codes over chain rings have been established. Recently, Gursoy et al. [18] studied reversible
DNA codes by using skew cyclic codes. Later on, Cengellenmis et al. [19] studied DNA
codes from skew cyclic codes over the rings F2[u, v, w], where u2 = v2 + v = w2 + w =
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uv + vu = uw + wu = vw + wv = 0. Motivated by the above works, we consider cyclic as
well as skew cyclic codes over the finite chain ringR = F4[v]/〈v3〉 to construct DNA codes
of arbitrary lengths. Hamming and edit distances are also calculated for the obtained codes.
Interestingly, we obtain several new codes with better parameters than known codes [14].

The article is structured as follows: The Gray map, together with the correspondence
of the codons and the other basic results of cyclic codes, are in Section 2. Reversible cyclic
codes over the ring R are covered in Section 3, whereas the reversible skew cyclic codes
are studied in Section 4. Some results related to the complement and reverse complement
of obtained codes are presented in Section 5. Based on our established results from the
previous Sections and magma computer algebra system [20], we provide a few examples of
DNA codes of arbitrary lengths in Section 6. In the end, we conclude our work in Section 7.

2. Preliminaries

Let F4 = {0, 1, t, t2}, where t2 = t+ 1 be a finite field. Then R := F4[v]/〈v3〉 is a
finite chain ring with characteristic 2 and every element r of R can be represented as
r = b1 + b2v + b3v2 where bi ∈ F4, for i = 0, 1, 2 and v3 = 0. It is easy to show that R is
a principal ideal ring with unique maximal ideal 〈vs.〉 and R/〈vs.〉 is isomorphic to F4.
Recall that the ringR has 48 invertible elements of the form r = b1 + b2v + b3v2, where b1
is invertible in F4.

A linear code C of length n and alphabets from R is a submodule of an R-module
Rn. The elements of C are called the codewords. The Hamming weight of an element
b = (b0, b1, . . . , bn) ∈ C is defined as wH(b)= |{i | bi 6= 0}| and Hamming distance dH(b, k)
between any two elements b = (b0, b1, . . . , bn) and k = (k0, k1, . . . , kn) in C is defined as
dH(b, k) = wH(b− k). Additionally, the lowest value in the set {dH(b, k) | b 6= k, ∀ b, k ∈ C}
is considered as the the Hamming distance dH(C) of the code C .

Now, we describe a Gray map Φ : R −→ F3
4 as:

Φ(b0 + b1v + b2v2) = (b0 + b1 + b2, b1 + b2, b2), (1)

where bi ∈ F4 for i = 0, 1, 2. It is easy to see that the function Φ is a distance-preserving
map and is extendable to Rn component-wise. In Table 1, we establish the connection
between the ring elements and the codons by using the Gray map (1).

Definition 1. For a given polynomial g(z) = g0 + g1z + . . . + gmzm ∈ F4[z], the reciprocal
polynomial is denoted by g∗(z) and defined as g∗(z) = ∑m

i=0 gm−izi. A polynomial g(z) is said to
be self-reciprocal if and only if g∗(z) = bg(z) for some non-zero element b in F4.

Now, we present some useful lemmas that appeared in [8,14].

Lemma 1. Let g(z) and h(z) be polynomials over R of degrees r and s, respectively, with r ≥ s.
Then:

1. [g(z)h(z)]∗ = g∗(z)h∗(z)
2. [g(z) + h(z)]∗ = g∗(z) + z(r−s)h∗(z).

Lemma 2. Let f(z), g(z), and h(z) be polynomials overR of degrees r, s, and t, respectively, where
r ≥ s, t. Then:

1. [f(z)g(z)h(z)]∗ = f∗(z)g∗(z)h∗(z)
2. [f(z) + g(z) + h(z)]∗ = f∗(z) + z(r−s)g∗(z) + z(r−t)h∗(z).

Using the Watson–Crick complementary relation, we define the reverse (R) and the re-
verse complement (RC) of a DNA codeword b = (b0, b1, . . . , bn−1) by br = (bn−1, . . . , b1, b0)
and brc = (bc

n−1, . . . , bc
1, bc

0), respectively. For example, given b = ATCCGT, we obtain
br = TGCCTA and brc = ACGGAT.

We have the following observations based on the Gray map provided in Equation (1).
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Table 1. Codons correspondence with the elements ofR.

0 AAA v2 TTT tv2 GGG t2v2 CCC

1 TAA v2 + 1 ATT tv2 + 1 CGG t2v2 + 1 GCC

t GAA v2 + t CTT tv2 + t AGG t2v2 + t TCC

t2 CAA v2 + t2 GTT tv2 + t2 TGG t2v2 + t2 ACC

v TTA v2 + v AAT tv2 + v CCG t2v2 + v GGC

v + 1 ATA v2 + v + 1 TAT tv2 + v + 1 GCG t2v2 + v + t AGC

v + t CTA v2 + v + t GAT tv2 + v + t TCG t2v2 + v + 1 CGC

v + t2 GTA v2 + v + t2 CAT tv2 + v + t2 ACG t2v2 + v + t2 TGC

tv GGA v2 + tv CCT tv2 + tv AAG t2v2 + tv TTC

tv + 1 CGA v2 + tv + 1 GCT tv2 + tv + 1 TAG t2v2 + tv + 1 ATC

tv + t AGA v2 + tv + t TCT tv2 + tv + t GAG t2v2 + tv + t CTC

tv + t2 TGA v2 + tv + t2 ACT tv2 + tv + t2 CAG t2v2 + tv + t2 GTC

t2v CCA v2 + t2v GGT tv2 + t2v TTG t2v2 + t2v AAC

t2v + 1 GCA v2 + t2v + 1 CGT tv2 + t2v + 1 ATG t2v2 + t2v + 1 TAC

t2v + t TCA v2 + t2v + t AGT tv2 + t2v + t CTG t2v2 + t2v + t GAC

t2v + t2 ACA v2 + t2v + t2 TGT tv2 + t2v + t2 GTG t2v2 + t2v + t2 CAC

Lemma 3. 1. For any a = (b0 + b1v + b2v2) ∈ R, we have
Φ(b0 + b1v + b2v2)

r
= b1 + b0v + (b0 + b1 + b2)v2, where b0, b1, b2 ∈ F4.

2. Φ(b0 + b1)
r = Φ(b0)

r + Φ(b1)
r, where b0, b1 ∈ F4.

3. Reversible Cyclic Codes over R
In the present section, we investigate the structure of cyclic codes and prove reversible

conditions on these codes. The cyclic codes of odd lengths are provided in [14] and a
detailed discussion on cyclic codes of arbitrary length with alphabets from Z2[u]/〈v3〉 is
explored in [6]. Now, in the subsequent theorems, we describe the structure of the cyclic
code. We omit the proof due to its similarity to the proof provided in [6].

Theorem 1. Let C be a cyclic code of length n overR. Then the code C is provided by:

C = 〈g0(z) + vg1(z) + v2g2(z), va1(z) + v2 p(z), v2a2(z)〉

where a2(z)|a1(z)|g0(z)|(zn− 1) overF4, a1(z)|g1(z)( zn−1
g0(z)

), a2(z)|p(z)( zn−1
a1(z)

), and a2(z)|g2(z)

( zn−1
g0(z)

)( zn−1
a1(z)

) over F4. Moreover, deg(g2(z)) < deg(a2(z)), deg(p(z)) < deg(a2(z)), and
deg(g1(z)) < deg(a1(z)).

Corollary 1. If the length of a cyclic code C is odd and g1(z) = g2(z) = p(z) = 0, then
C = 〈g0(z), va1(z), v2a2(z)〉 = 〈g0(z) + va1(z) + v2a2(z)〉.

A similar result is also possible when n is not odd. In this case, we assume that
gcd( zn−1

a2(z)
, g0(z)) = 1 and consequently obtain the following result.

Corollary 2. If a cyclic code C is of even length n and gcd( zn−1
a2(z)

, g0(z)) = 1, then g1(z) =

g2(z) = p(z) = 0.
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When a2(z) = g0(z), then a2(z) = a1(z) = g0(z) and C as a subset of 〈g0(z) + vg1(z) +
v2g2(z)〉. Since the other containment is true by the definition of C, we, therefore, obtain
the following corollary.

Corollary 3. For a cyclic code C = 〈g0(z) + vg1(z) + v2g2(z), va1 + v2 p(z), v2a2(z)〉, if
a2(z) = g0(z), then C = 〈g0(z) + vg1(z) + v2g2(z)〉.

Definition 2. Given a code C = 〈g0(z) + vg1(z) + v2g2(z), va1(z) + v2 p(z), v2a2(z)〉 over
R, we define Cv2 by {q(z) ∈ F4[z] | v2q(z) ∈ C}. Particularly, since a2(z)|a1(z)|g0(z),
Cv2 = 〈a2(z)〉.

In the next result, we determine the Hamming distance of the code C by using the
above definition in terms of the Hamming distance of Cv2 .

Theorem 2. Let C be a code provided by C = 〈g(z)+ vg1(z)+ v2g2(z), va1(z)+ v2 p(z), v2a2(z)〉.
Then Hamming distance of C and Cv2 are equal, i.e., dH(C) = dH(Cv2).

Proof. It can be obtained from [4].

Remark 1. For the sake of brevity, we use b for polynomial b(z) whenever b(z) belongs to the
field F4.

Lemma 4. Let g0(z), g1(z) and g2(z) ∈ F4[z] of degrees r, s and t, respectively. Then (g0(z) +
vg1(z) + v2g2(z))∗ = g∗0(z) + vzr−sg∗2(z) + v2zr−tg∗2(z).

Theorem 3. Let C = 〈g0(z) + vg1(z) + v2g2(z)〉 be a cyclic code of even length over R with
monic polynomials g0(z), g1(z) and g2(z) of degrees r, s and t, respectively. Then the code C is
reversible if and only if:

(1) g0(z) is a self-reciprocal polynomial;
(2) zr−sg∗1(z) = b0g1(z) + b1g0(z) and zr−sg∗2(z) = b0g2(z) + b1g1(z) + b2g0(z), where

b0 ∈ F4 \ {0} and b1, b2 ∈ F4.

Proof. Let C be a reversible cyclic code. Then

(g0(z) + vg1(z) + v2g2(z))∗ = g∗0(z) + vzr−sg∗2(z) + v2zr−tg∗2(z) and

(g0(z) + vg1(z) + v2g2(z))∗ = b(z)(g0(z) + vg1(z) + v2g2(z)) ∈ C
= (b0(z) + vb1(z) + v2b2(z))(g0(z) + vg1(z) + v2g2(z))

= b0(z)g0(z) + v(b0(z)g1(z) + b1(z)g0(z))

+ v2(b0(z)g2(z) + b1(z)g1(z) + b2(z)g0(z)).

Comparing right side of the two equations, we obtain g∗0(z) = b0(z)g0(z), zr−sg∗1(z) =
b0(z)g1(z) + b1(z)g0(z) and zr−tg∗2(z) = b0(z)g2(z) + b1(z)g1(z) + b2(z)g0(z). Now, using
deg f∗(z) ≤ deg f(z), we obtain b0(z) 6= 0 in F4 and this implies that the polynomial g0(z) is
self-reciprocal. Therefore, zr−sg∗1(z) = b0g1(z) + b1(z)g0(z) where b0 = b0(z) is a non-zero
element in F4. Now comparing the degrees of both sides, we obtain a constant polynomial
b1(z) ∈ F4, say, b1. We have zr−tg∗2(z) = b0g2(z) + b1g1(z) + b2(z)g0(z). Again, comparing
the degrees of both sides, we obtain b2(z) in F4, say b2. Thus, zr−sg∗1(z) = b0g1(z) + b1g0(z)
and zr−tg∗2(z) = b0g2 + b1g1(z) + b2g0(z) where b0 ∈ F4 \ {0} and b1, b2 ∈ F4.
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Conversely, assume (1) and (2) hold. Then

(g0(z) + vg1(z) + v2g2(z))∗ =g∗0(z) + vzr−sg∗1(z) + v2zr−tg∗2(z)

=b0g0(z) + vb0g1(z) + vb1g0(z) + v2b0g2(z)

+ v2b1g1(z) + v2b2g0(z)

=b0(g0(z) + vg1(z) + v2g2(z)) + b1(vg0 + v2g1)

+ b2(v2g0(z)) ∈ C

Thus, the code C is reversible.

Theorem 4. Let C = 〈g0(z) + vg1(z) + v2g2(z), v2a2(z)〉 be a cyclic code of even length n over
R with polynomials g0(z), g1(z), and g2(z) of degrees r, s, and t, respectively, and r > max{s, t}.
Furthermore, assume that a2(z)|g0(z)|(zn − 1). Then the code C is reversible if and only if:

(1) g0(z) and a2(z) are self-reversible;
(2) zr−sg∗1(z) = b0g1(z) + b1g0(z), and a2(z)|(zr−tg∗2(z) + b0g2(z) + b1g1(z), where b0 ∈

F4 \ {0} and b1 ∈ F4.

Proof. Let C be a reversible code. Then

(g0(z) + vg1(z) + v2g2(z))∗ = g∗0(z) + vzr−sg∗1(z) + v2zr−tg∗2(z).

Furthermore,

(g0(z) + vg1(z) + v2g2(z))∗ = b(z)(g0(z) + vg1(z) + v2g2(z)) + v2c(z)a2(z)

= (b0(z) + vb1(z) + v2b2(z))(g0(z) + vg1(z)+

v2g2(z)) + v2c(z)a2(z) where bi(z), c(z) ∈ F4[z]

= b0(z)g0(z) + v(b0(z)g1(z) + b1(z)g0(z)) + v2

(b0(z)g2(z) + b1(z)g1(z) + b2(z)g0(z) + c(z)a2(z)).

Comparing both equations, we obtain b0(z) ∈ F4 \ {0}, say b0, this implies that g0(z) is self-
reciprocal. Therefore, zr−sg∗1(z) = b0g1(z) + b1g0(z) and zr−tg∗2(z) = b0g2(z) + b1g1(z) +
b2(z)g0(z) + c(z)a2(z); this implies that a2(z) divides zr−tg∗2(z) + b0g2(z) + b1g1(z).
Again, v2a∗2(z) ∈ C and hence a2(z)|g0(z) implies that a2(z) is self-reversible.

Conversely, suppose conditions (1) and (2) hold. Then

(g0(z) + vg1(z) + v2g2(z))∗ = g∗0(z) + vzr−sg∗1(z) + v2zr−tg∗2(z)

= b0g0(z) + v(b0g1(z) + b1g0(z)) + v2(b0g2(z)

+ b1g1(z) + c(z)a2(z)) f or some c(z) ∈ F4[z]

= b0(g0(z) + vg1(z) + v2g2(z)) + vb1(g0(z)

+ vg1(z) + v2g2(z)) + c(z)v2a2(z) ∈ C.

Therefore, C is reversible.

The following theorem states the reversible condition of odd length codes or a code
satisfying Corollary 2.

Theorem 5. Let C = 〈g0(z), va1(z), v2a2(z)〉 be a cyclic code overR with a2(z)|a1(z)|g0(z)|(zn

−1). Then code C is reversible if and only if polynomials g0(z), a1(z) and a2(z) are self-reversible.

Proof. Let C be a reversible code. Then for some polynomials b0(z), b1(z) and b2(z) in
F4[z], we have (g0(z))∗ = b0(z)g0(z) + vb1(z)a1(z) + v2b2(z)a2(z).
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Comparing both sides, we obtain b0(z) ∈ F4 \ {0}, say b0, since degf∗(z) ≤ degf(z),
then g0(z) is self-reciprocal. Similarly, a1(z) and a2(z) are self-reciprocal polynomials.

Conversely, let the polynomials g0(z), a1(z), and a2(z) be self-reciprocal. Then, ele-
ments of C are provided by the polynomial b0(z)g0(z) + vb1(z)a1(z) + v2b2(z)a2(z), there-
fore by Lemma 4, we have

(b0(z)g0(z) + vb1(z)a1(z) + v2b2(z)a2(z))∗ = (b0(z)g0(z))∗ + v(b1(z)a1(z))∗zr−s

+ v2(b2(z)a2(z))∗zr−t.

= b∗0(z)g
∗
0(z) + vzr−sb∗1(z)a∗1(z)

+ v2zr−tb∗2(z)a∗2(z) ∈ C.

Thus, C is reversible.

Now, in the following result, we determine the rank of a code C. The proof is followed
by similar arguments as in Theorem 3 of [6].

Theorem 6. Let C be a cyclic code of length n overR such that

C = 〈g0(z) + vg1(z) + v2g2(z), va1(z) + vp(z), v2a2(z)〉,

where g0(z), g1(z), g2(z), and a2(z) are polynomials in F4[z] and deg(g0(z) + vg1(z) + v2g2(z))
= r, deg(a1(z)) = s and deg(a2(z)) = t. Then C is a free module and rank(C) = n− t. Moreover,
the basis of C is provided by the set S, where

S ={(g0(z) + vg1(z) + v2g2(z)), x(g0(z) + vg1(z) + v2g2(z)), . . . , zn−r−1(g0(z) + vg1(z)

+ v2g2(z)), (va1(z) + v2 p(z)), x(va1(z) + v2 p(z)), . . . , zr−s−1(va1(z) + v2 p(z)),

v2a2(z), v2xa2(z), . . . , v2zs−t−1a2(z))}.

4. Reversible Skew Cyclic Codes over R
In this part, we focus on the structure of skew cyclic codes over R and establish a

necessary and sufficient condition for these codes to be reversible. We first define the skew
polynomial ring overR and provide some definitions that will be used in this section.

Let θ ∈ Aut(F4) be defined by θ(a) = a2. Now, consider a map σ : R −→ R
defined by:

σ(a0 + a1v + a2v2) = θ(a0) + θ(a1)v + θ(a2)v2,

where a0, a1, a2 ∈ F4. Since σ is an extension of θ, σ is an automorphism of R. Let us
consider the set:

R[z; σ] = {a0 + a1z + . . . + anzn | ai ∈ R ∀ i, n ∈ N}.

Define the addition on R[z; σ] as the usual addition of polynomials and multiplication
under the rule (aizi)(ajzj) = aiσ

i(aj)zi+j. Then, it is easy to show thatR[z; σ] forms a ring
under the above binary operations, known as a skew polynomial ring. Here, (aizi)(ajzj) 6=
(ajzj)(aizi) unless σ is identity automorphism.

Definition 3. Let τσ : Rn −→ Rn be a skew cyclic shift operator defined by:

τσ(a0, a1, . . . , an−1) = (σ(an−1), σ(a0), . . . , σ(an−2)), ∀ (a0, a1, . . . , an−1) ∈ Rn.

, a linear code C of length n over R is said to be skew cyclic code if for any codeword c ∈ C, their
skew cyclic shift τσ(c) belongs to C, that is, τσ(C) = C.
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Definition 4. For skew polynomials, a(z) and b(z) 6= 0, the polynomial b(z) is said to be rightly
divided by a(z) if and only if there exists a skew polynomial q(z) such that a(z) = q(z)b(z) and
we denote it by b(z)|ra(z).

Using similar arguments as in the commutative case, we provide the structure of the
skew cyclic codes overR for automorphism σ.

Theorem 7. Let C be a skew cyclic code in R[z;σ]
〈zn−1〉 . Then, C = 〈g0(z)+ vg1(z)+ v2g2(z), va1(z)+

v2 p(z), v2a2(z)〉 with a2(z)|ra1(z)|rg0(z)|r(zn − 1) in F4[z; θ], a1(z)|rg1(z)( zn−1
g0(z)

) and a2(z)

right divides p(z)( zn−1
a1(z)

), and g2(z)( zn−1
g0(z)

)( zn−1
a1(z)

).

Proof. Consider the ring R′ = F4[v]
〈v2〉 and σ

′ ∈ Aut(R′). For a skew cyclic code C over R,

define a map ψ1 : R → R′ by ψ1(a + bv + cv2) = a + bv where a, b, c ∈ F. Then, ψ1 is a
ring homomorphism that can be extended to a homomorphism φ : C → R′ [z;σ′ ]

〈zn−1〉 defined by

φ(c0 + c1z + . . . + cn−1zn−1) = ψ1(c0) + ψ1(c1)z + . . . + ψ1(cn−1)zn−1.

Then ker(φ) = {v2r(z) : r(z) ∈ F4[z; θ]/〈zn − 1〉}.
In order to determine the generators of cyclic code inRn = R[z, σ]/〈zn − 1〉, we need

to know the image of φ which is a skew cyclic code inR′n = R′[z, σ2]/〈zn − 1〉.
Let D be a cyclic code in R′n. Now, define a map ψ2 : R′ → F4 by ψ2(a + ub) = a2.

Then ψ2 is a ring homomorphism. We extend ψ2 to a ring homomorphism ϕ : D →
F4[z; θ]/〈zn − 1〉 defined by

ϕ(d0 + d1z + . . . + dn−1zn−1) = ψ2(d0) + ψ2(d1)z + . . . + ψ2(dn−1)zn−1.

Then,

ker(ϕ) = {vr′(z) : r′(z) is a skew polynomial in F4[z; θ]/〈zn − 1〉}
= 〈va1(z)〉 with a1(z)|r(zn − 1).

Since the set image(ϕ) is also an ideal and hence a skew cyclic code generated by g0(z),
where g0(z) right divides (zn − 1). Therefore, D = 〈g0(z) + vg1(z), va1(z)〉 where
a1(z)|rg0(z) and a1(z)|r(g1(z) zn−1

g0(z)
).

Similarly, the set image(φ) is an ideal overR′. Therefore, skew cyclic code C overR
is provided by C = 〈g0(z) + vg1(z) + v2g2(z), va1(z) + v2 p(z), v2a2(z)〉 with a2(z)|ra1(z)|r
g0(z)|r(zn − 1) and a1(z)|r(g1(z) zn−1

g0(z)
), a2(z)|r(g1(z) zn−1

g0(z)
).

Definition 5. Let g(z) = g0 + g1z + . . . + gmzm be a polynomial in F4[z, θ]. Then, g(z) is
said to be a palindromic polynomial if gi = gm−i and θ-palindromic if gi = θ(gm−i) where
i ∈ {1, 2, . . . , m}.

Note that if the length of the code C is odd, then the skew cyclic codes and cyclic codes
are equivalent (Theorem 8 in [17]). Now, we provide two lemmas to check the reversibility
of the even length skew cyclic codes over the field F4.

Lemma 5. Let C be a skew cyclic code of even length generated by a monic polynomial f(z) =
1 + f1z + . . . + fm−1zm−1 + zm of even degree, where f(z)|r(zn − 1) in F4[z, θ]. Then, the code C
is reversible if and only if skew polynomial f(z) is θ-palindromic.

Proof. Let C be a skew cyclic code of even length generated by the θ-palindromic polyno-
mial f(z) of even degree m over the ring F4. Then, the elements of the generated code are pro-
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vided by ∑k−1
i=0 αizif(z). From the repetitive use of Lemma 3, for c = φ(∑k−1

i=0 αizif(z)) ∈ C,
we obtain:

(φ(
k−1

∑
i=0

αizif(z)))r = φ(
k−1

∑
i=0

αizk−i−1f(z)) ∈ C.

where α ∈ F4 and k = n−m. Since cr belongs to the code C, C is a reversible code.
Conversely, let C be a reversible code generated by f(z) = 1+ f1z+ . . .+ fm−1zm−1 + zm.

Then, because n−m− 1 is odd:

zn−m−1f(z) = zn−m−1 + θ(f1)zn−m + . . . + θ(fm−1)zn−2 + zn−1.

Since C is a skew cyclic and reversible code,

[zn−m−1f(z)]r = 1 + θ(fm−1)z + θ(fm−2)z2 + . . . + θ(f1)zm−1 + zm ∈ C.

Further, we obtain deg(f(z)− [zn−m−1f(z)]r) < m, which contradicts the fact that f(z) is a
minimal degree polynomial in C implies f(z)− [zn−m−1f(z)]r = 0. Comparing coefficients,
we obtain:

[fi − θ(fm−i)] = 0

for i = 1, . . . , m− 1. Thus, fi = θ(fm−i) and the polynomial f(z) is θ-palindromic.

Lemma 6. Let C be a skew cyclic code of even length generated by a monic polynomial f(z) =
1 + f1z + . . . + fm−1zm−1 + zm of odd degree, where f(z)|r(zn − 1) in F4[z, θ]. Then, the code C
is reversible if and only if the skew polynomial f(z) is palindromic.

Proof. Let C be a skew cyclic code of even length generated by a palindromic polynomial
f(z) of odd degree m over the ring F4. Then, elements of the generated code are provided by
∑k−1

j=0 αjzjf(z). From the repetitive use of Lemma 3 and using the property of the palindromic

polynomial, for C = φ(∑k−1
j=0 αjzjf(z)) ∈ C, we obtain:

(φ(
k−1

∑
j=0

αjzjf(z)))r = φ(
k−1

∑
j=0

αjzk−j−1f(z)) ∈ C.

where α ∈ F4 and k = n−m. Since the reverse of C belongs to C, the code C is reversible.
Conversely, let C be a reversible code generated by f(z) = 1 + f1z + . . . + fm−1zm−1 + zm.
Since n−m− 1 is even:

zn−m−1f(z) = zn−m−1 + f1zn−m + . . . + fm−1zn−2 + zn−1.

Furthermore, the code C is a skew cyclic as well as reversible code; therefore, [zn−m−1f(z)]r

∈ C and:
[zn−m−1f(z)]r = [1 + fm−1z + fm−2z2 + . . . + f1zm−1 + zm] ∈ C.

This implies that deg(f(z)− [zn−m−1f(z)]r) < m, which contradicts the fact that f(z) is a
minimal degree polynomial in C. Hence, f(z) − [zn−m−1f(z)]r = 0. By comparing the
coefficients, we obtain

[fi − fm−i] = 0 and fi = fm−i,

for i = 1, . . . , m− 1. Thus, the given polynomial f(z) is palindromic.

Now, in the next theorem, we provide necessary and sufficient conditions for a skew
cyclic code C to be reversible in terms of palindromic and θ-palindromic polynomials.
These conditions depend on the degree of generator polynomials of C.
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Theorem 8. Let C = 〈g0(z), vg1(z), v2g2(z)〉 be a skew cyclic code of even length, where gi(z)
right divides (zn − 1) in F4[z, θ] and deg(gi(z)) is even (odd), for i = 0, 1, 2. Then, the code C is
reversible if and only if skew polynomials gi(z) are θ-palindromic (palindromic) for i = 0, 1, 2.

5. DNA Codes over R
In this section, we discuss the complementary condition of the codes obtained from

previous sections to obtain DNA codes. For a DNA code, the reversible and complement
conditions are essential [21].

Definition 6. Let C be a code of length n over R. If Φ(C)rc ∈ Φ(C) for all c ∈ C, then C or
equivalently Φ(C) is called a DNA code.

In the following lemma, we provide some relations on ring elements and their comple-
ment using the Gray map provided in Equation (1).

Lemma 7. For the given cyclic code in Section 3, the following conditions hold:

(1) For any r ∈ R, r + rc = v2.
(2) For any r1, r2 ∈ R, rc

1 + rc
2 = (r1 + r2)

c + v2.

Proof. This lemma can easily be proved by observing Table 1.

Remark 2. We identify i(z) by the polynomial 1 + z + z2 + · · ·+ zn−1.

Theorem 9. Given a polynomial a(z) inR[z]. We have a(z)rc = a(z)r + v2i(z).

Proof. Let C be a reversible-complement code. Then, by definition, C is reversible and
0 ∈ C implies that (0 + 0z + . . . + 0zn−1)c ∈ C. That is, C is reversible and v2 + v2z + . . . +
v2zn−1 ∈ C.

Conversely, let a(z) = a0 + a1z + . . . + an−1zn−1 + anzn be a polynomial inR[z]. Then:

a(z)rc = ac
n + ac

n−1z + . . . + ac
1zn−1 + ac

0zn

= an + v2 + (an−1 + v2)z + (an−2 + v2)z2 + . . .

+ (a1 + v2)zn−1 + (a0 + v2)zn

= v2i(z) + a(z)r ∈ C.

Thus, cyclic code C is a reversible-complement code.

Corollary 4. Let C be a cyclic code of even length overR. Then, C is a DNA code if and only if C
is reversible and v2i(z) is in C.

Proof. It is obvious from above theorem.

6. Computational Results

Now, we provide some examples of DNA codes satisfying the above-mentioned
constraints. We consider DNA code of any length (even or odd). All the computational
works are performed by using Magma software [20].

Example 1. In F4[z], we have:

z6 − 1 = (z + 1)2(z + t)2(z + t2)2.

Let C be a cyclic code of length n = 6 overR provided by:

C = 〈z4 + z2 + 1, v(z4 + z2 + 1), v2(z4 + z2 + 1)〉.
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Then, using Theorem 2, we obtain d(C) = 3. Furthermore, (x− 1) does not divide (z4 + z2 + 1)
and polynomial (z4 + z2 + 1) is self reciprocal. Thus, we obtain a DNA code C of parameters
(18, 46, 3).

In the next example, we provide some DNA codes of arbitrary lengths that are gener-
ated from cyclic codes overR.

Example 2. Suppose C is a cyclic code of the form C = 〈g0(z) + vg1(z) + v2g2(z), va1(z) +
v2 p(z), v2a2(z)〉, where gcd( zn−1

a2(z)
, g0(z)) = 1. If g0(z) = a1(z) = a2(z), then we list several

DNA codes in Table 2 that are obtained from cyclic code C. Since g0(z), a1(z), and a2(z) are equal,
therefore, in Table 2, we mention only g0(z). For brevity, polynomial z2 + b1z + b0 is represented
as b0b11.

Table 2. DNA codes of different lengths.

Length g0(z) Type of Code Gray Image

5 1t1 (5, 3, 3) (15, 49, 3)
5 11111 (5, 1, 5) (15, 43, 5)
6 10101 (6, 2, 3) (18, 46, 3)

10 101010101 (10, 2, 5) (30, 46, 5)
13 1t0(1 + t)0t1 (13, 7, 5) (39, 421, 5)
14 1010101010101 (14, 2, 7) (42, 46, 7)
17 11t11 (17, 13, 4) (51, 439, 4)
17 1(1 + t)11t11(1 + t)1 (17, 9, 7) (51, 427, 7)
29 1t0t(1 + t)1(1 + t)t(1 + t)1(1 + t)t0t1 (10, 1, 5) (30, 43, 5)

Example 3. Consider a cyclic code C of length n = 9 over ringR. In F4[z], we have:

z9 − 1 = (z + 1)(z + t)(z + t2)(z3 + t)(z3 + t2).

To write briefly, we identify factors by g1, g2, g3, g4, and g5, respectively. The codes for n = 9 are
provided in Table 3. All the codes are better than the codes that appeared in [14].

Example 4. Consider a cyclic code C of length n = 15 over ringR. In F4[z], we have

z15 − 1 =(z + 1)(z + t)(z + t2)(z2 + z + t)(z2 + z + t2)(z2 + tz + 1)

(z2 + tz + t)(z2 + t2z + 1)(z2 + t2z + t2).

For brevity, we identify the factors by g1, g2, g3, g5, g6, g7, g8, and g9, respectively. DNA codes for
n = 15 are provided in Table 4. All the obtained DNA codes are better than the codes provided
in [14].

In particular, if C = 〈g2g3g4g5g6g7g8g9, vg2g3g4g5g6g7g8g9, v2g2g3g4g5g6g7g8g9〉, then
we obtain a DNA code with parameters [45, 43, 15]. Further, we list all the DNA codewords of the
obtained DNA code in Table 5. Furthermore, the edit distance of the obtained DNA code is 2, given
by the codewords “TCCTCCTCCTCCTCCTCCTCCTCCTCC" and “CTCCTCCTCCTCCTCCTC-
CTCCTCCTC".

Table 3. Codes of length 27.

Sr No Generator of Code Type of Code Gray Image DNA Code [14]

1 〈g2g3, vg2g3, v2g2g3〉 (9, 7, 2) (27, 421, 2) (27, 414, 2)
2 〈g4g5, vg4g5, v2g4g5〉 (9, 3, 3) (27, 49, 3) (27, 46, 3)
3 〈g2g3g4g5, vg2g3g4g5, v2g2g3g4g5〉 (9, 1, 9) (27, 43, 9) (27, 42, 9)
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Table 4. Codes of length 45.

Code Type of Code Gray Image DNA Code [14]

〈g2g3, vg2g3, v2g2g3〉 (15, 13, 2) (45, 439, 2) (45, 426, 2)
〈g2g3g6, vg2g3g6, v2g2g3g6〉 (15, 11, 4) (45, 433, 4) (45, 424, 3)
〈g4g8g9, vg4g8g9, v2g4g8g9〉 (15, 9, 5) (45, 427, 5) (45, 418, 5)

〈g2g3g5g6g7, vg2g3g5g6g7, v2g2g3g5g6g7〉 (15, 7, 7) (45, 421, 7) (45, 414, 7)
〈g2g3g4g5g6g7g9, vg2g3g4g5g6g7g9, v2g2g3g4g5g6g7g9〉 (15, 3, 9) (45, 49, 9) (45, 46, 9)

Table 5. Codewords of length 45 and dimension 3.

AAAAAAAAAAAAAAAAAAAAAAAAAAA TAATAATAATAATAATAATAATAATAA
GAAGAAGAAGAAGAAGAAGAAGAAGAA CAACAACAACAACAACAACAACAACAA

TTATTATTATTATTATTATTATTATTA ATAATAATAATAATAATAATAATAATA
CTACTACTACTACTACTACTACTACTA GTAGTAGTAGTAGTAGTAGTAGTAGTA

GGAGGAGGAGGAGGAGGAGGAGGAGGA CGACGACGACGACGACGACGACGACGA
AGAAGAAGAAGAAGAAGAAGAAGAAGA TGATGATGATGATGATGATGATGATGA

CCACCACCACCACCACCACCACCACCA GCAGCAGCAGCAGCAGCAGCAGCAGCA
TCATCATCATCATCATCATCATCATCA ACAACAACAACAACAACAACAACAACA

TTTTTTTTTTTTTTTTTTTTTTTTTTT ATTATTATTATTATTATTATTATTATT
CTTCTTCTTCTTCTTCTTCTTCTTCTT GTTGTTGTTGTTGTTGTTGTTGTTGTT

AATAATAATAATAATAATAATAATAAT TATTATTATTATTATTATTATTATTAT
GATGATGATGATGATGATGATGATGAT CATCATCATCATCATCATCATCATCAT
CCTCCTCCTCCTCCTCCTCCTCCTCCT GCTGCTGCTGCTGCTGCTGCTGCTGCT
TCTTCTTCTTCTTCTTCTTCTTCTTCT ACTACTACTACTACTACTACTACTACT

GGTGGTGGTGGTGGTGGTGGTGGTGGT CGTCGTCGTCGTCGTCGTCGTCGTCGT
AGTAGTAGTAGTAGTAGTAGTAGTAGT TGTTGTTGTTGTTGTTGTTGTTGTTGT

GGGGGGGGGGGGGGGGGGGGGGGGGGG CGGCGGCGGCGGCGGCGGCGGCGGCGG
AGGAGGAGGAGGAGGAGGAGGAGGAGG TGGTGGTGGTGGTGGTGGTGGTGGTGG

CCGCCGCCGCCGCCGCCGCCGCCGCCG GCGGCGGCGGCGGCGGCGGCGGCGGCG
TCGTCGTCGTCGTCGTCGTCGTCGTCG ACGACGACGACGACGACGACGACGACG

AAGAAGAAGAAGAAGAAGAAGAAGAAG TAGTAGTAGTAGTAGTAGTAGTAGTAG
GAGGAGGAGGAGGAGGAGGAGGAGGAG CAGCAGCAGCAGCAGCAGCAGCAGCAG

TTGTTGTTGTTGTTGTTGTTGTTGTTG ATGATGATGATGATGATGATGATGATG
CTGCTGCTGCTGCTGCTGCTGCTGCTG GTGGTGGTGGTGGTGGTGGTGGTGGTG
CCCCCCCCCCCCCCCCCCCCCCCCCCC GCCGCCGCCGCCGCCGCCGCCGCCGCC
TCCTCCTCCTCCTCCTCCTCCTCCTCC ACCACCACCACCACCACCACCACCACC

GGCGGCGGCGGCGGCGGCGGCGGCGGC AGCAGCAGCAGCAGCAGCAGCAGCAGC
CGCCGCCGCCGCCGCCGCCGCCGCCGC TGCTGCTGCTGCTGCTGCTGCTGCTGC

TTCTTCTTCTTCTTCTTCTTCTTCTTC ATCATCATCATCATCATCATCATCATC
CTCCTCCTCCTCCTCCTCCTCCTCCTC GTCGTCGTCGTCGTCGTCGTCGTCGTC

AACAACAACAACAACAACAACAACAAC CACCACCACCACCACCACCACCACCAC
TACTACTACTACTACTACTACTACTAC GACGACGACGACGACGACGACGACGAC

7. Conclusions

In this paper, we have studied reversible and DNA codes using the chain ring R =
F4[v]/〈v3〉. We have defined a Gray map on R and found codons corresponding to the
elements of R. In this way, we have obtained good DNA and reversible codes with the
Hamming distances. In the future, one can work on DNA codes over a generalized structure
ofR as well as DNA codes by using skew polynomial rings.
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