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Abstract: Most previous speech enhancement methods only predict amplitude features, but more
and more studies have proved that phase information is crucial for speech quality. Recently, there
have also been some methods to choose complex features, but complex masks are difficult to estimate.
Removing noise while maintaining good speech quality at low signal-to-noise ratios is still a problem.
This study proposes a dual-path network structure for speech enhancement that can model complex
spectra and amplitudes simultaneously, and introduces an attention-aware feature fusion module to
fuse the two features to facilitate overall spectrum recovery. In addition, we improve a transformer-
based feature extraction module that can efficiently extract local and global features. The proposed
network achieves better performance than the baseline models in experiments on the Voice Bank
+ DEMAND dataset. We also conducted ablation experiments to verify the effectiveness of the
dual-path structure, the improved transformer, and the fusion module, and investigated the effect of
the input-mask multiplication strategy on the results.

Keywords: speech enhancement; time-frequency analysis; neural network; transformer; complex
spectrum; amplitude

1. Introduction

Speech enhancement is an important task in improving the speech signal-to-noise ratio
and speech quality, and has a wide range of applications in improving the performance
of speech processing systems, mobile communication, and human–computer interaction
systems [1]. According to different principles, speech enhancement methods can be divided
into traditional methods based on signal processing and deep-learning methods. Traditional
methods are generally classified according to the operation domain and can be divided
into the time domain, frequency domain, and time-frequency domain. The representative
classical algorithms are subspace-based methods [2], spectral subtraction [3], wavelet
packets [4], etc.

The development of machine learning has led to the gradual replacement of many
traditional speech enhancement methods by neural network-based approaches. Deep
learning-based methods can be studied in three ways: input features, model structure, and
target optimization. This paper mainly focuses on the study of the model structure.

The continuous development of network structures such as RNNs [5], CNNs [6], and
transformer [7] and their successful application in various fields have brought performance
improvements to speech enhancement systems. The advantages and disadvantages of
RNNs and CNNs as early proposed networks are becoming more and more obvious in
practical work, and how to combine the two to achieve excellent performance has become
a hot issue. An end-to-end architecture called CRN [8] incorporates CNN and RNN. The
sparsity of the CNN makes the model more efficient in terms of data and computational
processing power. The use of bidirectional RNNs helps to model the dynamic association
between consecutive frames and improves generalization. In [9], the effect of the size and
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type of RNN network on the CRN structure is investigated, as well as the convolutional
layers and skip connections, and, finally, an efficient CRN structure is proposed that can
significantly reduce the loss due to reverberation. In addition, a new model of DPCRN [10]
that combines Dual-path RNN [5] and CRN was proposed. This model uses two types
of RNNs. One is an intra-chunk RNN for estimating the spectrum for a single period.
The other is an inter-chunk RNN used to model the spectrum over time. According to
the results of the Deep Noise Suppression Challenge in recent years, some multi-stage
methods have also combined multiple structures to improve performance. A neural cascade
structure [11] consisting of CRN and UNet [12] was proposed by researchers. It is capable
of sequentially estimating the amplitude spectrogram, the time-domain signal, and the
complex spectrogram of the enhanced speech, and then training the model with a new three-
domain loss function. The above work shows that combining CNN and RNN structures in
the model can lead to new enhancement effects. This is also demonstrated in our work.

In addition to CRN, studies on the attention mechanism and transformer model also
bring new solutions to improve speech enhancement performance. Currently, models with
better enhancement performance, such as CRN and UNet, perform poorly in modeling
long sequences and are computationally expensive. The attention mechanism can alleviate
these problems. In the paper [13], a complex convolution block attention module, CCBAM,
was proposed, which improves the modeling capabilities of complex convolution layers by
building more informative features. In addition, a module called Stream Axis Self-Attention
(ASA) [14] is used as a new module for speech-intensive prediction, which has played a
good role in eliminating echo and reverberation.

Transformer [15] is a purely attention-based network that does not use RNNs or CNNs.
It is frequently used in NLP and image processing, and some researchers have found its
advantages in speech. A Unet-based Conformer network [16] uses temporal attention and
frequency attention to learn dimensional information and achieves good performance in
speech enhancement. In addition, a two-stage transformer neural network (TSTNN) [17]
possessing an improved transformer was proposed for time-domain speech denoising.

Although some approaches to speech processing in the time domain have achieved
good results, more studies [18] have shown that the methods based on the frequency
domain can often obtain better speech quality, have strong generalization ability and
logical interpretation, and are easier to combine with existing speech processing algorithms.
Most of the previous frequency-domain-based methods [19] have only used amplitude
as the input feature, ignoring phase. However, various studies have shown that the
phase still has a large impact on the improvement of speech quality. For example, the
method [20] proposes a phase compensation function to modify the phase spectrum to
achieve enhancement, and the article [21] decouples amplitude and phase optimization
using a two-stage system. All these studies show that improving the estimation of the
phase spectrum yields better-enhanced speech quality. To further address this issue, the
researchers proposed the ideal complex ratio mask (CRM) [22] to find the real and imaginary
parts of the complex spectrum. Better performance will be obtained if the advantages of the
above-mentioned CRN and transformer structure can be fully utilized to estimate the CRM.
In addition, considering the fusion of multiple features, multi-modal fusion methods [23]
can benefit the task by efficiently extracting high-level nonlinear feature representations.
In [24], a method for fusing different features is proposed to fully combine the advantages
of the features for complex spectral mapping.

Inspired by the above factors, we propose a dual-path network that incorporates am-
plitude and complex domain features. The proposed network not only does not discard the
phase information, but also facilitates the estimation of complex masks by simultaneously
learning the amplitude features. In this work, our contributions are as follows.

First, this paper proposes a dual-path network that can simultaneously extract complex
spectral features and amplitude feature masks to obtain better-enhanced speech estimation.
Second, in the dual-path structure, an attention-aware feature fusion module is used to help
the two branches work together and interact with each other for information, thus making
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it possible to achieve optimal mask estimation. Third, the improved transformer module
processes the data from both directions to learn local and global information. Section 2
describes each part of the proposed dual-path network in detail.

We not only compare the proposed method with other methods in our experiments,
but also verify the effectiveness of the dual-path structure, the attention-aware fusion
module, and the improved transformer module. The network proposed in this paper is
based on a mask-based approach, so the effect of different positions of the input and mask
multiplication on the system performance is also investigated in the experiments. The
detailed results and analysis are given in Section 4.

In addition, Section 3 gives the dataset, setup, and evaluation metrics of the experi-
ments. Section 5 is the discussion section, which gives several observations obtained in this
paper. Conclusions and future research directions are given in Section 6.

2. Proposed Dual-Path Speech Enhancement Network

In this section, the proposed two-path network, which jointly learns the characteristics
of the complex and amplitude domains, is described in detail. As shown in Figure 1a, the
proposed network consists of two paths. One path models the features in the complex
domain, and the other path models the features in the amplitude domain. These two
paths have independent parts and intersecting parts. The independent parts are the
respective encoders, the improved transformer modules, and the masking modules, and
the intersecting parts are the attention-aware feature fusion module, the decoder, the
STFT, and the ISTFT. The network encodes the complex and amplitude separately, and the
encoded features are fed to the improved transformer modules for feature extraction, and
then the masking modules compute the masks of the two features. Next, the attention-
aware feature fusion module fuses the amplitude and complex features after multiplying
with the mask to obtain the optimal complex estimate. Then, the features of the same
size as the original signal are obtained by the decoder. Finally, the complex features are
transformed to obtain the enhanced time-domain signal. A detailed description of each
module in Figure 1a will be given in the following subsections.

2.1. Encoder

The encoder and decoder structure can efficiently extract the features of the speech
signal. The data passing through the encoder has a reduced amount of data per frame,
but the number of channels increases, so that more efficient data can be processed using a
smaller computational cost, and the data are restored to the original data size by the decoder.

Compared to the complex LSTM, TCNs perform better in modeling long sequences,
and has parallelable convolution operations. Thus, training a TCN takes less time. Consid-
ering the success of TCNs in speech separation and speaker target extraction, adding it to
the enhancement model gives better results. We decided to use a TCN as the main encoder
and decoder structure.

The structure of the proposed encoder is improved from the convolutional block in the
Conv-TasNet [25]. The detailed network structure of the encoder is shown in Figure 1b. The
original convolution block consists of a 2D convolution and a Depthwise convolution (D-
conv) [26]. In the modified encoder, we placed the dilated-dense block in the middle of two
2D convolution blocks, and added the PReLU activation function and the normalization
operation. The purpose of this is to use 2D convolution to project the input to a higher
channel space and trim the data, then use the dilated-dense block to obtain a larger receptive
field. The final module obtains smaller features by convolution to save the computational
cost of subsequent modules.
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2.2. Improved Transformer Module

Dual-path RNN [5] and dual-path transformer [27] have successively obtained excel-
lent performance in speech separation tasks. In speech enhancement, feature extraction is
very important for the improvement of speech quality. Although the dual-path transformer
enables context-aware modeling of speech sequences, its ability to integrate local infor-
mation is limited. We improve the dual-path transformer and use it as the main feature
extraction module of the proposed network. The improved transformer module is able to
learn local and global contextual features and does not change the size of the data. It is
described in detail in this section.

2.2.1. Improved Transformer

In previous neural networks, all features received the same attention. However, in
the attention mechanism, important features receive more attention, which saves a lot of
computational and storage resources. We want the improved transformer to act as an
attention module that learns features better rather than doing the whole enhancement
work, and therefore use a simplified structure consisting of a Multi-head Attention layer
and a feed-forward layer. The specific structure is shown in Figure 2. In deep networks,
residual connections can solve the problem of gradient exploding and gradient vanishing
in training. In order to reduce the information loss and obtain more local and global
information, referring to the results of the paper [9], we add residual connections with
1*1 convolution to the Multi-head Attention layer and feed-forward layer, as shown in
Figure 2a.
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The mathematical model of the improved transformer is as follows. X is the input data
and Y is the output. Letting MultiHeadAttention() be the Multi-head Attention function
and FFN() be the feed-forward layer function, then

Head = MultiHeadAttention(X) (1)

Mid = LayerNorm(conv(X) + Head) (2)

Y = LayerNorm(conv(Mid) + FFN(Mid)) (3)

Multi-head Attention connects features extracted by different Single-head Attention
layers to obtain the final output. This allows Multi-headed Attention to focus on informa-
tion from different locations that represent features in different subspaces. In the proposed
model, we set the number of times to find Single-head Attention, which is also the number
of parallel attention layers, to four.

The feed-forward layer of the original transformer is a two-layer, fully connected layer.
Such a feed-forward layer is not suitable for learning the location information of speech
sequences. Considering the learning ability of RNN in time series, GRU is used as the
first layer in the feed-forward layer. The second layer uses the ReLU function, which can
significantly alleviate the gradient vanishing problem of the deep network and accelerate
the convergence speed of gradient descent. Finally, the linear layer is used as the third layer
of the feed-forward network.

2.2.2. The Architecture of Improved Transformer Module

Figure 3a shows the two-path transformer proposed in the paper [27], which has
an insufficient ability to integrate local information. Therefore, based on the improved
transformer, an improved transformer module (ITM) is used in this paper. As shown in
Figure 3b, it consists of two identical modules, including the improvement transformer
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and the group normalization layer. The input data are first sliced to obtain 3D data (C,
N, F). N denotes the number of frames, F is the amount of data per frame, and C is the
number of channels. Then, the first transformer, called the local transformer, processes the
data in the last dimension of the tensor and learns the local information in parallel. Then,
the second transformer, called the global transformer, processes the data in the second
dimension of the tensor, fusing the local information and learning the connections between
the data blocks.
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2.3. Attention-Aware Feature Fusion Module

The attention-aware feature fusion (AFF) module is proposed in this paper to fuse
the amplitude and complex features learned from the dual-path structure to obtain the
best spectral estimate. From Equations (4) and (6), we obtain the complex and amplitude
features corrected by the mask. The amplitude and phase information found by the complex
number branch can be obtained according to Equation (5). Equation (7) shows how to fuse
the amplitude features of the complex branch with the features of the amplitude branch.
The parameter W is obtained from the attention-aware network, the detailed structure of
which is shown in Figure 4. Finally, the final complex spectrum is calculated using the
fused amplitude combination according to Equation (8).

_
CR + i

_
C I = (CR + iCI) ∗ (HR + iHI) (4)

AC =

√
_
CR

2 +
_
C I

2, PC = arctan(
_
C I/

_
CR) (5)

_
A = AA ∗ HA (6)

AAFF = W ∗ AC + (1−W) ∗
_
A (7)

YR = AAFF · cos PC, YI = AAFF · sin PC (8)

where AA, CR, and CI denote the amplitude, complex real, and imaginary parts after

encoding. HA, HR, and HI denote their masks.
_
A,

_
CR, and

_
C I are after mask correction;

AAFF is the amplitude feature after fusion obtained by attention weights, and YR and YI
are the complex feature after fusion.

The attention network used by the AFF module is similar to the multi-modal fusion
module proposed in the paper [28]. Ours is characterized by the use of a two-branch net-
work with global extractors and local extractors. The local extractor consists of two layers
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of point-wise convolution and a ReLU activation function. The global extractor adds a
global average pooling layer to the local extractor. This attention network can combine
local and global information to give optimal weights.
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2.4. Masking Module

First, the contextual relevance of the speech signal is considered to have an impor-
tant impact on speech quality. It can effectively improve speech quality if longer speech
sequences can be modeled. Secondly, the temporal convolution (TCN) module has been
shown to outperform RNNs in modeling long sequences.

Considering the above two factors, we improved the TCN-based S-TCM [29] as
a masking module. The masking module generates masks after learning the features
extracted by the ITM. The structure is shown in Figure 1c. Convolution and activation
functions are used before and after the double branch to obtain an accurate estimation of
the mask. The module uses different activation functions in the double branch. The Tanh
function is the activation function of the main branch to speed up the convergence and
avoid the gradient exploding problem. Sigmoid is used as the activation function for the
gated branch, adjusting the output value to (0, 1), which allows a better flow of information
in the gradient propagation.

2.5. Decoder

The structure of the decoder is shown in Figure 1d. It consists of a dilated-dense
block, subpixel convolution [30], normalization layer, PReLU activation function, and 2D
convolution layer. The decoder uses the dilated-dense block and subpixel convolution
to obtain the up-sampled data. Normalization and activation functions make the data
more normalized. Then, 2D convolution is used to change the multichannel data into a
single-channel speech frame. The function of the decoder is to reconstruct the processed
features to obtain the same size data as the input. After these data are summed by inverse
STFT and overlap-add, we can obtain enhanced speech.
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2.6. Loss Function

The loss function of the proposed dual-path network combines the loss functions in the
time domain and time-frequency domain. The loss function ensures that the error between
the estimated results and the clean complex domain features is minimized, obtaining better
speech intelligibility and perceptual quality, as defined below:

lossF =
1

TF ∑T−1
t=0 ∑F−1

f=0

[
(|Xr(t, f )|+ |Xi(t, f )|)−

(∣∣∣∣_Xr(t, f )
∣∣∣∣+ ∣∣∣∣_Xi(t, f )

∣∣∣∣)] (9)

where Xr(t, f ), Xi(t, f ),
_
Xr(t, f ),

_
Xi(t, f ) denote the real and imaginary parts of the spec-

trum of the clean waveform, and the real and imaginary parts of the spectrum of the
enhanced waveform, at the time frame t and frequency index f, respectively. T and F are the
number of time frames and frequency bins. The enhanced speech frames are converted to
waveforms using overlap-add, and the loss is calculated in the time domain using the mean
square error between the enhanced and clean speech. The time-domain loss function [31] is
defined as follows:

lossT =
1
N ∑N−1

i=0

(
xi −

_
x i

)2
(10)

where xi and
_
x i denote clean and noise signals of the time index i. The N is the number of

samples. The loss function used in this paper is obtained according to the following equation:

loss = α ∗ lossF + (1− α)lossT (11)

where α is an adjustable parameter and is set to 0.2 in this experiment.

3. Experimental Setup
3.1. Datasets

The proposed dual-path network was trained and tested on the Voice Bank + DE-
MAND dataset [32]. The clean speech of this dataset is obtained from the Voice Bank
corpus, and 5000 utterances from 28 speakers are used for the training set; the noisy speech
is generated from clean speech and 10 noises from the DEMAND dataset in SNR levels
[0, 5, 10, 15]. The clean speech of the test set consists of 824 voices from two speakers, and
the noisy speech is obtained by mixing clean speech and five unseen noises at SNR levels of
[2.5, 7.5, 12.5, 17.5]. In order to perform a valid and reasonable evaluation of the proposed
model, noisy test and training data with different original clean speech, SNRs, and noise
are used in this experiment.

3.2. Training Setup

In this experiment, all utterances are resampled to 16 kHz. If the speech is larger than
4 seconds, a random 4-second segment is selected, and if it is less than 4 seconds, the speech
is repeated for filling. Then, the speech data are framed, with each frame having a size of
512 data values with an overlap of 256 data values.

The model is trained with a maximum epoch of 40 and uses the Adam optimizer. The
learning rate setting is very important. Using too large a learning rate for the model may
not lead to convergence, and too small may take too much time. If a piecewise decreasing
learning rate is used, the learning ability of the model may fluctuate drastically when
using mini-batch data fed into the network. This is not conducive to the deep stability
of the model. Considering the above analysis, we use a dynamic decay strategy [7] with
two stages. In the first stage, the learning rate increases linearly from a very small learning
rate to the base learning rate. In the second stage, it decays by 0.98 every two epochs
starting from the base learning.
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3.3. Evaluation Metrics

We evaluated the proposed dual-path network on two aspects, the denoising effect
and speech quality. The objective metric used for the denoising effect is the signal-to-noise
ratio (SNR). The metrics used to assess speech quality are the perceptual evaluation of
speech quality (PESQ) [33] and the subjective mean opinion score (MOS) [34]. The MOS
includes CSIG for signal distortion, CBAK for noise distortion assessment, and COVL for
overall quality assessment. All MOSs range from 1 to 5.

4. Results and Analysis
4.1. Comparison with Other Methods

The baseline model is a mask-based approach using a transformer module similar to
the proposed method. Compared to this model, the proposed model has a dual-path struc-
ture that learns both features simultaneously and a fusion module that uses an attention
mechanism to fuse the two features, and adds 1*1 convolution to the improved transformer
to help integrate information and add nonlinearity. For the baseline models, we used the
TSTNN model with 2 TSTMs and the one with 4 TSTMs. For the proposed model, we used
one ITM and stacked two ITMs, respectively. All models were trained and tested under the
same conditions.

4.1.1. Objective Metrics Comparison

It can be seen from Figure 5 that the proposed network has better test results than the
other models in terms of both PESQ and MOS scores. This is a good indication that it can
obtain better spectral estimation, which leads to better speech quality. This may be the
result of a strategy for the proposed network to learn both characteristics at the same time
and integrate them.
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According to Figure 5, Tables 1 and 2, the number of parameters of the TSTNN with
two TSTMs is similar to that of the proposed network, but it scores lower than the proposed
network in all metrics. The TSTNN with four TSTMs has more parameters than that of the
proposed network, but the proposed network scores higher on most of the metrics. This
clearly shows that the proposed network has better performance and a smaller model size.
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Table 1. The performance of the proposed network and comparison models.

PESQ CSIG CBAK COVL SNR

SNR 2.50 7.50 12.50 17.50 2.50 7.50 12.50 17.50 2.50 7.50 12.50 17.50 2.50 7.50 12.50 17.50 2.50 7.50 12.50 17.50

Noisy 1.43 1.77 2.11 2.61 2.62 3.15 3.59 4.05 1.79 2.22 2.63 3.17 1.96 2.42 2.84 3.34 1.75 6.28 10.97 15.94
TSTNN(2) 2.20 2.65 2.90 3.26 3.54 3.97 4.20 4.50 2.95 3.30 3.50 3.76 2.86 3.32 3.56 3.91 15.54 17.98 19.39 20.28
TSTNN(4) 2.33 2.77 3.02 3.38 3.68 4.11 4.35 4.64 3.03 3.37 3.57 3.82 3.00 3.45 3.70 4.05 15.80 18.16 19.35 20.66

Dual-path(1) 2.45 2.91 3.14 3.49 3.83 4.24 4.45 4.72 3.08 3.42 3.61 3.84 3.14 3.59 4.15 4.15 15.73 18.13 19.41 20.65
Dual-path(2) 2.56 3.03 3.28 3.61 3.92 4.33 4.56 4.80 3.16 3.47 3.65 3.87 3.24 3.70 3.95 4.26 15.92 18.24 19.51 20.76

Table 2. Number of trainable parameters for the proposed network and comparison models.

TSTNN(2) TSTNN(4) Dual-Path(1) Dual-Path(2)

Param(million) 0.7401 0.9248 0.6602 0.7525

In addition, the above results can show that another advantage of the proposed
network is that we can balance the performance and computational resources well by
changing the number of ITMs. From the results, the model with two ITMs has a higher
score than the model with only one. More ITMs mean better performance. If computational
cost and parameter storage space are limited, we can use only one ITM. Conversely, if
better performance is needed, more ITMs can be stacked.

4.1.2. Enhanced Spectrogram Comparison

To explain more intuitively the effectiveness of the proposed network, Figure 6 shows
the spectrograms of clean speech, noisy speech, and enhanced speech of the proposed
networks and comparison methods, respectively. The noisy speech example is randomly
selected from the test set and is obtained by mixing clean speech and cafe noise at an
SNR of 7.5 dB. The red markers highlight the obvious differences between each speech
spectrogram. For the part above 5 kHz, it is clear that the proposed network removes more
noise. The proposed network with two ITMs is the closest to the clean speech spectrogram
and has the least degradation. For the 0–4 kHz part, it is also found that the proposed
network has better noise removal and less speech distortion.
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4.2. Ablation Experiments

The results in the previous subsection show that the proposed dual-path network
improves the speech quality and signal-to-noise ratio compared to other methods. To
further validate the validity of the submodules of the proposed model, we conducted a
three-part ablation experiment. First, we verify the superiority of the dual-path network
over the single-path network. Then, the necessity of ITMs and the validity of the AFF
module are verified.

4.2.1. The Superiority of Dual-Path Structure

The proposed method uses a dual-path structure to learn two features separately and
fuse them to promote each other’s learning for better results. In order to verify whether the
dual path has advantages over the single path, this paper uses the single path to model the
complex and amplitude features separately and compares the results of the three models.
In Figure 7 and Table 3, ‘SP_comp’ denotes the method of modeling complex features using
a single path, and ‘SP_ampl’ denotes the method of modeling amplitude features using a
single path.
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Table 3. The performance of the proposed network and single-path models.

PESQ CSIG CBAK COVL SNR

SNR 2.50 7.50 12.50 17.50 2.50 7.50 12.50 17.50 2.50 7.50 12.50 17.50 2.50 7.50 12.50 17.50 2.50 7.50 12.50 17.50

Noisy 1.43 1.77 2.11 2.61 2.62 3.15 3.59 4.05 1.79 2.22 2.63 3.17 1.96 2.42 2.84 3.34 1.75 6.28 10.97 15.94
SP_ampl 2.32 2.75 3.03 3.35 3.66 4.08 4.36 4.62 2.96 3.30 3.53 3.79 2.98 3.42 3.71 4.02 15.21 17.69 19.16 20.82
SP_comp 2.38 2.83 3.11 3.41 3.70 4.12 4.43 4.63 2.96 3.36 3.56 3.66 2.99 3.43 3.79 4.09 15.44 17.90 19.00 19.96
Dual-path 2.45 2.91 3.14 3.49 3.83 4.24 4.45 4.72 3.08 3.42 3.61 3.84 3.14 3.59 4.15 4.15 15.73 18.13 19.41 20.65

As can be seen from Figure 7 and Table 3, the dual-path model outperforms the single-
path complex model and the single-path amplitude model for all metrics in terms of the
PESQ and MOS. The worst of them is the single-path amplitude model. This is a good
indication that the proposed dual-path network can effectively improve speech quality,
and the mapping using complex features is better than the mapping using only amplitude
features. This also shows the importance of phase information in terms of speech quality.
In terms of the SNR, the two-path network performs optimally at 2.5–12.5 dB, and only the
single-path network using amplitude characteristics at 20 dB has the best metrics. However,
this advantage is not significant and loses speech quality as a cost.
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4.2.2. The Necessity of Improved Transformer Module

In this paper, we improve the transformer to obtain the ITM, which can extract local
and global information. To verify the effectiveness of the ITM module, we designed
a comparison. The model for comparison removes the ITM module and increases the
number of layers of encoder and decoder to two layers. The purpose of this is to use the
convolutional layer in the encoder instead of the ITM for feature learning to determine
whether it is necessary for the ITM to exist in the network.

As can be seen from Table 4 and Figure 8, the proposed model performs better in all
metrics compared to the model with the ITM replaced by convolutional layers, especially
in the PESQ and MOS metrics. This fully demonstrates that the ITM module can effectively
extract features to help improve speech quality.

Table 4. The performance of the proposed network and network without ITM.

PESQ CSIG CBAK COVL SNR

SNR 2.50 7.50 12.50 17.50 2.50 7.50 12.50 17.50 2.50 7.50 12.50 17.50 2.50 7.50 12.50 17.50 2.50 7.50 12.50 17.50
noisy 1.43 1.77 2.11 2.61 2.62 3.15 3.59 4.05 1.79 2.22 2.63 3.17 1.96 2.42 2.84 3.34 1.75 6.28 10.97 15.94

No_ITM 2.23 2.70 2.95 3.30 3.60 4.07 4.30 4.60 2.93 3.29 3.48 3.71 2.91 3.40 3.64 3.98 15.22 17.69 18.98 19.96
Dual-path 2.45 2.91 3.14 3.49 3.83 4.24 4.45 4.72 3.08 3.42 3.61 3.84 3.14 3.59 4.15 4.15 15.73 18.13 19.41 20.65
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4.2.3. The Effectiveness of Attention-aware Feature Fusion Module

In this section, to fully verify the validity of AFF, we set the value of the weight W
in Equation (7) to 0.5, which means that the amplitudes of the two features are equally
divided. The weight W is obtained in the proposed model by AFF learning the two features.

From Table 5 and Figure 9, it can be seen that the model without AFF can achieve some
enhancement effect on noisy speech, but its test results are worse than the proposed model
in all evaluation metrics, which fully demonstrates that the AFF module can enhance the
enhancement performance of the system.

Table 5. The performance of the proposed network and network without AFF.

PESQ CSIG CBAK COVL SNR

SNR 2.50 7.50 12.50 17.50 2.50 7.50 12.50 17.50 2.50 7.50 12.50 17.50 2.50 7.50 12.50 17.50 2.50 7.50 12.50 17.50

Noisy 1.43 1.77 2.11 2.61 2.62 3.15 3.59 4.05 1.79 2.22 2.63 3.17 1.96 2.42 2.84 3.34 1.75 6.28 10.97 15.94
No_AFF 2.33 2.77 3.01 3.32 3.73 4.15 4.38 4.64 2.99 3.32 3.49 3.70 3.03 3.47 3.71 4.01 15.30 17.51 18.50 19.41

Dual-path 2.45 2.91 3.14 3.49 3.83 4.24 4.45 4.72 3.08 3.42 3.61 3.84 3.14 3.59 4.15 4.15 15.73 18.13 19.41 20.65
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4.3. Different Placements of Multiplication Modules on the Effectiveness of the
Mask-based Approach

The above results fully demonstrate the superiority of the proposed model among
all models. Considering that the proposed model uses a mask-based approach, we con-
ducted experiments to further verify the effect of different placements of the multiplication
operation on the mask-based approach.

The network proposed in this paper uses a dual-path architecture to learn two features
simultaneously and has an encoder and decoder. This poses a problem in that the different
placement of the multiplication module changes the number of decoders. The multiplica-
tion module of the proposed method is before the decoder, and only one decoder is needed
to decode the complex features. If the decoder is before the multiplication module, two
decoders are needed to decode the complex and amplitude features separately, and then
fuse and multiply them. Firstly, it is a change in storage, and secondly, it changes how it
affects the performance. These are the questions worth thinking about. This design uses the
model of the decoder before the multiplication module as a comparison, and the specific
structure is shown in Figure 10. In Figure 11 and Table 6, ‘D_M’ denotes the network of the
decoder module in front of the multiplication module.
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Figure 11 shows that the method of multiplying before decoding has better perfor-
mance in terms of both the PESQ and MOS, which illustrates the advantage of this method
in terms of speech quality. The data in Table 6 show that the decode-then-multiply approach
has a better denoising effect at a high SNR, but this advantage is not obvious. We consider
the computational cost and finally choose to place the fusion multiplication module before
the decoder.

5. Discussion

In this paper, an improved transformer network is proposed, and the superiority of
the proposed dual-path model in terms of denoising effect and speech quality is verified
through a series of experiments on the Voice Bank + DEMAND dataset. After analyzing
the experimental results, some observations are given in the following.

Compared to the single-path model, our approach offers consistent advantages over
the single-path model for most of the metrics tested. The reasons considered are as follows.
Compared to the single-path model that learns only the amplitude and the single-path
model that learns only the complex spectral features, the proposed dual-path model not
only learns both features, but also enables effective information interaction between the
two, which gives the model a better learning capability.

The proposed network has a better performance compared to the model using convo-
lutional layers instead of an ITM. This well illustrates that using a transformer between the
encoder and decoder to model the features is a better choice than adding more convolutional
layers. One reason for our consideration is that CNNs focus only on the interconnections
between two-dimensional local data. Our improved transformer module can take advan-
tage of the correlation between the whole and the local, which is beneficial for speech
spectrum feature extraction. In addition, the use of AFF for feature fusion improves the
system performance more than using fixed weights, which may be due to the fact that AFF
has an attention-aware network that learns the potential relationship between two features
and gives weights adaptively.
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For the mask-based DNN speech enhancement method, experiments are conducted
in this paper to discuss the effect of the position of the input multiplied with the mask
on the model performance. With the results in Section 4.3, we find that decoding before
multiplying does not lead to better performance of the proposed model and imposes a
greater computational burden.

In summary, our proposed dual-path network chooses the optimal strategy of multiply-
ing masks with inputs. It outperforms the single-path baseline models with a transformer
in most metrics and has fewer parameters.

6. Conclusions

This paper proposes an improved transformer-based dual-path speech enhancement
network with amplitude and complex feature fusion. The network has two paths, mod-
eling both complex spectrum and amplitude, and uses a fusion module for information
interaction and improved transformer modules to fully extract features. We used the Voice
Bank + DEMAND dataset to train and test the proposed network. The results show that the
proposed network has better speech quality performance and fewer trainable parameters
compared to the baseline models. In addition, ablation experiments validate the necessity
of two-path networks, improved transformers, and attention-aware feature fusion, and
some observations about mask-based enhancement methods are given.

In the future, we will modify the modeling module to accommodate the characteristics
of different features, instead of using the same structure. In this way, we expect to obtain
more accurate spectral information and improve speech quality. In addition, we will also
study the performance of our method in complex environments where noise, reverberation,
and speaker interference are all present.
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