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Abstract: This paper focuses on the optimal containment control problem for the nonlinear multiagent
systems with partially unknown dynamics via an integral reinforcement learning algorithm. By
employing integral reinforcement learning, the requirement of the drift dynamics is relaxed. The
integral reinforcement learning method is proved to be equivalent to the model-based policy iteration,
which guarantees the convergence of the proposed control algorithm. For each follower, the Hamilton–
Jacobi–Bellman equation is solved by a single critic neural network with a modified updating law
which guarantees the weight error dynamic to be asymptotically stable. Through using input–output
data, the approximate optimal containment control protocol of each follower is obtained by applying
the critic neural network. The closed-loop containment error system is guaranteed to be stable under
the proposed optimal containment control scheme. Simulation results demonstrate the effectiveness
of the presented control scheme.

Keywords: adaptive dynamic programming; integral reinforcement learning; containment control;
multiagent systems; neural networks

1. Introduction

Distributed coordination control of multiagent systems (MASs) has drawn expansive
interest due to its potential application on agricultural irrigation [1], disaster rescue [2], mi-
crogrid scheduling [3], marine survey [4] and wireless communication [5]. The distributed
coordination control aims to guarantee that all agents which exchange local information by
communicating with their neighbors reach an agreement on some variables of interest [6].
Over the last decade, containment control has received increasing attention because of its
remarkable performance in addressing the secure control issues, such as hazardous material
treatment [7] and fire rescue [8]. The goal of containment control is to drive the followers to
enter and keep within the convex hull spanned by multiple leaders. Numerous interesting
and significant results of containment control have been presented. Reference [9] developed
a fuzzy-observer-based backstepping control to achieve the containment of MASs. An
adaptive funnel containment control was proposed in [10], where the containment errors
converged to an adjustable funnel boundary. In practical applications, containment control
has been developed for autonomous surface vehicles [4], unmanned aerial vehicles [11] and
spacecrafts [12]. Notice that most of the aforementioned works have ignored the control
performance with a minimum of energy consumption.

It is well-known that the Riccati equation or the Hamilton–Jacobi–Bellman equation
(HJBE) are solved to acquire the optimal control for linear or nonlinear systems [13],
respectively. In other words, the Riccati equation is a particular case of the HJBE. As
a classical optimization algorithm, dynamic programming (DP) [14] is regarded as an
effective way to obtain the optimal solution of the HJBE. However, as the dimension of
state variables increases, the computation of the DP approach expands as a geometric
series, which arouses the dilemma of the “curse of dimensionality”. With the success of
AlphaGo, reinforcement learning (RL) has stimulated increasing enthusiasm from scholars
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to tackle the “curse of dimensionality” problem [15]. As is synonymous with RL, adaptive
DP (ADP) [16] forward-in-time-solves the optimal control problem with the aid of neural
network (NN)-based approximators. Moreover, ADP has been increasingly exploited for
the optimal coordination control of MASs. Reference [17] established a cooperative policy
iteration (PI) algorithm to solve the differential graphical games of linear MASs. In the
nonlinear case, Reference [18] investigated the consensus problem via model-based PI with
a generalized fuzzy hyperbolic critic structure. An event-triggered ADP-based optimal
coordination control was proposed for the communication load and the commutation
consumption was reduced [19]. To tackle the optimal containment control (OCC) problem,
a finite-time fault-tolerant control was proposed via model-based PI [20]. In the presence
of state constraints, Reference [21] presented a proper barrier function to transform the
state constraint problem into an unconstrained case, thereafter the event-triggered OCC
protocols were obtained. In Reference [22], distributed RL was applied to handle an OCC
problem with collision avoidance of nonholonomic mobile robots. When the accurate
model of the plant is not obtained, system identification is always employed. It should be
pointed out that system identification is intractable for responding to dynamic changes of
systems in time, which brings inevitable identification errors.

Recently, the integral RL (IRL) method was adopted to relax the accurate model
requirement of the plant by constructing the integral Bellman equation [23,24]. An actor–
critic architecture was adopted to execute the IRL algorithm, in which an actor NN learned
the optimal control strategy and a critic NN was devoted to approximating the optimal
value function. In the presence of heterogeneous linear MASs (HLMASs), the IRL method was
developed to handle the robust OCC problem [25]. An adaptive output-feedback method was
developed for the containment control for HLMASs via the IRL algorithm [26]. In Reference [27],
the off-policy IRL-based OCC scheme was presented for unknown HLMASs with active leaders.
However, the OCC problem of the nonlinear MASs with partially unknown dynamics has
rarely been investigated via the IRL method. Moreover, the actor–critic architecture requires
constructing the actor NN, which makes the control structure more complex. It is crucial to
develop an IRL-based OCC scheme by implementing a simplified control structure. In addition,
most of the aforementioned OCC approaches ensure the weight estimation error of the critic
NN is uniformly ultimately bounded (UUB) only, which may degrade the control performance.
All the above concerns motivated our research.

Inspired by the aforementioned works, we developed an IRL-based OCC scheme with
asymptotically stable critic structure for partially unknown nonlinear MASs. The main
contributions are reflected as follows.

(1) Different from existing control schemes [9,20], an IRL method is introduced to con-
struct the integral Bellman equation without the system identification. Furthermore,
IRL proves to be equivalent to model-based PI, which guarantees the convergence of
the developed control algorithm.

(2) The IRL-based OCC scheme is implemented by a critic-only architecture for nonlinear
MASs with unknown drift dynamics, rather than by an actor–critic architecture for
linear MASs [25–27]. Thus, the proposed scheme simplifies the control structure.

(3) In contrast to the existing OCC schemes [20–22] which guarantee the weight errors to
be UUB, a modified weight-updating law is presented to tune the critic NN weights,
whose weight error dynamic is asymptotically stable.

This paper is organized as follows. In Section 2, graph theory and its application to
the containment of MASs are outlined. In Section 3, the IRL-based OCC scheme and its
convergence proof are presented for nonlinear MASs. Then, the stability of the closed-loop
containment error systems is analyzed in detail. In Section 4, two simulation examples
demonstrate the effectiveness of the proposed scheme. In Section 5, concluding remarks
are drawn.
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2. Preliminaries and Problem Description
2.1. Graph Theory

For a network with N agents, the information interactions among agents are reflected
by a weighted graph G = (V, ε,A) with the nonempty finite set of nodes V = {υ1, . . . , υN},
the edge set ε ⊆ V × V and the nonnegative weighted adjacency matrix A = [aip]. If node
υi links to node υp, the edge (υi, υp) ∈ ε is available with aip > 0; otherwise, aip = 0.
For a node υi, the node υp is named as a neighbor of υi when (υi, υp) ∈ ε. In this way,
Ni = {υp ∈ V : (υp, υi) ∈ ε} represents the set of all neighbors of υi. Denote the Laplacian
matrix as L = D − A = [lip], where D = diag{d11, d22, . . . , dNN}, dii = ∑Ni

p=1 aip and
lip satisfies

lip =


Ni

∑
q=1,q 6=i

aiq, i = p,

−aip, i 6= p.

It implies that each row sum of L equals to zero. A sequence of edges described by
(υ1, υ2), (υ3, υ4), . . . with υi ∈ V is defined as a directed path. For arbitrary (υi, υp) ∈ V,
a directed graph is strongly connected, if there is a directed path from υi to υp, while the
directed graph is said to contain a spanning tree if there exists a directed path from a root
node to every other nodes with respect to G. This paper focuses on a strongly connected
digraph with a spanning tree.

2.2. Problem Description

Consider the leader–follower nonlinear MASs in the form of the graph G with M
leaders and N followers, where the node dynamic of the ith follower is modeled by

ẋi = f (xi(t)) + gi(xi(t))µi(t), (1)

where xi ∈ Rn is the state vector for the ith follower, µi ∈ Rm is the control input vector,
i = 1, 2, . . . , N, and the nonlinear functions f (xi) ∈ Rn and gi(xi) ∈ Rn×m represent the
unknown drift dynamic and the control input matrix, respectively. Denote the global state
vector as x = [xT1 , xT2 , . . . , xTN ]

T ∈ RN×n.

Assumption 1. f (xi) and gi(xi) are Lipschitz continuous on the compact set Ωi with f (0) = 0
and the system (1) is controllable.

Define the node dynamic of the jth leader as

ṙj = hj(rj(t)), (2)

where rj ∈ Rn stands for the state vector of the jth leader, j = 1, 2, . . . , M and hj(rj) ∈ Rn

satisfies Lipschitz continuity.

Definition 1 (Convex hull [8]). A set C ⊆ RM×n is convex if for any y1, y2 ∈ C and ∀ρ ∈ (0, 1),(
(1− ρ)y1 + ρy2

)
∈ C. A convex hull of a finite set Y = {y1, y2, . . . , yM} is the minimal convex

set, i.e., Co(Y) =
{

∑M
j=1 ρjyj | yj ∈ Y, ρj ∈ R, ρj ≥ 0, ∑M

j=1 ρj = 1
}

.

The containment control aims to find a set of distributed control protocols
µ = {µ1, µ2, . . . , µN} such that all followers stay in the convex hull formed by the leaders,
i.e., xi(t)→ Co(Y) with Y = {r1, r2, . . . , rM}. For the ith follower, the local neighborhood
containment error ei is formulated as
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ei = ∑
p∈Ni

aip(xi − xp) +
M

∑
j=1

bij(xi − rj)

= diixi − ∑
p∈Ni

aipxp +
M

∑
j=1

bij(xi − rj), (3)

where ei ∈ Rn, bij ≥ 0 represents thepinninggain. Define Bj = diag[b1j, . . . , bij, . . . , bNj] ∈ RN×N .
In fact, the connection between the ith follower and the jth leader is available if and only
if bij > 0. Denote the communication graph as Gx = (G, x). The global containment error
vector of Gx is

e = (G⊗ In)x +
(
(B(IM ⊗ 1N))⊗ In

)
r̄,

where e = [eT1 , eT2 , . . . , eTN ]
T ∈ RN×n, r̄ = [rT1 , rT2 , . . . , rTM]T ∈ RM×n, G = L + B(1M ⊗ IN),

In represents the n-dimension identity matrix, 1M stands for the M-dimensional column
vector whose every element equals to 1 and B = [B1, B2, . . . , BM] ∈ RN×NM. Consider-
ing (1), (2) and (3), for the ith follower, the local neighborhood containment error dynamic
is formulated as

ėi = Fi + cigi(xi)µi + ∑
p∈Ni

aipgp(xp)µp, (4)

where ci =
(
dii + ∑M

j=1 bij
)

and Fi = ci f (xi)− ∑p∈Ni
aip f (xp)− ∑M

j=1 bijhj(rj). For the ith
follower, the local neighborhood containment error is dominated not only by local states
and local control inputs, but also by the information from its neighbors and the leaders.
In order to implement the synchronization of the partially unknown nonlinear MASs
(i.e., ei → 0), an IRL-based OCC scheme is designed in the next subsection.

3. IRL-Based OCC Scheme
3.1. Optimal Containment Control

For the local neighborhood containment error dynamic (4), define the cost function as

Ji(ei(0)) =
∫ ∞

0
Pi
(
ei(ξ), µi(ξ), µ−i(ξ)

)
dξ, (5)

where Pi(ei, µi, µ−i) = eTi Qiei + ∑p∈{Ni ,i} µT
p Ripµp is a utility function, µ−i = {µp|p ∈ Ni}

represents a set of the local control protocols from the neighbors of node υi, and Qi ∈ Rn×n

and Rip ∈ Rm×m are the positive definite matrices.

Definition 2 (Admissible control policies [17]). The feedback control policies µi(ei) (i ∈ I)
are defined to be admissible with respect to (5) on a compact set Ωi, denoted by µi(ei) ∈ A(Ωi),
if µi(ei) is continuous on Ωi with µi(0) = 0, µi(ei) stabilizes (4) on Ωi and Ji(ei(0)) is finite
∀ei(0) ∈ Ωi.

Definition 3 (Nash equilibrium [17]). An N-tuple admissible control policy µ∗(e) = {µ∗1(e1),
µ∗2(e2), . . . , µ∗N(eN)} is said to constitute a Nash equilibrium solution in graph Gx, if the following
N inequalities are satisfied

Ji(ei, µ∗i , µ∗−i) ≤ Ji(ei, µi, µ∗−i), i = 1, 2, . . . , N,

where µ∗−i = {µ∗1 , . . . , µ∗i−1, µ∗i+1, . . . , µ∗N}.

This paper aims to find an N-tuple optimal admissible control policy µ∗(e) to minimize
the cost function (5) for each follower such that the Nash equilibrium solution in Gx (i.e., the
OCC protocols) is obtained.
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For arbitrary µi(ei) ∈ A(Ωi) of the ith follower, define the value function

Ci
(
ei(t)

)
=
∫ ∞

t
Pi
(
ei(ξ), µi(ξ), µ−i(ξ)

)
dξ. (6)

When (6) is finite, then the Bellman equation is

0 = eTi Qiei + ∑
p∈{Ni ,i}

µT
p Ripµp +∇CT

i (ei)

(
Fi + cigi(xi)µi + ∑

p∈Ni

aipgp(xp)µp

)
, (7)

where Vi(0) = 0 and ∇Ci(ei) = ∂Ci(ei)/∂ei. For the ith follower, the local Hamiltonian is

Hi(ei, µi, µ−i, Ci(ei)) = eTi Qiei + ∑
p∈{Ni ,i}

µT
p Ripµp

+∇CT
i (ei)

(
Fi + cigi(xi)µi + ∑

p∈Ni

aipgp(xp)µp

)
.

Define the optimal value function as

C∗i (ei) = min
µi∈A(Ωi)

Ci(ei). (8)

According to [13], the optimal value function C∗i (ei) satisfies the HJBE as follows

0 = min
µi∈A(Ωi)

Hi(ei, µi, µ−i, C∗i (ei)). (9)

The local OCC protocol is

µ∗i (ei) = arg min
µi∈A(Ωi)

Hi(ei, µi, µ−i, C∗i (ei))

= − 1
2

ciR−1
ii gTi (xi)∇C∗i (ei). (10)

It should be mentioned that the analytical solution of the HJBE is intractable to obtain
since C∗i (ei) is unknown. According to [15], the solution of the HJBE is successively
approximated through a sequence of iterations with policy evaluation

0 = eTi Qiei + ∑
p∈{Ni ,i}

µ
(k−1)T
p Ripµ

(k−1)
p

+∇C(k)T
i (ei)

(
Fi + cigi(xi)µ

(k−1)
i + ∑

p∈Ni

aipgp(xp)µ
(k−1)
p

)
, (11)

and policy improvement

µ
(k)
i = −1

2
ciR−1

ii gTi (xi)∇C(k)
i (ei), (12)

where (k) represents the kth iteration index with k ∈ N+.
From (11), we can see that the policy evaluation requires the accurate mathematical

model of (1). However, the accurate mathematical model is always difficult to obtain in
practice. To break this bottleneck, the IRL method is developed to relax the requirement of
the accurate model in the policy evaluation.
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3.2. Integral Reinforcement Learning

For tτ > 0, (6) can be rewritten as

Ci(ei(t)) =
∫ t+tτ

t

(
eTi (ξ)Qiei(ξ) + ∑

p∈{Ni ,i}
µT

p (ξ)Ripµp(ξ)

)
dξ + Ci(ei(t + tτ)). (13)

Based on the integral Bellman Equation (13), V∗i (ei) and µ∗i satisfy

0 =
∫ t+tτ

t

(
eTi (ξ)Qiei(ξ) + ∑

p∈{Ni ,i}
µ∗Tp (ξ)Ripµ∗p(ξ)

)
dξ

+ C∗i (ei(t + tτ))− C∗i (ei(t)). (14)

Compared to (7), the policy evaluation (14) is not required for the accurate system
dynamics in (1).

Theorem 1. Let C(k)
i (ei) ≥ 0, C(k)

i (0) = 0 and µ
(k)
i ∈ A(Ωi). C(k)

i (ei) is the solution of the
integral Bellman equation

0 =
∫ t+tτ

t
eTi (ξ)Qiei(ξ)dξ +

∫ t+tτ

t
∑

p∈{Ni ,i}
µ
(k−1)T
p (ξ)Ripµ

(k−1)
p (ξ)dξ

+ C(k)
i (ei(t + tτ))− C(k)

i (ei(t)), (15)

if and only if C(k)
i (ei) is the only solution of (11).

Proof of Theorem 1. Considering (11), the time derivative of C(k)
i (ei) corresponding to (4)

is transformed as

dC(k)
i (ei)

dt
= ∇C(k)

i (ei)

(
Fi + cigi(xi)µ

(k−1)
i + ∑

p∈Ni

aipgp(xp)µ
(k−1)
p

)
= − eTi Qiei − ∑

p∈{Ni ,i}
µ
(k−1)T
p Ripµ

(k−1)
p . (16)

Integrate on both sides of (16) within [t, t + tτ ], that is

C(k)
i (ei(t + tτ))− C(k)

i (ei(t)) =−
∫ t+tτ

t
eTi (ξ)Qiei(ξ)dξ

−
∫ t+tτ

t
∑

p∈{Ni ,i}
µ
(k−1)T
p (ξ)Ripµ

(k−1)
p (ξ)dξ. (17)

According to the derivation of (16) and (17), if C(k)
i (ei) is the solution of (11), C(k)

i (ei)
satisfies the integral Bellman Equation (15). Next, we verify the uniqueness of the
solution C(k)

i (ei).

Supposing that Υ(k)
i (ei) is another solution of (11) with Υ(k)

i (0) = 0. Similar to the
mathematical operation of (16), we have

dΥ(k)
i (ei)

dt
= −eTi Qiei − ∑

p∈{Ni ,i}
µ
(k−1)T
p Ripµ

(k−1)
p . (18)

Subtracting (16) into (18) yields

d
dt

(
Υ(k)

i (ei)− C(k)
i (ei)

)
= 0. (19)
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Solving (19), we have Υ(k)
i (ei)− C(k)

i (ei) = ςi with ςi ∈ R a real constant. For ei = 0,

we have ςi = Υ(k)
i (0)− C(k)

i (0) = 0. That is to say, Υ(k)
i (ei) = C(k)

i (ei). One can derive that

C(k)
i (ei) is the unique solution. In summary, C(k)

i (ei) is the unique solution of (15) if and

only if C(k)
i (ei) is the only solution of (11).

Theorem 1 reveals that the IRL algorithm with (15) and (12) theoretically equals to
the model-based PI algorithm, whose relevant convergence analysis was provided in [15].
Hence, the IRL algorithm can be guaranteed to be convergent.

Theorem 2. Considering the nonlinear MAS with partially unknown dynamic as (1), the local
neighborhood containment error dynamic as (4) and the optimal value function C∗i (ei) as (8), the
closed-loop containment error system is guaranteed to be asymptotically stable under the local OCC
protocol (10). Furthermore, the containment control is achieved with a set of the OCC protocols
{µ∗1 , µ∗2 , . . . , µ∗N} if there is a spanning tree in the directed graph.

Proof of Theorem 2. Selecting the Lyapunov function candidate as C∗i (ei). Combining (7),
(8) and (10), then

∇C∗Ti (ei)Fi =−∇C∗Ti (ei)

(
cigi(xi)µ

∗
i + ∑

p∈Ni

aipgp(xp)µ
∗
p

)
− eTi Qiei − ∑

p∈{Ni ,i}
µ∗Tp Ripµ∗p. (20)

Substituting (20) into the time derivative of V∗i (ei), then

Ċ∗i (ei) = ∇C∗Ti (ei)

(
Fi + cigi(xi)µ

∗
i + ∑

p∈Ni

aipgp(xp)µ
∗
p

)
= − eTi Qiei − ∑

p∈{Ni ,i}
µ∗Tp Ripµ∗p.

Therefore, Ċ∗i (ei) ≤ 0. One can conclude that the closed-loop containment error
system (4) is asymptotically stable with the local OCC protocol (10). Since a spanning tree
exists in the directed graph, the containment control of the nonlinear MAS with partially
unknown dynamic can be achieved.

3.3. Critic NN Implementation

Based on the Stone–Weierstrass approximation theorem, on the compact set Ωi, the
optimal function C∗i (ei) and its partial gradient can be established by a critic NN as

C∗i (ei) = φ∗Ti σi(ei) + ωi(ei), (21)

∇C∗i (ei) = ∇σT
i (ei)φ

∗
i +∇ωi(ei), (22)

where φ∗i ∈ Rli represents the ideal weight, σi(·) ∈ Rli represents the activation function, li
represents the number of hidden neurons and ωi(ei) stands for the reconstruction error.

Since the ideal weight vector is unknown, the approximation of C∗i (ei) and ∇C∗i (ei)
are expressed as

Ĉi(ei) = φ̂T
i σi(ei), (23)

∇Ĉi(ei) = ∇σT
i (ei)φ̂i,
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where ∇σi(ei) = ∂σi(ei)/∂ei and φ̂i ∈ Rli represents the estimation of φ∗i . Then, the local
OCC protocol (10) can be approximated by

µ̂i(ei) = −
1
2

ciR−1
ii gTi (xi)∇σT

i (ei)φ̂i. (24)

The approximate local Hamiltonian is

eci =
∫ t+tτ

t

(
eTi (ξ)Qiei(ξ) + ∑

p∈{Ni ,i}
µ̂T

p (ξ)Rijµ̂p(ξ)

)
dξ

+ φ̂T
i
(
σi(ei(t + tτ))− σi(ei(t))

)︸ ︷︷ ︸
θi

. (25)

Combining (14) and (21) with (25) yields

eci =
∫ t+tτ

t

(
eTi (ξ)Qiei(ξ) + ∑

p∈{Ni ,i}
µ̂T

p (ξ)Ripµ̂p(ξ)

)
dξ

−
∫ t+tτ

t

(
eTi (ξ)Qiei(ξ) + ∑

p∈{Ni ,i}
µ∗Tp (ξ)Ripµ∗p(ξ)

)
dξ

+ φ̂T
i θi − φ∗Ti θi −ωi(ei(t + tτ)) + ωi(ei(t))

=
∫ t+tτ

t
∑

p∈{Ni ,i}

(
µ̂p(ξ) + µ∗p(ξ)

)TRip
(
µ̂p(ξ)− µ∗p(ξ)

)
dξ

− φ̃iθi −ωi(ei(t + tτ)) + ωi(ei(t))

=− φ̃iθi + Φi, (26)

where φ̃i = φ∗i − φ̂i represents the weight estimation error and Φi =
∫ t+tτ

t ∑
p∈{Ni ,i}

(
µ̂p(ξ) +

µ∗p(ξ)
)TRip

(
µ̂p(ξ)− µ∗p(ξ)

)
dξ −ωi(ei(t + tτ)) + ωi(ei(t)).

Assumption 2. Φi is bounded by ηi, i.e., ‖Φi‖ ≤ ηi with ηi > 0.

In order to tune φ̂i, the steepest descent algorithm is employed to minimize Eci =
1
2 e2

ci.
A modified updating law of φ̂i is

˙̂φi = −lci
θi

(1 + θTi θi)2

(
eci − η̂i

)
(27)

where lci > 0 and η̂i, the estimation of ηi, can be updated by

˙̂ηi = lsi
φ̃T

i θi

(1 + θTi θi)2
, (28)

where lsi > 0 is a design constant. Considering (26) and (27), the weight estimation error is
updated by

˙̃φi = −lci
θi

(1 + θTi θi)2

(
φ̃Tθi −Φi + η̂i

)
. (29)

Theorem 3. Considering the nonlinear MAS with partially unknown dynamic as (1), the local
neighborhood containment error dynamic as (4) and the critic NN with the modified updating
laws (27) and (28), then φ̃i is guaranteed to be asymptotically stable.
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Proof of Theorem 3. Define η̃i = ηi − η̂i. Choose the Lyapunov function candidate as

Ξci =
1

2lci
φ̃T

i φ̃i +
1

2lsi
η̃2

i . (30)

According to (28), η̃i is updated by

˙̃ηi = −lsi
φ̃T

i θi

(1 + θTi θi)2
. (31)

Considering (29) and (31), the time derivative of (30) is

Ξ̇ci =
1
lci

φ̃T
i

˙̃φi +
1
lsi

η̃i ˙̃ηi

= −
φ̃T

i θi

(1 + θTi θi)2

(
φ̃Tθi −Φi + η̂i

)
−

φ̃T
i θi

(1 + θTi θi)2
η̃i

= − φ̃T
i Ψiφ̃i +

φ̃T
i θi

(1 + θTi θi)2
(Φi − η̂i − η̃i), (32)

where Ψi = θiθ
T
i /(1 + θTi θi)

2. According to Assumption 2, (32) is derived as

Ξ̇ci ≤ − λmin(Ψi)‖φ̃i‖2 +
φ̃T

i θi

(1 + θTi θi)2

(
‖Φi‖ − ηi

)
≤ − λmin(Ψi)‖φ̃i‖2.

It indicates Ξ̇ci ≤ 0. Therefore, one can conclude that φ̃i is ensured to be asymptotically
stable.

Under the framework of the critic-only architecture, the IRL-based OCC scheme is
presented. For each follower, the local neighborhood containment error (3) is established
by communicating with its neighbors and the leaders. The value function of each follower
is approximated by the critic NN (23), whose weights are tuned by a modified weight
updating law (27). Based on (1), (3) and (23), the local OCC protocol (24) is obtained. The
structural diagram of the developed IRL-based OCC scheme is shown in Figure 1.

Remark 1. In the actor–critic architecture, the optimal value function and the optimal control
policy are approximated by a critic NN and an actor NN, respectively. While for the critic-only
architecture, the optimal value function is approximated by a critic NN and the optimal control
policy is directly obtained by combining (10) and (22). Hence, the critic-only architecture keeps the
same performance as the actor–critic one. In contrast, the critic-only architecture utilizes a single
critic NN only, which implies that the control structure is simplified and the computation burden
is reduced.

3.4. Stability Analysis

Assumption 3. φ∗i , φ̃i, ∇σi(·) and ∇ωi(·) are norm-bounded, i.e.,

‖φ∗i ‖ ≤ φiM, ‖φ̃i‖ ≤ φ̄iM, ‖∇σi(·)‖ ≤ σ̄iM, ‖∇ωi(·)‖ ≤ ω̄iM, ‖gi(·)‖ ≤ ḡiM,

where φiM, φ̄iM, σ̄iM, ω̄iM and ḡiM are positive constants.

Theorem 4. Considering the nonlinear MAS with partially unknown dynamics as (1), the local
neighborhood containment error dynamic as (4), the optimal value function as (8) and the critic NN
which is updated by (27) and (28), the local containment control protocol (24) can guarantee the
closed-loop containment error system (4) to be UUB.
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Local Neighborhood 

Containment Error of 

Follower i (3)

Approximate Local 

Hamiltonian of 

Follower i (25)

Weight Updating Law 

of Follower i (27)

Critic NN of 

Follower i (23)

Approximate Local 

OCC Protocol of 

Follower i (24)

Node Dynamic 

of Follower i (1)

Communication

Network

Node Dynamic

of Leader 1

Node Dynamic

of Leader M

…

Follower i

Follower 1

…

Follower N

…

Figure 1. Structural diagram of the developed IRL-based OCC scheme.

Proof of Theorem 4. The Lyapunov function candidate is chosen as

Ξi = C∗i (ei). (33)

Considering (20), (21) and Assumption 3, the time derivative of (33) corresponding
to (4) is

Ξ̇i = Ċ∗i (ei)

= ∇C∗Ti (ei)

(
Fi + cigi(xi)µ̂i + ∑

p∈Ni

aipgp(xp)µ̂p

)

= ∇C∗Ti (ei)

(
cigi(xi)(µ̂i − µ∗i ) + ∑

p∈Ni

aipgp(xp)(µ̂p − µ∗p)

)
− eTi Qiei − ∑

p∈{Ni ,i}
µ∗Tp Ripµ∗p

≤
∥∥∇C∗Ti (ei)

∥∥(‖cigi(xi)(µ̂i − µ∗i )‖+ ∑
p∈Ni

∥∥∥aipgp(xp)(µ̂p − µ∗p)
∥∥∥)− λmin(Qi)‖ei‖2

≤
(
σ̄iMφiM + ω̄iM

)(
ci ḡiM‖µ̂i − µ∗i ‖+ ∑

p∈Ni

aip ḡpM

∥∥∥µ̂p − µ∗p

∥∥∥)− λmin(Qi)‖ei‖2. (34)

Notice that

‖µ̂i − µ∗i ‖ =
∥∥∥− 1

2
R−1

ii cigTi (xi)∇σT
i (ei)φ̂i +

1
2
R−1

ii cigTi (xi)
(
∇σT

i (ei)φ
∗
i +∇ωi(ei)

)∥∥∥
=
∥∥∥1

2
R−1

ii cigTi (xi)
(
∇σT

i (ei)φ̃i +∇ωi(ei)
)∥∥∥

≤ ci ḡiM
2‖Rii‖

(
σ̄iMφ̄iM + ω̄iM

)
.

Then, (34) becomes
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Ξ̇i ≤
(
σ̄iMφiM + ω̄iM

)( c2
i ḡ2

iM
2‖Rii‖

(
σ̄iMφ̄iM + ω̄iM

)
+ ∑

p∈Ni

cpaip ḡ2
pM

2‖Rpp‖
(
σ̄pMφ̄pM + ω̄pM

))
− λmin(Qi)‖ei‖2. (35)

Let Πi1 =
c2

i ḡ2
iM

2‖Rii‖
(
σ̄iMφ̄iM + ω̄iM

)
+ ∑p∈Ni

cpaip ḡ2
pM

2‖Rpp‖
(
σ̄pMφ̄pM + ω̄pM

)
. Thus, (35) turns

to

Ξ̇i ≤
(
σ̄iMφiM + ω̄iM

)
Πi1︸ ︷︷ ︸

Πi2

−λmin(Qi)‖ei‖2

= Πi2 − λmin(Qi)‖ei‖2.

It shows L̇i2 < 0 if ei lies outside the compact set

Ωei =

{
ei : ‖ei‖ ≤

√
Πi2

λmin(Qi)

}
.

Therefore, the closed-loop containment error system (4) is UUB under the local con-
tainment control protocol (24).

Remark 2. In Assumption 1, we know that the nonlinear functions f (x) and gi(x) are Lipschitz
continuous on a compact set Ωi containing the origin, f (0) = 0. It indicates that the developed
control scheme is effective in a compact set Ωi. If the system states are outside this compact set, this
scheme might be invalid. In Theorem 4, we analyzed the system stability within such a compact set
via the Lyapunov direct method, which means the closed-loop system is stable in the compact set
under the developed IRL-based OCC scheme.

4. Simulation Study

This section provides two simulation examples to support the developed IRL-based
OCC scheme.

4.1. Example 1

Consider a six-node graph network connected by three leader nodes. The directed
topology of the graph is displayed in Figure 2.

2

5

4 6

1 3

Figure 2. The directed topology of example 1.

As displayed in Figure 2, nodes 1–3 stand for the leaders 1–3 and nodes 4–6 represent
the followers 1–3. In (3), the edge weights and pinning gains were set to 0.5. The node
dynamic of the jth leader is described as ṙj = Ārj, where rj = [rj1, rj2]

T ∈ R2 represents the
state vector, j = 1, 2, 3 and

Ā =

[
0.1 −1
1 −0.1

]
.
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For the ith follower, the node dynamic is formulated as ẋi = Āxi + B̄iµi, where
xi = [xi1, xi2]

T ∈ R2 and µi ∈ R with i = 1, 2, 3, B̄1 = [−1.5, 1]T, B̄2 = [−1, 1]T and
B̄3 = [−1,−0.5]T. The local neighborhood containment error vector ei = [ei1, ei2]

T ∈ R2 is
calculated by (3).

In the simulation, Ci(ei) was reconstructed by a critic NN with a 2–5–1 structure. The
activation function was described as σi(ei) = [e2

i1, ei1ei2, e2
i2, e2

i1ei2, e2
i2ei1]

T. The initialization
of the node dynamics were characterized as x1(0) = [0.50,−1.00]T, x2(0) = [1.00,−0.50]T,
x3(0) = [0.80,−0.30]T, r1(0) = [0.62, 0.83]T, r2(0) = [0.45, 0.40]T and r3(0) = [0.30, 0.22]T.
The related parameters were chosen as Qi = 5I2, Rip = Rii = 1, lci = 0.1 and lsi = 0.1.

The simulation results are shown in Figures 3–5 using the developed IRL-based OCC
protocols. The evolution procedure of the local neighborhood containment errors for triple
followers is shown in Figure 3, which indicates that the local neighborhood containment
errors were regulated to zero under the developed control protocols. Thus, the containment
control of MAS could be reached. Figures 4 and 5 depict the state curves of the leaders
and the followers, where all followers moved and stayed within the region formed by the
envelope curves. It implies that the satisfactory performance of the containment control
was acquired. The state curves of the followers and the leaders are displayed as 2-D phase
plane plot in Figure 6 and the region enveloped by the three leaders υ1, υ2 and υ3 is shown
at three different instants (t = 16.0 s, 20.3 s and 25.0 s). We can observe from Figure 6 that
the followers converged to the convex hull.

4.2. Example 2

Consider the nonlinear MAS consisting of three single-link robot arms and triple
leader nodes. A rigid link is attached to each robot arm via a gear train to a direct current
motor [28]. In Figure 2, the directed topology among these robot arms is shown. We chose
the values of all edge weights and pinning gain as 1.

The state trajectories of the leaders is given by r1 = [0.6 sin (t), 0.6 cos (t)]T,
r2 = [0.4 sin (t + π

6 ), 0.4 cos (t + π
6 )]

T and r3 = [0.2 sin (t− π
6 ), 0.2 cos (t− π

6 )]
T. The single-

link robot arm for each follower can be described as

J z̈i + B̄żi + M̄gl sin (zi) = ui, (36)

where J = 9 kg·m2, B̄ = 30.5, M̄ = 1 kg, l = 1 m, g = 9.8 m/s2 and i = 1, 2, 3. The
notations of the model (36) are defined in Table 1.

0 5 10 15 20 25 30

Time (sec)

-0.6

-0.3

0

0.3

0.6

e
i
1

Local neighborhood containment errors

e11 e21 e31

0 5 10 15 20 25 30

Time (sec)

-1.4

-0.7

0

0.7

1.4

e
i
2

e12 e22 e32

Figure 3. Local neighborhood containment errors ei.
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Time (sec)

-1

-0.5

0

0.5

1

1.5
Performance of containment control

r11 r21 r31 x11 x21

x31 Envelop Envelop

Figure 4. Performance of containment control (rj1 and xi1).

0 5 10 15 20 25 30

Time (sec)

-1

-0.5

0

0.5

1

1.5
Performance of containment control

r12 r22 r32 x12 x22

x32 Envelop Envelop

Figure 5. Performance of containment control (rj2 and xi2).
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0

0.5

1
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Follower1 Follower2 Follower3
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Figure 6. State trajectories.
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Table 1. Notations of the single-link robot arm.

Symbol Notation

zi Link angle
żi Angular velocity of the link
J Total rotational inertia of the link and motor
B̄ Overall damping coefficient
M̄ Total mass of the link
l Distant from joint axis to mass center of the link

ui Command generator

Define xi = [xi1, xi2]
T = [zi, żi]

T ∈ R2 and µi = ui. For the ith follower, the model (36)
can be rewritten as [

ẋi1
ẋi2

]
=

[
xi2

− M̄gl
J sin (xi1)− B̄

J xi2

]
+

[
0
1
J

]
µi. (37)

Similar to Example Section 4.1, the local neighborhood containment error vector was given
as ei = [ei1, ei2]

T ∈ R2.
The critic NN structures and the related activation functions were initialized as in

Example Section 4.1. The critic NN weights were initialized as the random values within
(0, 36) and the parameters of initialization and control were chosen as r1(0) = [0, 0.6]T,
r2(0) = [0.4 sin(π

6 ), 0.4 cos(π
6 )]

T, r3(0) = [0.2 sin(−π
6 ), 0.2 cos(−π

6 )]
T, x1(0) = [0.8, 0.1]T,

x2(0) = [0.6, 0.5]T, x3(0) = [0.7,−0.3]T, Qip = 18In, Rip = 5, tτ = 0.1 s, lci = 0.1 and
lsi = 0.1.

Figures 7–11 show the simulation results. The local neighborhood containment errors
converged to a small region around zero as depicted in Figure 7, which shows that the
containment control of the nonlinear MAS was achieved. In Figures 8 and 9, it can be found
that the state trajectories of single-link robot arms (36) entered and stayed within the region
enveloped by the leader nodes as the time progressed, which indicated the satisfactory
performance of the developed scheme. The evolution curves of all agents are illustrated
as the 2-D phase plane plot in Figure 10. We can see that the convex hull formed by the
leaders υ1, υ2 and υ3 contains the followers at the time instants t = 5.0 s, 10.0 s, 14.5 s and
26.0 s, which implies that the followers converged to the convex hull. Figure 11 describes
the curves of the containment control inputs, which shows the regulation process of the
containment error system.

0 5 10 15 20

Time (sec)

-1

-0.5

0

0.5

1
Local neighborhood containment errors

e11 e21 e31

0 5 10 15 20

Time (sec)

-1.4

-0.7

0

0.7

1.4

e12 e22 e32

Figure 7. Local neighborhood containment errors of triple followers.
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0
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r11 r21 r31 x11 x21
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Figure 8. Performance of containment control (rj1 and xi1).
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Figure 9. Performance of containment control (rj2 and xi2).
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Figure 10. State trajectories.
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Figure 11. Containment control inputs of triple followers.

5. Conclusions

This paper investigated the OCC problem of nonlinear MASs with partially unknown
dynamics via the IRL method. Based on the IRL method, the integral Bellman equation
was constructed to relax the requirement of the drift dynamics. The proposed control
algorithm was guaranteed to converge by analyzing the convergence of IRL. With the aid
of the universal approximation capability of the NN, the solution of the HJBE was acquired
by a critic NN with a modified weight-updating law which guaranteed the asymptotical
stability of the weight error dynamics. By using the Lyapunov stability theorem, we showed
that the closed-loop containment error system was UUB. From the simulation results of
two examples, the effectiveness of the proposed IRL-based OCC scheme was illustrated.
In the considered MASs, the information among all agents was transmitted by a desired
communication network, which is always confronted with some security issues, such as
attacks and packet dropouts. The focus of our future work is to develop a novel distributed
resilient containment control for the MASs subjected to attacks and packet dropouts.
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