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Abstract: When forecasting financial time series, incorporating relevant sentiment analysis data into
the feature space is a common assumption to increase the capacities of the model. In addition, deep
learning architectures and state-of-the-art schemes are increasingly used due to their efficiency. This
work compares state-of-the-art methods in financial time series forecasting incorporating sentiment
analysis. Through an extensive experimental process, 67 different feature setups consisting of stock
closing prices and sentiment scores were tested on a variety of different datasets and metrics. In total,
30 state-of-the-art algorithmic schemes were used over two case studies: one comparing methods and
one comparing input feature setups. The aggregated results indicate, on the one hand, the prevalence
of a proposed method and, on the other, a conditional improvement in model efficiency after the
incorporation of sentiment setups in certain forecast time frames.

Keywords: time series forecasting; deep learning; financial time series; sentiment analysis; financial
BERT; multivariate; multi-step; regression; Twitter

1. Introduction

Somewhere in the course of history, the human species’ need for knowledge of possible
future outcomes of various events emerged. Associative norms were thus constructed
between decision-making and observed data that were influenced by theoretical biases
that had been inductively established on the basis of such observations. Protoscience was
formed. Or not?

Even if this hypothetical description of human initiation into scientific capacities is
naive or even unfounded, the bottom line is that the human species partly operates on the
basis of predictions. Observing time-evolving phenomena and questioning their structure
in the direction of an understanding that will derive predictions about their projected future
behavior constitutes an inherent part of post-primitive human history. In response to this
self-referential demand and assuming that the authors are post-primitive individuals, the
core of the present work is about predicting sequential and time-dependent phenomena.
This domain is called time series forecasting. Time series forecasting is, in broad terms,
the process of using a model to predict future values of variables that characterize a
phenomenon based on historical data. A time series is a set of time-dependent observations
sampled at specific points in time. The sampling rate depends on the nature of the problem.
Moreover, depending on the number of variables describing the sequentially recorded
observations, a distinction is made between univariate and multivariate time series. Since
there is a wide range of time-evolving problems, the field is quite relevant in modern times,
with an increasing demand for model accuracy and robustness.

In addition, there are phenomena, the mathematical formalism of which is represented
by time series with values which are also sub-determined by the given composition of a
society of individuals. This means that the attitudes of such individuals, as they nonetheless
form within the whole, are somewhat informative about aspects of the phenomenon in
question. It is natural, given human nature and the consequent conceptual treatment of
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the world as part of it, that these attitudes are articulated somewhere linguistically. There-
fore, a hypothesis on which mathematical quantifications of the attitudes of which such
linguistic representations that are signs are possible could, if valid, describe a framework
for improving the modeling of the phenomena in question. For example, specific economic
figures can be points in a context, the elements of which are partially shaped by what is
said about them. Accordingly, it can be argued that a line of research that would investigate
whether stock closing prices can be modeled in terms of their future fluctuations using
relevant linguistic data collected from social networks is valid.

Thus, in this work, the incorporation of sentiment analysis in stock market forecasting
is investigated. In particular, a large number of state-of-the-art methods are put under
an experimental framework that includes multiple configurations of input features that
incorporate quantified values of sentiment attitudes in the form of time series. These time
series consist of sentiment scores extracted from Twitter using three different sentiment
analysis methods. Regarding prediction methods, there are schemes that come from both
the field of statistics and machine learning. Within the machine learning domain, deep
learning and other state-of-the-art methods are currently in use, dominating research.
Here, a large number of such widely used state-of-the-art models were benchmarked in
terms of performance. Moreover, various sentiment setups of input features were tested.
Two distinct case studies were investigated. In the first case study, the evaluations were
organized according to methods. The subsequent comparisons followed the grouping.
In the second case study, the comparisons concerned the feature setups used as inputs.
Sentiment scores were tested in the context of improving the predictive capacities of the
various models used. All comparisons yielded results from an extended experimental
procedure that incorporated various steps. The whole setting involved a wide range of
multivariate setups, which included various sentiment time series. Multiple evaluation
metrics and three different time frames were used to derive multiple-view results. Below,
first, a brief presentation of related literature is given. Then, the experimental procedure
is thoroughly presented, which is followed by the results. Finally, Section 5 lists the
extracted conclusions.

2. Related Work

The continuous and ever-increasing demand for accurate forecasts across a wide range
of human activity has been a key causal factor contributing to the unabated research activity
occurring within the field of time series forecasting. Thus, the prediction of time series
constitutes a strong pole of interest for the scientific community. Consequently, in recent
decades, this interest has been reflected in a wealth of published work and important
results. In this section, a brief presentation of relevant literature is given. Due to space
constraints, this presentation is more indicative than exhaustive, and its purpose is just to
provide a starting point for a more thorough and in-depth review.

A trivial way to distinguish the problems associated with time series forecasting
would be to divide the task into two categories with respect to the type of final output.
The first category includes problems where the goal is to predict whether a future value
is expected to increase or decrease over a given time horizon. This task can essentially be
treated as a binary classification problem. The second category includes tasks where the
goal is to accurately predict the price of a time series in a specific time frame. Here, the
output can take any value within a continuous interval, and hence, the prediction process
can be treated as a regression problem. One can easily imagine that the difficulty of the
problems belonging to the second category is greater than that of the first and that their
treatment requires more complex and precise refinements. Apparently, interesting works
can be found in both categories, but the context of this paper dictates a focus on the latter.

A subclass of problems regarding focus on the direction in which a time series will
move features those involving the increase or decrease of closing price values of various
stocks. In particular, in [1], an ensemble technique based on tree classifiers—specifically
on random forests and gradient boosted decision trees—which predicts movement in various
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time frames is proposed. For the same purpose in [2], support vector machines (SVMs) are
used in combination with sentiment analysis performed on data drawn from two forums
considered to be the largest and most active mainstream communities in China. This
paper is an attempt to predict stock price direction using SVMs and taking into account
the so-called day-of-week effect. Adding sentiment variables results in up to 18% better
predictions. Similar results, which indicate the superiority of SVMs compared to other
classification algorithms, are also presented in [3], where well-known methods such as
linear discriminant analysis, quadratic discriminant analysis, and Elman backpropagation neural
networks are used for comparison. Encouraging results regarding the prediction of time
series movement direction have also been achieved using hybrid methods, where modern
schemes combining deep neural network architectures are applied to big data [4]—again—for
the daily-based prediction of stock market prices. Regarding the second category, where
the goal is to predict the specific future values of a time series and not merely its direction,
the literature appears richer. This seems as if it is a fact rather expected if one takes into
account the increased difficulty of the task and the high interest of the research community
in pursuing the production of improved results. In the past decades, traditional statistical
methods seemed to dominate the field of time series forecasting [5,6]. However, as expected,
according to their general effectiveness, machine learning methods began to gain ground
and dominate the field [7,8]. Traditional machine learning methods are incorporated in
various time series forecasting tasks, such as using SVMs for economic data predictions [9]
and short-term electric load forecasting [10], while architectures based on neural networks
are also particularly popular. Regarding the latter—as this is probably the largest part
of the literature regarding the use of machine learning in prediction problems—the use
of such methods has covered a wide range of applications. Some indicative examples
are the prediction of oil production [11] and traffic congestion [12] using deep LSTM
recurrent networks, while an aggregated version of LSTMs has additionally been used for
the short-term prediction of air pollution. Forecasting river water temperature using a
hybrid model based on wavelet-neural network architecture was presented in [13], while
recurrent neural networks (RNNs) have been deployed to forecast agricultural commodity
prices in China [14]. Since the list of examples where neural network-based techniques
show promise is long, the reader is urged to pursue additional personal research.

Furthermore, it is possibly worth mentioning the fact that in addition to increasingly
sophisticated methods, techniques based on the theory of ensembles are also gaining ground.
Roughly speaking, these are techniques in which the final result is derived through a
process of using different models, with the prediction being formed from the combination
of the individual ones. As an example, one can mention the ensemble scheme proposed
in [15] for the prediction of energy consumption: it combines support vector regression (SVR),
backpropagation neural network (BPNN), and linear regression (LR) learners. A similar en-
deavor is presented in [16], where an ensemble consisting of four learners, that is, long
short-term memory (LSTM), gate recurrent unit (GRU), autoencoder LSTM (Auto-LSTM), and
auto-GRU, is used for the prediction of solar energy production. A comparison involving
over 300 individual and ensemble predictive layouts over Greek energy load data is pre-
sented in [17]. There, in addition to the large number of ensembles tested, the comparison
also concerns both a number of forecast time frames as well as different modifications of
the input data in various multivariate arrangements. In [18], an ensemble scheme based on
linear regression (LR), support vector regression (SVR), and the M5P regression tree (M5PRT)
is proposed to predict cases and deaths attributed to the COVID-19 pandemic regarding
southern and central European countries.

With regard now to the context of this work, and given that its purpose—which is
an extension of the work in [19]—is twofold, aiming, on the one hand, to compare a large
number of methods and, on the other hand, to investigate the contribution of incorporating
sentiment analysis into the forecasting process, it follows that a simple presentation of
similarly targeted tasks seems quite essential. As for the first objective—that of comparing
methods—there are several interesting works that have been carried out in recent years.
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In [20], the comparison between the traditional ARIMA method and LSTMs using economic
data is investigated. A similar comparison between the two methods is implemented
in [21], now aiming to predict bitcoin values, while in [22], the gated recurrent unit (GRU)
scheme is also included in the comparison. Comparative works of the ARIMA method
with various schemes have also been carried out, such as with neural network auto-regressive
(NNAR) techniques [23], with the prophet method [24], with LSTMs and the XGBOOST
method [25], as well as with wavelet neural network (WNN) and support vector machines
(SVM) [26]. Although, in general, modern schemes tend to perform better than ARIMA,
any absolute statement would not be representative of reality. Indeed, research focused on
comprehensively reviewing the use of modern methods can provide a detailed overview of
the relevant work to date. Indicatively, in [27], an extensive review of the use of artificial
neural networks in time series forecasting is presented, covering studies published from
2006 onwards, over a decade. A similar survey covering the period from 2005 to 2019
and focusing on deep learning techniques with applications to financial data can be found
in [28]. Furthermore, regarding the experimental evaluation of modern machine learning
architectures, in [29], a thorough experimental comparison is presented, concerning seven
different deep learning architectures applied to 12 different forecasting problems, using
more than 50,000 time series. According to the implementation of more than 38000 models,
it is argued that the architectures of LSTMs and CNNs outperform all others. In [30],
the comparison of a number of methods—such as ARIMA, neural basis expansion analysis
(NBEATS), and probabilistic methods based on deep learning models—applied to time
series of financial data is presented. Additionally, in [31], a comparison between CNNs,
LSTMs, and a hybrid model of them is given, which was deployed on data concerning the
forecasting of the energy load coming from photovoltaics. There, the generated results, on
the one hand, indicate the dominance of the hybrid model—emphasizing the necessity to
create efficient combinatorial schemes—and, on the other, show that the models’ predictions
improve by using a larger amount of data in the training set.

In relation to the second objective—which concerns the investigation of whether
the use of information based on sentiment analysis regarding public opinion extracted
from social networks favors the predictions—the available literature seems comparatively
poorer but presents equally interesting results. The relationship between tweet board
literature and financial market instruments is examined in [32], with results revealing
a high correlation between stock prices and Twitter sentiments. In [33], using targeted
topics to extract sentiment from social media, a model to predict stock price movement
is presented. Moreover, the effectiveness of incorporating sentiment analysis into stock
forecasting is demonstrated. In addition, ref. [34] is an attempt to capture the various
relationships between news articles and stock trends using well-known machine learning
techniques such as random forest and support vector machines. In [35], after assembling a
financial-based sentiment analysis dictionary, a model incorporating the dictionary was
developed and tested on data from the pharmaceutical market, exhibiting encouraging
results. In [36], sentiment polarity is extracted by observing the logarithmic return of the
ratio between the average stock price one minute before and one minute after the relevant
stock’s news is published. Then, using RNNs and LSTMs, the direction of the stock is
successfully predicted. The exploitation of sentiment analysis techniques has also been
used to predict the stock market during health crises [37] such as H1N1 and, more recently,
COVID-19. Possible links between social media posts and closing stock prices at specific
time horizons were found. More specifically, for COVID-19, the polarity of the posts seemed
to affect the stock prices after a period of about six days.

Regarding the prediction of various stock market closing prices—which is also the
thematic center of this paper—in [38], data collected from Twitter are initially analyzed
in terms of their sentiment scores and are then used to predict the movement of stock
prices, using naive Bayes and multiclass SVM classifiers. A similar procedure was followed
in [39], where least squares support vector regression (LSSVR) and backpropagation neural
networks were deployed to predict the total monthly sales of vehicles in the USA, using



Entropy 2023, 25, 219 5 of 30

additional sentiment information combined with historical sales data. Data collected from
the online editions of international newspapers were used in [40] to predict the closing
stock price values, incorporating both traditional methods, such as ARIMA, and newer
ones, such as the Facebook prophet algorithm and RNN architectures that use as input both
numerical values of the time series to be predicted as well as combinations of the polarity
of extracted sentiments.

In [41], both traditional and modern machine learning methods such as support vector
machines, linear regression, naive Bayes, and long short-term memory are used in combination
with the incorporation of opinion data, current news, and past stock prices. In [42], senti-
ment analysis and empirical model decomposition are used so that complex time series can be
broken down into simpler and easier to manage parts, together with an attention mecha-
nism that attributes weight to the information considered most useful for the task being
performed each time. A method based on the architecture of LSTMs that uses information
derived from sentiment analysis together with multiple data sources is presented in [43].
Initially, textual data related to the stock in question are collected, and using methods based
on convolutional neural network architectures, the polarity of investors’ sentiment is extracted.
This information is then combined with that of the stock’s past closing prices and other
technical indicators to produce the final forecast. In [44], a hybrid model that leverages
deep learning architectures, such as convolutional neural networks, to extract and categorize
investor sentiment as detected in financial forums is described. The extracted sentiments
are then combined with information derived from technical financial indicators to predict
future stock prices in real-world problems using LSTM architectures. SVM architectures
are used on Twitter data to extract polarity in [45]. The extracted polarities are used in
an incremental active learning scheme, where the continuous stream of content-changing
tweets is used to predict the closing stock price of the stock market.

Sentiment analysis has also been used to predict the price of bitcoin in real time,
using—and at the same time comparing—LSTM techniques and the classical ARIMA
method [46], where the exploitation of the information derived from sentiment analysis
has been beneficial. Similar research focused on predicting the price direction of the
cryptocurrencies Bitcoin and Ethereum using sentiment analysis from data drawn from
Twitter and Google Trends and given as input to a linear predictive model is presented
in [47]. Interestingly, the volume of tweets affects the prediction to a greater extent than
the polarity of the sentiment extracted from the tweets. Forecasting the price direction of
four popular cryptocurrencies—Bitcoin, Ethereum, Ripple, and Litecoin—using machine
learning techniques and data drawn from social networks is presented in [48]. Classical
methods such as neural networks (NN), support vector machines (SVM), and random forests
(RF) are compared. An interesting fact is that Twitter, roughly speaking, seems to favor the
prediction of specific cryptocurrencies rather than all of them. Using sentiment analysis has
also been beneficial in the field of cybersecurity. In [49], a methodology that exploits the
knowledge of hacker behavior for predicting malicious events in cyberspace by performing
sentiment analysis with different techniques (VADER, LIWC15, and SentiStrength) on data
collected from hacking forums, both on the dark web and on the surface web, is presented.

The—rather diverse—list of applications in which the use of sentiment analysis tech-
niques can improve the generated forecasts is proportional to the fields in which time
series forecasting is applied since, in general, the utilization of public opinion knowledge
appears to have a positive effect on the forecasting process. Some of them that have been
implemented in the last five years have already been mentioned in passing, and many
others can be added. Such would include predicting the course of epidemics, such as that of
the Zika virus in the USA in 2016 [50] or the COVID-19 pandemic, the outcome of electoral
contests [51], the prediction of the price of e-commerce products [52], and the list goes
on. Given human nature and the consequent conceptual coping of the world by human
subjects, sentiment analysis seems justifiably relevant in a multitude of applications. The
reader is therefore encouraged to conduct additional bibliographic research.
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3. Experimental Procedure

Information regarding the stages of the experimental procedure will now be presented.
This presentation will be as detailed as possible given the necessary space constraints and
content commitments in order not to disrupt the depictive nature of the paper.

It has already been mentioned that to some extent, the “core” of the present work
consists of an experimental procedure that aims, in its most abstract scope, to check the
efficiency, on the one hand, of a number of state-of-the-art algorithms and, on the other,
of incorporating sentiment analysis into predictive schemas. Thus, a total of 16 datasets
× 67 combinations × 30 algorithms × 3 time-shifts = 96,480 experiments were conducted. The
dataset consisted of time series containing the daily closing values of various stocks along
with a multitude of 67 different sentiment score setups. Specifically, 16 datasets of stocks
containing such closing price values were used over a three-year period, beginning on
2 January 2018 and ending on 24 December 2020. Generated sentiment scores from relevant
textual data extracted from the Twitter microblogging platform were used. Three different
sentiment analysis methods were deployed. The sentiment score time series and the
closing values were subjected to a 7-day and a 14-day rolling mean strategy, yielding a
total of 12 distinct features. Various combinations of the created features resulted in a total
of 67 distinct input setups per algorithm. The calculated sentiment scores along with the
closing values were then tested under both univariate and multivariate forecasting schemes.
Lastly, 30 state-of-the-art methods were investigated. Below, a more thorough presentation
of the aforementioned experimental setting follows.

3.1. Datasets

Starting with data, the process of collecting and creating the sets used will now
be addressed.

3.1.1. Overview

To begin with, Table 1 contains the names of the aforementioned datasets along with
their corresponding abbreviations. These initial data included time series containing closing
values for 16 well-known listed companies. All sets comprise three-year period data for
dates ranging from 2 January 2018 to 24 December 2020.

Table 1. Stock datasets.

No Dataset Stocks

1 AAL American Airlines Group
2 AMD Advanced Micro Devices
3 AUY Yamana Gold Inc.
4 BABA Alibaba Group
5 BAC Bank of America Corporation
6 ET Energy Transfer L.P.
7 FCEL FuelCell Energy Inc.
8 GE General Electric
9 GM General Motors
10 INTC Intel Corporation
11 MRO Marathon Oil Corporation
12 MSFT Microsoft Corporation
13 OXY Occidental Petroleum Corporation
14 RYCEY Rolls-Royce Holdings
15 SQ Square
16 VZ Verizon Communications

Essentially, the initial features were four: that is, the closing prices of each stock
and three additional time series containing relative sentiment scores for the given period.
Subsequently, and after applying 7- and 14-day rolling averages, a total of 14 features were
extracted. Thus, for each share, the final input settings were composed by introducing
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altered features derived from stock values and a sentiment analysis process applied to an
extended corpus of tweets. Figure 1 depicts a—rather abstractive—snapshot of the whole
process from data collection to the creation of the final input setups.

Figure 1. Feature setups: creation pipeline.
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3.1.2. Tweets and Preprocessing

A large part of the process involved deriving sentiment scores related to stocks. Using
the Twitter Intelligence Tool (TWINT) [53], a large number of stock-related posts written in
English were downloaded from Twitter and grouped by day. TWINT is an easy-to-use yet
sophisticated Python-based Twitter scraping tool. After a comprehensive search for stock-
related remarks that were either directly or indirectly linked to shares under consideration, a
sizable amount of text data containing daily attitudes toward stocks were created. Then, the
collected textual sets underwent the various preprocessing procedures necessary in order to
be passed on to the classification modules for extracting their respective sentiment scores.

Regarding preprocessing tweets, initially, irrelevant hyperlinks and URLs were re-
moved using the Re Python library [54]. Each tweet was then converted to lowercase and
split into words. Then, unwanted phrases from a manually produced list and various
numerical strings were also dismissed. After performing the necessary joins to restore
each text to its original structure, each tweet was tokenized in terms of its sentences using
the NLTK [55,56] library. Lastly, using the String [57] module, punctuation removal was
applied. The whole text-preprocessing step is schematically presented in Figure 2.

Figure 2. Preprocessing.

3.1.3. Sentiment Analysis

The subsequent process involved extracting sentiment scores from the gathered yet
cleaned tweets. To perform the sentiment quantification step, three different sentiment
analysis methods were utilized.

Specifically, the procedure included extracting sentiment scores from TextBlob [58],
using the Vader sentiment analysis tool [59], and incorporating FinBERT [60]. FinBERT
is a financial-based fine-tuning of the BERT [61] language representation model. Using
each of the above methods, daily sentiment scores were extracted for each stock. The daily
mean was then extracted, forming the final collection, which constituted the sentiment-
valued time series of every corresponding method. Then, 7- and 14-day moving averages
were applied to the previously extracted sentiment score time series. This resulted in
the extraction of nine sentiment time series, which, together with the application of the
aforementioned procedure to the closing price time series, led to the final number of
12 generated time series used as features. Various combinations of the above features,
along with the univariate case scenario, resulted in 67 different study cases. These data
constituted the distinct experimental procedures that run for every algorithm. The use of
three different methods of sentiment analysis has already been mentioned. Below, a rough
description of these methods is given. For further information, the reader is advised to
refer to the respective papers.

• TextBlob: The TextBlob module is a Python-based library for performing a wide range
of manipulations over text data. The specific TextBlob method used in this work is a
rule-based sentiment-analysis scheme. That is, it works by simply applying manually
created rules. This is how the value attributed to the corresponding sentiment score is
calculated. An exemplified snapshot of the process would be counting the number
of times a term of interest appears within a given section. This would modify the
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projected sentiment score values in line with the way the phrase is assessed. Here,
within this experimental setup and by exploiting TextBlob’s sentiment property, a
real number within the [−1, 1] interval representing the sentiment polarity score was
generated for each tweet. The algorithm’s numerical output was then averaged using
the individual scores of each tweet to obtain a single sentiment value representing the
users’ daily attitudes;

• Vader: Vader is also a straightforward rule-based approach for realizing general senti-
ment analysis. In the context of this work, the Vader sentiment analysis tool was used
in order to extract a compound score produced by a normalization of sentiment values
that the algorithm calculates. Specifically, given a string, the procedure outputs four
values: negative, neutral, and positive sentiment values, as well as the aforementioned
composite score used. A normalized average of all compound scores for each day was
generated the usual way. The resulting time series contained daily sentiment scores
that ranged within the [−1, 1] interval;

• FinBERT: Regarding FinBERT, in this work, the implementation contained in [62] was
utilized. Specifically, the model that was trained on PhraseBank presented in [63] was
used. Again, first, the daily scores regarding sentiment attitudes were extracted to
eventually form a daily average time series. Generally, the method is a pre-trained
natural-language-processing (NLP) model for sentiment analysis. It is produced by
simply fine-tuning the pre-trained BERT model over financial textual data. BERT,
meaning bidirectional encoder representations from transformers, is an implementation
of the transformers architecture used for natural language processing problems. The
technique is basically a pre-trained representational model based on transfer learn-
ing principles. Given textual data, multi-layer deep representations are trained with
a bidirectional attention strategy so that the various different contexts of each lin-
guistic token constitute the content of the token’s embedding. Regardless of data
references—here financial—the model can be fine-tuned in any domain by only using
a single additional layer that addresses the specific tasks.

3.2. Algorithms

In this section, the methods, algorithmic schemes, and architectures employed in the
experiments are listed. Additional details are given on the implementation framework and
the tools used.

Regarding the algorithms used, a total of 30 different state-of-the-art methods and
method variations were compared. The number of 30 methods used results from the
supplementation of the set of well-known core methods with their variations. Further
details can be found in the cited tsAI library [64], using which the implementation was
carried out. However, it is this multitude of methods that apparently makes a detailed
presentation practically impossible. Nevertheless, the reader is urged to track the cited
papers. Table 2 contains the main algorithms utilized during the experimental procedure
along with a corresponding citation. There, among others, one can notice that in addition
to a multitude of state-of-the-art methods, implementations involving combinations of the
individual architectures were also used. Note that in addition to the corresponding papers,
information regarding the variations of the basic algorithms employed can be searched,
inter alia, in notebook files taken from the library implementations.

In order to carry out the experiments, the Python library tsAI [64] was used. The
tsAI module is “an open-source deep learning package built on top of Pytorch and Fastai
focused on state-of-the-art techniques for time series tasks like classification, regression,
forecasting” [64], and others. Here, the forecasting procedure was essentially treated as a
predictive regression problem. In the experiments, the initial parameters of the respective
methods from the library were preserved with the implementation environment being kept
fixed for all algorithmic schemes. Thus, all algorithms compared were utilized in the most
basic configuration. That way, one can gain additional insight regarding implementing
high-level yet low-code programming and data analysis in real-world tasks. Of the data,
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20% were used as the test set. Regarding prediction time horizons, three forecast scenarios
were implemented: one single-step and two multi-step. In particular, with regard to multi-
step forecasts, and leaving aside the single-step predictions, estimates were provided for a
seven-day window on the one hand and a fourteen-day window on the other. The results
were evaluated according to the metrics presented in the following paragraph.

Table 2. Algorithms.

No. Abbreviation Algorithm 1

1 FCN Fully Convolutional Network [65]
2 FCNPlus Fully Convolutional Network Plus [66]
3 IT Inception Time [67]
4 ITPlus Inception Time Plus [68]
5 MLP Multilayer Perceptron[65]
6 RNN Recurrent Neural Network [69]
7 LSTM Long Short-Term Memory [70]
8 GRU Gated Recurrent Unit [71]
9 RNNPlus Recurrent Neural Network Plus [69]

10 LSTMPus Long Short-Term Memory Plus [69]
11 GRUPlus Gated Recurrent Unit Plus [69]
12 RNN_FCN Recurrent Neural—Fully Convolutional Network [72]
13 LSTM_FCN Long Short-Term Memory—Fully Convolutional Network [73]
14 GRU_FCN Gated Recurrent Unit—Fully Convolutional Network [74]
15 RNN_FCNPlus Recurrent Neural—Fully Convolutional Network Plus [75]
16 LSTM_FCNPlus Long Short-Term Memory—Fully Convolutional Network Plus [75]
17 GRU_FCNPlus Gated Recurrent Unit—Fully Convolutional Network Plus [75]
18 ResCNN Residual—Convolutional Neural Network [76]
19 ResNet Residual Network [65]
20 RestNetPlus Residual Network Plus [77]
21 TCN Temporal Convolutional Network [78]
22 TST Time Series Transformer [79]
23 TSTPlus Time Series Transformer Plus [80]
24 TSiTPlus Time Series Vision Transformer Plus [81]
25 Transformer Transformer Model [82]
26 XCM Explainable Convolutional Neural Network [83]
27 XCMPlus Explainable Convolutional Neural Network Plus [84]
28 XceptionTime Xception Time Model [85]
29 XceptionTimePlus Xception Time Plus [86]
30 OmniScaleCNN Omni-Scale 1D-Convolutional Neural Network [87]

1 Methods and method variations used.

3.3. Metrics

Regarding performance evaluation, six metrics were used. The use of the different
metrics serves the necessity of having not only a presentation of the conclusions of a large
comparison of methods and feature and sentiment setups but also a number of diverse
extractions in terms of evaluation aspects that can be used in future research. This is
exactly because each of the metrics exposes the results in different aspects, and therefore,
an investigation would be incomplete if it focused on just one of them. Thus, regarding
evaluating results, each one of the six performance indicators utilized has advantages and
disadvantages. The metrics used are:

• the Mean Absolute Error (MAE);
• the Mean Absolute Percentage Error (MAPE);
• the Mean Squared Error (MSE);
• the Root Mean Squared Error (RMSE);
• the Root Mean Squared Logarithmic Error (RMSLE);
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• the Coefficient of Determination R2.

In what follows, a rather detailed description of aspects of the aforementioned well-
known evaluation metrics is given. The presentation aspires to provide details and some
insight regarding the interpretation of the metrics. Below, the actual values are denoted by
yai and the forecasts are denoted by ypi .

3.3.1. MAE

First is MAE:
MAE =

1
n

n

∑
i=1

∣∣ypi − yai

∣∣ (1)

MAE stands for the arithmetic mean of the absolute errors, and it is a very straightforward
metric and easy to calculate. By default, in terms of the difference between the prediction
and the observation, the values share the same weights. The absence of exponents in the
analytic form ensures good behavior, which is displayed even when outliers are present.
The target variable’s unit of measurement is the one expressing the results. MAE is a
scale-dependent error metric; that is, the scale of the observation is crucial. This means that
it can only be used to compare methods in scenarios where every scheme incorporates the
same specific target variable rather than different ones.

3.3.2. MAPE

Next is MAPE:
MAPE =

1
n

n

∑
i=1

∣∣ypi − yai

∣∣
|yai |

(2)

MAPE is the mean absolute percentage error. It is a relative and not an absolute error
measure. MAPE is common when evaluating the accuracy of forecasts. It is the average of
the absolute differences between the prediction and the observations divided by the absolute
value of the observation. A multiplication by 100 can afterwards convert this output to a
percentage. This error cannot be calculated when the actual value is zero. Instead of being
a percentage, in practice, it can take values in [0, ∞). Specifically, when the predictions
contain values much larger than the observations, then the MAPE output can exceed 100%.
Conversely, in cases where both the prediction and the observation contain low values, the
output of the metric may deviate greatly from 100%. This, in turn, can lead to a misjudgment
of the model’s predictive capabilities, believing them to be limited when, in fact, the errors
may be low. MAPE attributes more weight to cases where the predicted value is higher than
the actual one. These cases produce larger errors. Hence, using this metric is best suitable
for methods with low prediction values. Lastly, MAPE, being not scale-dependent, can be
used to evaluate comparisons of a variety of different time series and variables.

3.3.3. MSE

The next metric is MSE:

MSE =
1
n

n

∑
i=1

(
ypi − yai

)2 (3)

MSE stands for mean squared error. It constitutes a common forecast evaluation metric.
The mean squared error is the average of the squares of the differences between the actual
and predicted values. Its unit of measurement is the square of the unit of the variable of
interest. Looking at the analytical form, first, the square of the differences ensures the non-
negativity of the error. At the same time, it makes information about minor errors usable.
It is obvious, at the same time, that larger deviations entail larger penalties, i.e., a higher
MSE. Thus, outliers have a big influence on the output of the error; that is, the existence of
such extreme values has a significant impact on the measurements and, consequently, the
evaluation. Furthermore, and in a sense the other way around, when differences are less
than 1, there is a risk of overestimating the predictive capabilities of the model. Given the
error’s differentiability, as one can observe, it can easily be optimized.
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3.3.4. RMSE

Moving on to RMSE:

RMSE =

√
1
n

n

∑
i=1

(
ypi − yai

)2 (4)

RMSE stands for root mean squared error. It is a common metric for evaluating dif-
ferences between estimated values and observations. To compute it, apparently, one just
calculates the root of the mean squared error. From the numerical formulation, one can
think of the metric as an abstraction that captures the representation of something of an
average distance between the actual values and the predictions. That is, if one ignores
the denominator, then one can observe the formula as being the Euclidean distance. The
subsequent interpretation of the metric as a kind of normalized distance comes out of
the act of division by the number of observations. Here also, the existence of outliers
has a significant impact on the output. In terms of interpreting error values, the RMSE
is expressed in the same units as the target variable and not in its square, as in the MSE,
making its use straightforward. Finally, the metric is scale-dependent; hence, one can only
use it to evaluate various models or model variations given a particular fixed variable.

3.3.5. RMSLE

The next metric is also an error. The formula for RMSLE is as follows:

RMSLE =

√
1
n

n

∑
i=1

(
log(ypi + 1)− log(yai + 1)

)2 (5)

RMSLE stands for Root Mean Squared Logarithmic Error. The RMSLE metric seems as
if it is a modified version of the MSE. Using this modification is preferred when predictions
display significant deviations. RMSLE uses logarithms of both the observations and
predicted values while ensuring non-zero values in the logarithms through the appropriate
simple unit additions appearing in the formula. This modified version is resistant to the
existence of outliers and noise, and it smooths the penalty that the MSE imposes in cases
in which predictions deviate significantly from observations. The metric cannot be used
when there are negative values. RMSLE can be interpreted as a relative error between
observations and forecasts. This can be made evident by simply applying the following
property to the radicand term of the square root:

log(ypi + 1)− log(yai + 1) = log
(

ypi + 1
yai + 1

)
(6)

Since RMSLE gives more weight to cases where the predicted value is lower than the actual
value, it is quite a useful metric for types of predictions where similar conditions require
special care for the reliability of the application in real-world conditions, where lower
forecasts may lead to specific problems.

3.3.6. R2

The last metric is the coefficient of determination R2:

R2 = 1− SSRES
SSTOT

= 1− ∑n
i=1
(
ypi − yai

)2

∑n
i=1
(
ypi − y

)2 (7)

The coefficient of determination R2 is not an error evaluation metric. It is the ratio
depicted in the above equation. This metric is essentially not a measure of model reliability.
R2 is a measure of how good a fit is: a quantification of how well a model fits the data. Its
values typically range from 0 to 1. A rather simple interpretation would be this: the closer
to 1 the value of the metric is, the better the model fits the observations, i.e., the predictions
are closer, in terms of their values, to the observations. Thus, the value 0 corresponds to
cases where the explanatory variables do not explain the variance of the dependent variable
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at all. Conversely, the value 1 corresponds to cases where the explanatory variables fully
explain the dependent variable. However, this interval does not strictly constitute the
set of values of the metric. There are conditions in which R2 could take negative values.
Observing the formula, one can identify the above as permissible. In such cases, the model
performs worse in fitting the data than a simple horizontal line, essentially being unable
to follow the trend. Lastly, values outside the above range indicate either an inadequate
model or other flaws in its implementation.

4. Results

Returning to the dual objective of this work, the two case studies whose results will be
presented in this chapter were:

• On the one hand, the comparison of a large number of time series forecasting contem-
porary algorithms;

• On the other hand, the investigation of whether knowledge of public opinion, as
reflected in social networks and quantified using three different sentiment analysis
methods, can improve the derived predictions.

Accordingly, the presentation of the results of the experimental process is split into
two distinct parts. In what follows, both various statistical analysis and visualization
methods are incorporated. However, it should be noted that the number of comparisons
performed yielded a quite large volume of results. Specifically, as already pointed out,
in each case, the performance of the 30 predictive schemes and the 67 different feature
setups was investigated over three different time frames (1, 7, and 14 day shifts). Note that
these three time-shifting options have no—or at least no intended—financial consequences.
Here, the primary goal in designing the framework was to forecast the stock market over
short time frames, such as a few days. Then, an expansion was made to investigate the
performance of both methods and feature setups over longer periods of time. Each of
these schemas was evaluated with six different metrics, while the process was repeated
for each of the datasets. Consequently, it becomes clear that the complete tables with the
numerical results cannot contribute satisfactorily to the understanding of the conclusions
drawn. Below, following a necessary brief reminder of the process, results are presented.

As has already been mentioned, during the procedure, for each of the stocks, the
following strategy was followed: each of the thirty algorithms to be compared was “ran”
67 times, each time accepting as input one of the different feature setups. This was repeated
three times, once for each of the three forecast time frames. In each of the above runs, the
six metrics used in the evaluation of the results were calculated. The comparison of the
algorithms was performed by using Friedman’s statistical tests in terms of feature setups
for each of the time shifts. Thus, given setups and stocks, the ranking of the methods per
evaluation metric was extracted according to the use of the Friedman test [88]. Therefore,
regarding this case study, a total of 67 × 6 × 3 = 1206 statistical tests were executed. In
a similar way, the Friedman rankings of input feature setups were estimated in terms
of metrics and time shifts, given the various algorithms and stocks. Here, a total of
30 × 6 × 3 = 540 statistical tests were performed. An additional abstraction of the results
was derived as follows: For each of the 30 methods, the average rank achieved by each
method in terms of feature setups and shares was calculated. So, for each metric and each of
the three time frames, a more comprehensive display of the information was obtained based
on the average value of the different setups. In an identical way, in the case of checking the
effectiveness of features, the average value of the 30 algorithms for each of the 67 different
input setups was calculated in each case. In both cases, the ranking was calculated based on
the positions produced by the Friedman test, while at the same time, with the Nemenyi post
hoc test [89] that followed, every schema was checked pair-wise for significant differences.
The results of the Nemenyi post hoc tests are shown in the corresponding Critical Difference
diagrams (CD-diagrams), in which methods that are not significantly different are joined
by black horizontal lines. Two methods are considered not significantly different when the
difference between their mean ranks is less than the CD value.
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Next, organized in both cases based on time frames, the results concerning the com-
parison of the forecast algorithms are presented, which are followed by those regarding the
feature setups.

4.1. Method Comparison

The presentation begins with results concerning the investigation of methods. The
results are presented per forecast time shift. In each case, the Friedman Ranking results
for all six metrics are listed. To save space, only methods that occupy the top ten positions
of the ranking are listed. Full tables are available at: shorturl.at/FTU06 (accessed on 15
January 2023). The CD diagrams follow. There, we can visually observe which of the
methods exhibit similar behavior and which differ significantly. Finally, box plots of results
per metric are presented, again for the best 10 methods. The box plots present in a graphical
and concise manner information concerning the distribution of the aforementioned data,
that is, in our case, the average values of the sentiment setups per algorithm for all stocks.
In particular, one can derive information about the maximum and minimum value of the
data, the median, as well as the 1st and 3rd quartile values isolated by 25% and 75% of the
observations, respectively.

4.1.1. Time Shift 1

With respect to the one-day forecasts, Table A1 lists the Friedman Ranking results for
the top 10 scoring methods per metric. Although there is no single method that dominates
all metrics and significant reorderings are also observed in the table positions, the TCN
method achieves the best ranking in three out of six metrics (MAPE, R2, and RMSLE) and
is always in the top four. Furthermore, from the box plots, it is evident that TCN has by far
the smallest range of values.

Apart from this, in all metrics, GRU_FCN is always in the top five. It is also observed
that LSTM_FCN and LSTMPlus behave equally well. The latter shows a drop in the MAPE
metric, but in all other cases, it is in the top three, while in two metricsm it ranks first. It
should also be noted that the LSTMPlus method ranks first in two metrics, namely MAE
and RMSE. In terms of R2 and RMSLE, it occupies the second position of the ranking, while
regarding MSE, LSTMPlus ranks third. However, at the same time, according to MAPE,
the method is not even in the top ten. Thus, as will be seen in the following, TCN is the
consistent choice.

The results produced by Friedman’s statistical test, in terms of the six metrics, are
presented in Table A1, while the corresponding CD diagrams and box plots are depicted in
Figures 3 and 4.

Figure 3. Box Plots: Methods—Shift 1.

shorturl.at/FTU06
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Figure 4. CD Diagrams: Methods—Shift 1.

4.1.2. Time Shift 7

At the one-week forecast time frame, the algorithms that occupy the top positions in
the ranking produced by the statistical control appear to have stabilized. The corresponding
ranking produced by the Friedman statistical test regarding the ten best methods with
respect to the six metrics is presented in Table A2. In all metrics, the TCN method ranks first.
From the CD diagrams, it can be seen that in all metrics—except for R2—this superiority
is also validated by the fact that this method differs significantly from the others. Box
plots show the method also having the smallest range around the median. Figures 5 and 6
contain the relevant results in the form of box plots and CD-diagrams.

Figure 5. Box Plots: Methods—Shift 7.

Other methods that clearly show some dominance over the rest in terms of given
performance ratings are, on the one hand, TSTPlus, which ranks second in all metrics
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except MAPE, and, on the other hand, XCMPlus and XCM, which are mostly found in the
top five. In general, the same methods can be found in similar positions in all metrics, with
minor rank variations. In addition, the statistical correlations between the methods are
shown in the CD diagram plots.

Figure 6. CD Diagrams: Methods—Shift 7.

4.1.3. Time Shift 14

In the forecast results with a two-week shift, a relative agreement can be seen in the
top-ranking algorithms with those of the one-week frames. The ranking produced by the
Friedman statistical test for the ten best methods with respect to the six metrics is presented
in Table A3.

Once more, TCN ranks first in all metrics. TSTPlus again ranks second in all metrics
except for R2, where it ranks third. In almost all cases, XCMPlus and RNNPlus appear
in the top five. Likewise, as in the previous time shift, there is a relative agreement in
the methods appearing in the corresponding positions regarding all metrics. Moreover,
according to the above, an argument regarding the general superiority of the TCN method
in this particular scenario is easily obtained. An obvious predominance of the TCN method
is established. The corresponding CD diagrams and box plots for the 10 best performing
algorithms are seen in Figures 7 and 8.

4.2. Feature Setup Comparison

Now, we are moving on to the findings of the second case study, which concern, on
the one hand, the investigation of whether the use of sentiment analysis contributes to
the improvement of the extracted predictions and, on the other hand, the identification of
specific feature setups whose use improves the model’s predictive ability.

Again, the results of the experimental procedure will be presented separately for
the three forecast time frames. Likewise, due to the volume of results, only the 10 most
promising feature setups will be listed. These were again derived based on the Friedman
classification of the averages calculated for each of them, taking into account the predictions
in the use of the 30 forecast methods used. The full rankings of all 67 setups can be found
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at shorturl.at/alqwx (accessed on 13 December 2022). For the presentation below, again,
the corresponding CD diagrams and box plots were used.

Figure 7. Box Plots: Methods—Shift 14.

Figure 8. CD Diagrams: Methods—Shift 14.

4.2.1. Time Shift 1

Starting with the results concerning one-day depth forecasting, one notices that the
univariate version, in which the forecasts are based only on the stock price of the previous
days, ranks first only in the case of the R2 metric. In fact, in three metrics, the univariate
version is not even in the top twenty of the ranking (See Figures 9 and 10).

shorturl.at/alqwx
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Figure 9. Box Plots: Features—Shift 1.

Figure 10. CD Diagrams: Features—Shift 1.

Another interesting observation would be that even though there are rerankings of
the sentiment setups in terms of their performance on the six metrics, the Blob_RM_7_Blob
setup—that is, the setup incorporating Blob and Rolling Mean 7 Blob along with the closing
values time series—although it does not score well in the ranking regarding R2, it is, on the
one hand, at the top ranking in four metrics, that is, MAE, MSE, RMSE, RMSLE, and, on
the other hand, second in MAPE. Moreover, from the results, it becomes evident that an
argument in favor of using sentiment analysis in multivariate time series layouts, even in
the case where the forecasts concern one-day depth, is, at least, relevant. At the same time,
using smoothed versions of both the sentiment time series and those containing the closing
stock price values appears to be beneficial in general.

4.2.2. Time Shift 7

Regarding the time frame of one week, one can notice that the use of the univariate
version is marginally ranked first in three metrics, namely, the R2, RMSE and RMSLE, while
in two metrics, the Vader sentiment setup appears to be superior, actually being, at the
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same time, in second place regarding the MAPE and RMSE metrics and fifth regarding the
RMSLE (Figures 11 and 12).

Figure 11. Box Plots: Features—Shift 7.

Figure 12. CD Diagrams: Features—Shift 7.

It is also notable that Blob_RM_7_Blob, which appeared to perform particularly well
during the one-day shift, remains in the top three rankings in five of the six metrics. More
generally, once again, one notices that there are rearrangements, especially in the central
positions of the table. However, given the small differences in performance between the
different setups, this should not be considered unreasonable. Overall, the picture still
points in favor of using multivariate inputs containing sentiment data.

4.2.3. Time Shift 14

Finally, regarding the two-week time frame, a first observation is that in relation to
the R2, a feature setup that does not contain sentiment data dominates. This pattern is also
present in the previous time shifts (See Figures 13 and 14).
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Figure 13. Box Plots: Features—Shift 14.

Figure 14. CD-Diagrams: Features—Shift 14.

In addition, although there are metrics in which the univariate version is in the top
ten, in these cases, the difference in its performance with those in the first positions is
quite significant. This is easily seen from the CD diagrams: there are no connections with
setups that appear in the top positions. At the seven-day time lag, it was observed that
the univariate version prevailed in three cases. However, as one examines the 14-day time
shift, one notices that the superiority of methods that use sentiment data is reinforced.

At the same time, combinations containing the closing price appear in the first positions
of the table more often than in the previous two setups. Furthermore, it is observed that the
setup that dominates four of the six metrics is RM_7_Close_Blob. These metrics are MAE,
MAPE, MSE, and RMSE. The RM_7_Close_Blob feature setup is the one that incorporates
both a smoothed version of the closing values as well as sentiment scores. Thus, the use
of weighted averages in the original time series along with the incorporation of sentiment
scores is mostly shown to be optimal regardless of the individual choice of a specific layout.
Methodologically, the utilization of both has an improving effect.
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5. Conclusions

Some general conclusions drawn from the whole experimental procedure will now be
addressed. The discussion will follow the binary separation of the preceding case studies.

5.1. Methods

The first case study of the paper consisted of a comparison of 30 methods for time
series forecasting. Within the above-discussed experimental context, the extracted results
are such as to safely allow a conclusion regarding the superiority of the TCN method over
the rest. This is the case because, in the vast majority of comparisons, it excels, being, for the
most part, at the top of the Friedman ranking. In particular, the only cases where it does not
outperform all the rest are found in the single-day time frame predictions. In fact, from the
CD diagrams, one can extract the additional fact that in many cases, the superiority of the
aforementioned method is marked by a significant difference. Furthermore, in addition to
the TCN method, other methods whose predictive capacities can be considered significant
were identified. TSTPlus is one of them, as it produces significant results, particularly over
longer time horizons. XCMPlus is another.

In Figure 15, one can see the relative rankings of these three methods per time shift.
The values in Figure 15 correspond to the values of Tables A1–A3. Regarding the one-day
forecast window, LSTMPlus is an additional option, as is the combination of GRU and FCN.
However, an additional point to note here is that the individual method differences are less
clear in their significance. On the contrary, there can also be conclusions regarding methods
whose behavior was not evaluated, on average, as satisfactory. In particular, specific
methods that are always ranked last in all scenarios were identified. Specifically, TSiTPlus
ranks last in all three scenarios across all metrics. In addition to this, there are methods,
such as Transformer Model, XceptionTime, and XceptionTimePlus, which are always at the
bottom of the table in the vast majority of cases. In conclusion, given the limitations and
further prerequisites developed throughout this paper, TCN can be easily recommended.

Figure 15. TCN, TSTPlus and XCMPlus relative rankings.
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5.2. Feature and Sentiment Setups

In relation to the second case study, the consideration of the results also points in
some important directions. Of these, the main conclusion drawn seems to be that the
use of information derived from both smoothed versions of the initial time series and
sentiment analysis shows, in most cases, to have a beneficial effect on the derived forecasts.
Not using sentiments in the feature setup of the inputs dominates the rest only in a small
number of cases, and, as confirmed by the CD diagrams, only in two of them is this
difference significant.

Moreover, the answer to whether the use of sentiment setups specifically leads to
the extraction of more accurate forecasts, as evidenced by the individual layouts of the
weighted results, seems to be that, in general, sentiment analysis improves forecasts. Of
course, it is also reasonable to investigate whether there is a specific sentiment setup that
outperforms the rest. This would also lead to an assessment of the performance of the
three sentiment analysis methods used. However, the answer to this question needs further
investigation. However, even with the possibility of further inquiries within the framework
of the experimental setup presented here, it is still not certain that firm conclusions will be
drawn. Here, while such setups can be found for each time horizon, there is not one that
dominates all three.

In order, however, to illustrate a relative ranking of the three sentiment analysis
methodologies used, regardless of the particular variation involved, an additional table
was created. All variations of each method were placed under a corresponding class.
The Friedman-aligned ranks [90] were then calculated. Hence, in order to draw a clearer
picture of the way the three employed approaches to sentiment analysis performed, three
sentiment classes were formed, one matching each of the previously described sentiment
analysis methods. The arithmetic mean of all the sentiment setups that solely contain
different variations of a particular sentiment analysis algorithm, that is, only one of the
three incorporated, is used to represent the corresponding class concerning each metric. In
other words, each class represents a sentiment analysis method, and each class corresponds
to six sentiment setups that contain variations exclusively of the technique in question.
Specifically, a representative value of a class, as it pertains to a particular method, is formed
by the following setups: method, RM7method, RM14method, method + RM7method, method
+ RM14method, and RM7method + RM14method. The sum is then divided by six, which is
apparently the number of setups, and this result is the output value to be depicted. This way,
setups produced either by combining the various sentiment analysis methods or by using
the target variable in variants containing rolling means are excluded in order to compare
only the relative performances of the three individual techniques and their variations.

Figure 16 illustrates these relative rankings of the three sentiment analysis methods
per time shift. One can observe the relative performances in terms of individual wins with
respect to each metric and time shift: the Blob and Vader classes top the ranking seven times
each, while the Finbert class only has four wins. Again, a conclusion in terms of an obvious
generality regarding a specific algorithm does not appear. Nevertheless, the identification of
groups of such setups, even at the level of a specific time frame, can be particularly useful,
with the methodology for the selection of individual setups needing more investigation.
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Figure 16. Sentiment rankings.
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Appendix A

Table A1. Friedman results: Algorithms—Shift 1.

MAE MAPE R2

Method Friedman Score Method Friedman Score Method Friedman Score

1st LSTMPlus 8.266667 RNN_FCN 10.4 TCN 22.4
2nd LSTM 8.533333 GRU_FCN 10.53333 LSTMPlus 21.13333
3rd TCN 9.466667 TCN 11 LSTM 20.6
4th GRU_FCN 10 LSTM_FCN 11.2 GRU_FCN 20.53333
5th LSTM_FCN 10.2 GRU_FCNPlus 11.6 LSTM_FCN 19.73333
6th RNN 10.73333 RNN_FCNPlus 11.73333 LSTM_FCNPlus 19.13333
7th RNN_FCN 11.13333 RNN 11.93333 GRU_FCNPlus 18.93333
8th GRU_FCNPlus 11.33333 ResCNN 12.13333 RNN_FCN 18.93333
9th XCM 11.33333 LSTM_FCNPlus 12.13333 RNN 18.93333
10th LSTM_FCNPlus 11.4 FCNPlus 12.46667 XCMPlus 18.66667

shorturl.at/FTU06
shorturl.at/alqwx
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Table A1. Cont.

MSE RMSE RMSLE

Method Friedman Score Method Friedman Score Method Friedman Score

1st TCN 9 LSTMPlus 9.066667 TCN 7.733333
2nd GRU_FCN 9.266667 LSTM 9.6 LSTMPlus 9.333333
3rd LSTMPlus 9.6 GRU_FCN 9.6 LSTM 9.8
4th LSTM_FCN 9.8 TCN 9.733333 GRU_FCN 10
5th LSTM 9.933333 LSTM_FCN 10.06667 LSTM_FCN 10.2
6th RNN_FCN 10.33333 RNN_FCN 10.93333 RNN 11.13333
7th LSTM_FCNPlus 10.46667 LSTM_FCNPlus 11.06667 GRU_FCNPlus 11.26667
8th GRU_FCNPlus 10.8 RNN 11.13333 RNN_FCN 11.26667
9th RNN_FCNPlus 11.33333 GRU_FCNPlus 11.2 LSTM_FCNPlus 11.26667
10th FCNPlus 11.46667 RNN_FCNPlus 11.86667 GRU 12

Table A2. Friedman results: Algorithms—Shift 7.

MAE MAPE R2

Method Friedman
Score Method Friedman

Score Method Friedman
Score

1st TCN 3.733333 TCN 6.133333 TCN 25.86667
2nd TSTPlus 8.266667 XCMPlus 9.866667 TSTPlus 25.8
3rd XCMPlus 8.866667 RNNPlus 10.93333 XceptionTimePlus 19.7
4th XCM 10.53333 TSTPlus 11 XCMPlus 19.66667
5th RNN_FCNPlus 12.06667 RNN 11.06667 XceptionTime 19.53333
6th GRU_FCNPlus 12.13333 XCM 11.26667 XCM 18.53333
7th RNN_FCN 12.26667 LSTMPlus 13 RNN_FCN 16.9
8th GRU_FCN 13.2 GRU 13.66667 GRU_FCNPlus 16.66667
9th RNN 13.53333 ResCNN 13.86667 InceptionTime 16.5
10th LSTM_FCNPlus 13.53333 LSTM 14.06667 RNN_FCNPlus 16.16667

MSE RMSE RMSLE

Method Friedman
Score Method Friedman

Score Method Friedman
Score

1st TCN 3.666666667 TCN 3.933333333 TCN 3.8
2nd TSTPlus 8.733333333 TSTPlus 8.066666667 TSTPlus 8.066666667
3rd XCMPlus 8.933333333 XCMPlus 9.066666667 XCMPlus 9.4
4th XCM 11.93333333 XCM 10.8 XCM 10.06666667
5th RNN_FCNPlus 12.06666667 RNN_FCN 12.26666667 RNN 12.13333333
6th RNN_FCN 12.2 RNNPlus 12.8 RNNPlus 12.46666667
7th GRU_FCNPlus 12.6 RNN_FCNPlus 12.86666667 RNN_FCN 12.66666667
8th LSTM_FCNPlus 13 GRU_FCNPlus 13 GRU_FCNPlus 12.86666667
9th RNN 13.26666667 RNN 13.06666667 RNN_FCNPlus 13.06666667
10th FCN 13.4 LSTMPlus 13.66666667 GRU_FCN 14.06666667
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Table A3. TFriedman results: Algorithms—Shift 14.

MAE MAPE R2

Method Friedman Score Method Friedman Score Method Friedman Score

1st TCN 6 TCN 8.2 TCN 25.33333333
2nd TSTPlus 8 TSTPlus 9.466666667 TST 21.6
3rd XCMPlus 10.4 RNN 9.533333333 TSTPlus 20.8
4th XCM 11.33333333 RNNPlus 9.666666667 XceptionTime 18.9
5th RNNPlus 11.86666667 XCMPlus 10.6 XCMPlus 17.96666667
6th LSTMPlus 11.93333333 LSTM 10.86666667 XceptionTimePlus 17.7
7th LSTM 12.13333333 XCM 11 RNNPlus 17.53333333
8th RNN 12.46666667 LSTMPlus 11.73333333 OmniScaleCNN 17.13333333
9th LSTM_FCNPlus 13.46666667 GRUPlus 13.13333333 LSTM 17.03333333
10th GRU_FCN 14.46666667 TST 13.8 RNN 16.93333333

MSE RMSE RMSLE

Method Friedman Score Method Friedman Score Method Friedman Score

1st TCN 7.8 TCN 7.133333333 TCN 4.133333333
2nd TSTPlus 7.8 TSTPlus 7.6 TSTPlus 7.466666667
3rd XCM 10.13333333 XCM 10.46666667 XCMPlus 10
4th XCMPlus 10.6 XCMPlus 10.86666667 XCM 10.2
5th RNNPlus 10.86666667 RNNPlus 10.86666667 RNNPlus 10.73333333
6th LSTM 11.6 LSTMPlus 11.93333333 RNN 11.73333333
7th LSTMPlus 11.86666667 LSTM 12.06666667 LSTM 13.26666667
8th RNN 12.53333333 RNN 12.4 LSTMPlus 13.33333333
9th LSTM_FCNPlus 13.53333333 LSTM_FCNPlus 13.46666667 LSTM_FCNPlus 13.8
10th FCN 14.93333333 TST 14.73333333 InceptionTime 14.13333333

Appendix B

Appendix B.1

Please use the abbreviation table below to read the corresponding results of the
Friedman Ranks.

Table A4. Feature Setups and Abbreviations.

No. Abbreviation Feature Setup

1 U Univariate
2 B Blob
3 V Vader
4 F Finbert
5 RM7C Rolling Mean 7 Closing Value
6 RM14C Rolling Mean 14 Closing Value
7 RM7B Rolling Mean 7 Blob
8 RM14B Rolling Mean 14 Blob
9 RM7V Rolling Mean 7 Vader
10 RM14V Rolling Mean 14 Vader
11 RM7F Rolling Mean 7 Finbert
12 RM14F Rolling Mean 14 Finbert
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Appendix B.2

Table A5. Friedman results: feature setups—Shift 1.

MAE MAPE R2

Feature Setup Friedman Score Feature Setup Friedman Score Feature Setup Friedman Score

1st B_RM7B 19.73333 V_F 19.2 U 54.93333
2nd RM7C_F 24.13333 B_RM7B 20.06667 RM7F 50.53333
3rd RM7F 24.53333 B_V 21.8 RM14C 47.8
4th V_F 25.33333 RM7F 24.8 RM7C_RM7F 47.73333
5th RM7C_B 26.8 RM7C_F 26.93333 RM7C 47.13333
6th B_V 27.26667 F_RM14V 27.2 RM14F 46.4
7th B 28.4 RM7B_RM14V 28.13333 RM7C_B 45.86667
8th RM7F_RM14F 28.4 RM7B_RM14F 28.2 RM7C_F 43.6
9th RM14F 30 RM7C_RM14B 28.26667 B 43.4
10th B_RM14V 30 B_RM14V 29.2 RM7C_RM14C 43.13333

MSE RMSE RMSLE

Feature Setup Friedman Score Feature Setup Friedman Score Feature Setup Friedman Score

1st B_RM7B 21 B_RM7B 20.6 B_RM7B 20.93333
2nd V_F 21.06667 RM7F 24.13333 RM7C_F 21.86667
3rd B_V 22.66667 RM7C_F 24.2 B 24.8
4th RM7C_F 24.6 RM7C_B 26.13333 V_F 25.66667
5th RM7F 25.4 V_F 26.26667 RM7C_B 26.26667
6th B_RM14V 27.13333 B_V 28.26667 RM7C_RM14B 26.4
7th F_RM14V 27.73333 B 28.6 U 26.4
8th RM7B_RM14V 28.2 RM7F_RM14F 28.86667 RM7F 26.8
9th B_RM7F 28.4 RM7C_RM7B 29.06667 RM7C 27.53333
10th V_RM7V 28.6 RM7C_RM14B 29.13333 B_V 29

Table A6. Friedman results: feature setups—Shift 7.

MAE MAPE R2

Feature Setup Friedman Score Feature Setup Friedman Score Feature Setup Friedman Score

1st B_RM7B 21.53333 V 22.33333 U 55.06667
2nd V 22.8 RM14F 24.8 RM14C 54.93333
3rd RM7B 24.46667 B_RM7B 25.2 RM7C 54
4th U 24.86667 V_RM7V 25.93333 RM7C_RM7V 49.33333
5th RM7V 25.33333 RM7B 26.33333 RM7C_RM14C 47.23333
6th RM14F 25.53333 RM7C_B 26.66667 RM14C_RM14F 45.46667
7th RM7C_B 25.86667 RM7C_RM14F 26.8 RM14C_B 45.33333
8th RM7C_RM7F 26.66667 RM7F_RM14F 27.53333 RM7C_RM14F 45.26667
9th RM7F 26.86667 U 27.73333 RM14F 45.13333
10th B 27.13333 V_RM14V 27.93333 RM14C_RM7V 44.93333

MSE RMSE RMSLE

Feature Setup Friedman Score Feature Setup Friedman Score Feature Setup Friedman Score

1st V 21.93333 U 22.73333 U 17.6
2nd B_RM7B 23.13333 V 23.13333 RM7C_RM14F 21.13333
3rd RM7V 24 B_RM7B 23.66667 B_RM7B 22.53333
4th V_RM7V 24.8 RM7B 24.46667 RM14F 22.73333
5th RM7B 25.53333 RM14F 24.93333 V 23.2
6th RM14F 26.73333 RM7V 25.4 RM7F 24.46667
7th U 27.2 RM7C_RM7F 25.8 RM7C_RM7F 25.73333
8th RM7C_RM7F 27.73333 RM7C_B 25.93333 RM7C_B 26.4
9th B 27.86667 RM7C_RM14F 26.6 RM14C_RM7B 26.73333
10th RM7C_B 27.93333 RM7F 27.2 B 26.86667



Entropy 2023, 25, 219 27 of 30

Table A7. Friedman results: feature setups—Shift 14.

MAE MAPE R2

Feature Setup Friedman Score Feature Setup Friedman Score Feature Setup Friedman Score

1st RM7C_B 17.46667 RM7C_B 18.53333 RM14C 50.5
2nd RM7C_V 21.53333 RM14C_B 22.2 RM7C 48.9
3rd RM14C_B 22.26667 RM7C_V 22.93333 U 48.76667
4th RM7C 22.26667 RM7F_RM14F 23.73333 RM14C_RM7F 48.16667
5th U 23.73333 B_RM7V 24.2 RM14C_RM7B 46.83333
6th B_RM7V 23.8 V 25.6 RM7C_RM7B 46.06667
7th V 24.46667 RM7C_F 26.33333 RM7C_RM7F 45.76667
8th RM7C_F 24.86667 V_RM14F 27.4 RM7C_RM14C 45.56667
9th RM7B 25.86667 RM7C 27.66667 RM7F 43.83333
10th RM14B 27.33333 RM7B 28.13333 RM14C_F 43.36667

MSE RMSE RMSLE

Feature Setup Friedman Score Feature Setup Friedman Score Feature Setup Friedman Score

1st RM7C_B 18.26667 RM7C_B 15.86667 RM7C 13.8
2nd RM7C_V 21.26667 RM7C 20.33333 RM7C_B 16
3rd B_RM7V 21.6 RM14C_B 21.26667 RM14C_B 21.06667
4th RM14C_B 23.86667 RM7C_V 21.4 U 22.33333
5th V 25.06667 U 22.8 RM7C_F 24.13333
6th RM7B 25.86667 RM7C_F 24 RM14B 24.33333
7th RM7C 26.2 V 24.06667 B_RM7V 25.06667
8th RM7C_F 26.26667 B_RM7V 24.46667 RM7C_V 26.06667
9th RM7B_RM7F 26.33333 RM7B 26 V 26.26667
10th RM7B_RM7V 26.66667 RM7C_RM14C 26.2 RM7B 26.46667
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