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Abstract: The quantizer–dequantizer formalism is used to construct the probability representation of
quantum system states. Comparison with the probability representation of classical system states is
discussed. Examples of probability distributions describing the system of parametric oscillators and
inverted oscillators are presented.
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1. Introduction

In classical mechanics, the states of classical particles are described by the two
numbers—position q and momentum p. The time evolution of the states is associated
with the trajectory q(t) and p(t) = mq̇(t). The evolution is described by the Newtonian
law mq̈(t) = F, where force F is determined by the potential energy V(q) term in the
Hamiltonian H = p2/2m + V(q). In the case of classical statistical mechanics, the particle
states are described by the probability density function f (q, p, t) of the two random position
and momentum and the time t. The probability density satisfies the evolution equation

∂ f (q, p, t)
∂t

+
∂ f (q, p, t)

∂q
p
m
− ∂ f (q, p, t)

∂p

(
∂V
∂q

)
= 0. (1)

For quantum systems, the conventional description of quantum states, called pure states, is
formulated using the concept of the complex wave function ψ(q, t) = |ψ(q, t)| exp(iφ(q, t)).
The physical meaning of the wave function modulus squared |ψ(q, t)|2dq = w(q, t)dq is
the probability density at time t in the interval dq around position q. Due to this, the
wave function is normalized, i.e.,

∫
|ψ(q, p)|2dq = 1. The analogous concept of probabil-

ity density for a classical particle is expressed in terms of the function f (q, p, t), namely
wcl(q, t) =

∫
f (q, p, t)dp. The position and momentum in quantum mechanics are the oper-

ators q̂ and p̂ acting on the wave function in position representation as q̂ψ(q, t) = qψ(q, t).
p̂ψ(q, t) = −ih̄ ∂ψ(q,t)

∂q , where h̄ is the Planck constant and the position and momentum

operators do not commute, i.e., [q̂, p̂] = q̂ p̂− p̂q̂ = ih̄1̂. This property means that the proba-
bility density of position and momentum does not exist since there exists an uncertainty
relation of position and momentum (δq)2(δp)2 ≥ h̄2/4 [1], which does not exist in classical
mechanics. The evolution of the quantum state is described by the Schrödinger equation [2]

ih̄
∂ψ(q, t)

∂t
=

(
p̂2

2m
+ V̂(q̂)

)
ψ(q, t). (2)
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The particle statistical properties (mean values 〈q〉, 〈p〉) and dispersions (〈q2〉 − 〈q〉2,
〈p2〉 − 〈p〉2) are expressed in terms of the wave function ψ(q, t). For example,

〈q〉 =
∫

q|ψ(q, t)|2dq, 〈q2〉 =
∫

q2|ψ(q, t)|2dq. (3)

For the classical particle, we have the means of position and momentum

〈q〉cl =
∫

q f (q, p, t)dqdp, 〈p〉cl =
∫

p f (q, p, t)dqdp. (4)

An important property of quantum states is the superposition principle of any states with
wave functions ψ1(q, t) and ψ2(q, t). According to this principle, the function ψ(q, t) =
c1ψ1(q, t) + c2ψ2(q, t) corresponds to a real state which exists. Here, the numbers c1 and c2
are complex numbers. To describe the quantum states of a particle in an environment of
mixed states, for example, at the temperature T, the concept of the wave function is not
sufficient and the notion of the density matrix ρ(x, x′, t) = ∑k φkψk(x, t)ψk(x′, t), which is a
convex sum of terms expressed using wave functions, was introduced [3,4]. The numbers
φk in the convex sum are probabilities satisfying the normalization condition ∑k φk = 1.
Thus, the notion of the state of the particle in classical mechanics (and classical statistical me-
chanics) is dramatically different from the notion of state in quantum mechanics. Moreover,
the notion of observables, such as position and momentum, in quantum mechanics uses
the position and momentum operators (q̂ and p̂) acting in the Hilbert space of state vectors
|ψ〉 [5]. Due to these differences in classical and quantum mechanics formulations, from the
very beginning of the introduction of quantum mechanics, attempts to find a formulation
closer to the classical one were undertaken. The idea was to introduce a description of
state similar to introducing the notion of the probability density f (q, p). Quasiprobabil-
ity distributions were introduced by Wigner [6] and other versions of quasiprobability
distributions were described by Husimi [7]. Glauber [8] and Sudarshan [9] introduced
another version of the quasiprobability function, describing the particle states. All these
functions are functions of two variables q and p, but they cannot be analogs of position
and momentum, as in classical mechanics, because the Heisenberg uncertainty relation
forbids the existence of such probability distributions. The problem was solved [10] when
the probability distribution function of one random position X was found (see also [11–13]).
This probability distribution contains all the information about the quantum state of a
particle and is related to the density matrix and all known quasidistrubition functions
by invertible integral transforms. The aim of the article is to present the construction
of such probability representations of quantum states and to consider some examples,
such as parametric and inverted oscillator states in this new probability representation of
quantum mechanics. The inverted oscillator was recently discussed in [14,15] in relation
to cosmological problems. Some of the inverted oscillator problems were also considered
in [16–19].

The paper is organized as follows. In Section 2, the formalism of quantizer–dequantizer
operators [20] is reviewed. In Section 3, the Hamiltonian and integrals of linear motion
in the position and momentum of oscillators are discussed. In Section 4, the states of the
inverted oscillator and the Shannon entropy are considered. In Section 5, the evolution
of the inverted oscillator states is considered. The conclusions and future directions are
presented in Section 6.

2. Radon Transform and Quantizer–Dequantizer Operators

In order to clarify the possibility of introducing the probability representation of
quantum states, let us first consider the analog of introducing the specific probability
distribution in classical statistical mechanics. We consider the Radon transform [21] of the
probability density of two random variables f (q, p) of the form

wcl(X|µ, ν) =
∫

f (q, p)δ(X− µq− νp)dqdp. (5)
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The inverse Radon transform reads

f (q, p) =
1

4π2

∫
wcl(X|µ, ν) exp(i(X− µq− νp))dXdµdν. (6)

One can check that the function wcl(X|µ, ν) is non-negative and normalized∫
wcl(X|µ, ν)dX = 1. (7)

The position X = µq+ νp is one random variable and the real parameters µ and ν determine
the reference frames in the particle phase-space where the position is measured. Thus, the
relations (5) and (6) provide the invertible map of the probability density f (q, p) onto the
conditional probability density of one random position X, measured in a reference frame
with known parameters µ = s cos θ, ν = s−1 sin θ. These parameters mean that, if the initial
reference axes provide axes q and p, then we construct the rescaled axis q′ = sq, p′ = s−1 p
and then rotate these axes obtaining q′′ = cos θq′ + sin θp′, p′′ = − sin θq′ + cos θp′. Thus,
the meaning of the variable X is as follows: It is the particle position measured in all
the rescaled and rotated reference frames. The Radon map provides the possibility for
a classical particle to introduce [22] the tomographic probability distribution of the state
usually determined by the probability density f (q, p). The rescaling and rotation of the axis
in phase-space of the particle is a linear symplectic transform and the function wcl(X|µ, ν)
is called the symplectic tomogram of the classical particle state. Since the map is invertible,
the tomogram contains the same information about the state that is contained in the usual
probability distribution f (q, p). It turns out that the quantum version of the map provides
the possibility to construct the invertible map for the particle state in quantum mechanics
by relating the density operator ρ̂ of the state with the symplectic tomogram, using the
following quantum version of the map, namely, introducing the symplectic tomogram,
as follows:

wρ̂(X|µ, ν) = Trρ̂δ(X1̂− µq̂− ν p̂) (8)

and introducing the dequantizer operator δ(X1̂−µq̂− ν p̂). All the known quasidistribution
functions are obtained using different pairs of operators—quantizer operator D̂(x) and
dequantizer operator Û(x), where x = x1, x2, . . . xn.

These operators create the possibility of mapping the operators Â acting in the Hilbert
space, where the position q̂ and the momentum p̂ act, by following the generic map of
operators Â→ fA(x) given by the formula for the function fA(x) called the symbol of the
operator Â

fA(x) = Tr
(

ÂÛ(x)
)
. (9)

The inverse transform fA(x)→ Â is given by the formula

Â =
∫

fA(x)D̂(x)dx, (10)

where the quantizer operators D̂(x) provide the possibility of reconstructing the operator
Â if its symbol fA(x) is known. The map given by Equations (9) and (11) provides the
possibility of introducing the star-product of functions fA(x) and fB(x), which are symbols
of the operators Â and B̂. The symbol of the operator ÂB̂ is given by the formula

fAB(x) = Tr
(

ÂB̂Û(x)
)
. (11)

Using the relations (9) and (11) the star-product of the function fA(x) and fB(x)

( fA ? fB)(x) = fAB(x) (12)

is presented in the integral form
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( fA ? fB)(x) =
∫

fA(x1) fB(x2)K(x1, x2, x)dx1dx2, (13)

with the kernel which is easy to express in terms of the quantizer–dequantizer

K(x1, x2, x) = Tr
(

D̂(x1)D̂(x2)Û(x)
)
. (14)

Since the product of operators is associative, i.e.,
(
(ÂB̂)Ĉ

)
=
(

Â(B̂Ĉ)
)
, the star-product of

the symbols of the operators is also associative. For the symplectic tomogram, the inverse
quantum Radon transform reads [23]

ρ̂ =
1

2π

∫
w(X|µ, ν) exp

(
i(X1̂− µq̂− ν p̂)

)
dXdµdν. (15)

This means that the quantizer operator for the symplectic tomography method has the form

D̂(X|µ, ν) =
1

2π
exp

(
i(X1̂− µq̂− ν p̂)

)
. (16)

Thus, we have x = (x1, x2, x3) = X, µ, ν and the dequantizer reads

Û(X|µ, ν) = δ
(
i(X1̂− µq̂− ν p̂)

)
. (17)

The kernel describing the star-product of the operators in symplectic tomography is ex-
pressed as follows:

K̂(X1, µ1, ν1, X2, µ2, ν2, X, µ, ν) =
1

4π2 Tr
[
exp

(
i(X11̂− µ1q̂− ν1 p̂)

)
×exp

(
i(X21̂− µ2q̂− ν2 p̂)

)
δ
(
i(X1̂− µq̂− ν p̂)

)]
. (18)

In an explicit form, it reads

K̂(X1, µ1, ν1, X2, µ2, ν2, X, µ, ν) =
1

4π2 δ(µ(ν1 + ν2)− ν(µ1 + µ2))

× exp
(

i
2
(ν1µ2 − ν2µ1 + 2X1 + 2X2 − 2

ν1 + ν2

ν
X)

)
. (19)

One can use the formalism of quantizer–dequantizer operators to write the evolution
equation for the symbols of the density operators. For example, the von Neumann equation
for the density operator ρ̂(t) is written in the form (we use m = ω = h̄ = 1)

∂ρ̂

∂t
+ i
(

Ĥ(t)ρ̂(t)− ρ̂(t)Ĥ(t)
)
= 0. (20)

Here, ρ̂(t) has the symbol fρ(x, t) and the Hamiltonian operator Ĥ(t) has the symbol
fH(x, t), where we consider the symbols for arbitrary quasidistributions corresponding to
quantizer–dequantizer operators. Then Equation (20) takes the form

∂ fρ(x, t)
∂t

+ i
(

fH ? fρ − fρ ? fH
)
(x, t) = 0. (21)

The equation for the given Hamiltonian Ĥ(t) has the general form of an integral equation

∂ fρ(x, t)
∂t

+ i
∫ (

fH(x1, t) fρ(x2, t)− fρ(x1, t) fH(x2, t)
)
K(x1, x2, x)dx1dx2 = 0. (22)

Here, the symbol of the Hamiltonian fH(x1, t) = Tr
(

Ĥ(t)Û(x1)
)

and the symbol of the
density operator fρ(x2, t) = Tr

(
ρ̂(t)Û(x2)

)
. In the case of a harmonic oscillator in the
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tomographic probability representation, the symbol of the density operator ρ̂(t) is given by
the probability distribution function, (x = X, µ, ν),

wρ(X|µ, ν, t) = fρ(x, t) = Trρ̂(t)δ
(
X1̂− µq̂− ν p̂

)
, fH(x, t) = TrĤ(t)δ

(
X1̂− µq̂− ν p̂

)
(23)

and the kernel of the associative product is the function (19). The Equation (22) is the kinetic
equation for a probability distribution function

∂ fρ(x, t)
∂t

+ i
∫

fH(x1, t) fρ(x2, t)[K(x1, x2, x)− K(x2, x1, x)]dx1dx2 = 0. (24)

For symplectic tomography, the integral linear equation has the form

∂wρ(X|µ, ν, t)
∂t

+ i
∫

wρ(X2|µ2, ν2, t)K(X, µ, ν, X2, µ2, ν2, t)dX2dµ2dν2 = 0. (25)

Here,

K(X, µ, ν, X2, µ2, ν2, t) =∫
[K(X1, µ1, ν1, X2, µ2, ν2, t)− K(X2, µ2, ν2, X1, µ1, ν1, t)] fH(X1, µ1, ν1, t)dX1dµ1dν1. (26)

3. Inverted Oscillator

Let us study the properties of the classical and quantum-inverted oscillator. The Hamil-
tonian of the classical inverted oscillator reads (m = ω = h̄ = 1)

Hcl(q, p) =
p2

2
− q2

2
. (27)

One can check that the two expressions q0(q, p, t) and p0(q, p, t), satisfying the initial
conditions q0(q, p, t = 0) = q and p0(q, p, t = 0) = p of the form

qo(q, p, t) = q cosh t− p sinh t, (28)

po(q, p, t) = −q sinh t + p cosh t, (29)

satisfy the differential equations for any integral of motion I(q, p, t) for an inverted oscillator

dI(q, p, t)
dt

=
∂I(q, p, t)

∂t
+

∂I(q, p, t)
∂q

p− ∂I(q, p, t)
∂p

q = 0. (30)

One can check that, for a quantum-inverted oscillator with the Hamiltonian

Ĥ =
p̂2

2
− q̂2

2
(31)

the non-Hermitian operators

q̂o(q̂, p̂, t) = q̂ cosh t− p̂ sinh t, (32)

p̂o(q̂, p̂, t) = −q̂ sinh t + p̂ cosh t (33)

satisfy the equations for quantum integrals of motion Î(q̂, p̂, t) of the form

dÎ(q̂, p̂, t)
dt

=
∂ Î(q̂, p̂, t)

∂t
+ i
[
Ĥ, Î(q̂, p̂, t)

]
= 0. (34)

Also,
q̂o(q̂, p̂, t = 0) = q̂ and p̂0(q̂, p̂, t = 0) = p̂. (35)
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The Green function of the Schrödinger equation in position representation G(y, x, t) satisfies
the system of equations [24](

y cosh t + i sinh t
∂

∂y

)
G(y, x, t) = xG(y, x, t), (36)

(
−i cosh t

∂

∂y
− y sinh t

)
G(y, x, t) =

(
i

∂

∂x

)
G(y, x, t), (37)

also

i
∂

∂t
G(y, x, t) =

(
−1

2
∂2

∂y2 −
y2

2

)
G(y, x, t),

and the initial condition for the Green function, i.e., for t = 0 reads G(y, x, 0) = δ(y− x).
The Green function is analogous to the Green function of the usual harmonic oscillator
with frequency ω2 = 1, but the condition ω2 = −1 is used to obtain the expression for the
propagator of the inverted oscillator from the propagator of the usual harmonic oscillator.
We obtain

G(y, x, t) =
1√

2iπ sinh t
exp

[
i
2

(
coth t(y2 + x2)− 2xy

sinh t

)]
. (38)

Using the Green function and the initial condition for the wave function of the inverted
oscillator, we can calculate the evolution of the wave function. This wave function in the
moment t > 0 determines the tomographic probability distribution describing the inverted
oscillator. In fact, this integral relation of the wave function with the tomogram for the
system with linear position and momentum integrals of motion provides the possibility
of obtaining the evolution of the tomographic probability distribution of the inverted
oscillator using a simple tool related to the Heisenberg position and momentum operators
which will be shown later. Moreover, one can use other integrals of motion, which are
constructed below.

The operators (integrals of motion)

â(t) =
1√
2
(q̂0(t) + i p̂0(t)), (39)

â†(t) =
1√
2
(q̂0(t)− i p̂0(t)) (40)

satisfy the commutation relations [
â(t), â†(t)

]
= 1̂ (41)

and
â(0) =

1√
2
(q̂ + i p̂), â†(0) =

1√
2
(q̂− i p̂) (42)

are standard annihilation and creation bosonic operators. There are other operators which
are integrals of motion for the inverted oscillator [14] and the Hermitian one

Â(t) =
1√
2
(q̂0(t) + p̂0(t)), (43)

Â†(t) =
1√
2
(q̂0(t)− p̂0(t)). (44)

They satisfy the commutation relations[
Â(t), Â†(t)

]
= −i1̂. (45)
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We construct the coherent states of the inverted oscillator |α, t〉 using the definition
â(t)|α, t〉 = α|α, t〉. For t = 0, this state reads

ψα(x, 0) =
1

π1/4 exp
(
−|α|

2

2
− x2

2
+
√

2αx− α2

2

)
. (46)

In addition to consideration of the inverted oscillator tomogram, we will address the
evolution of the tomogram of the parametric oscillator with time-dependent frequency

ω2(t) with the Hamiltonian Ĥ = p̂2

2 + ω2(t)q̂2

2 , ω2(0) = 1. The wave function of the states
of the parametric oscillator was discussed in [24]. The parametric oscillator state, which is
an analog of the ground state of the usual oscillator, satisfies the condition â(t)ψ0(x, t) = 0.
The normalized wave function is of the form

ψ0(x, t) =
1√

π1/2ε(t)
exp

(
iε̇(t)
2ε(t)

x2
)

. (47)

The complex function ε(t) satisfies the equation

ε̈(t) + ω2(t)ε(t) = 0.

The initial conditions for the function ε(t) are

ε(0) = 1, ε̇(0) = i.

According to the relation of the wave function with the tomogram of the state, which we
mentioned above for the inverted oscillator state, for the state of the parametric oscillator
with the wave Function (47), the tomogram in integral form reads

w0(X|µ, ν) =
1

2π|ν|

∣∣∣∣∣
∫ 1√

π1/2ε(t)
exp

(
iε̇(t)
2ε(t)

y2 +
iµy2

2ν
− iXy

ν

)
dy

∣∣∣∣∣
2

.

This is a Gaussian integral and we get the standard normal probability distribution with
a zero mean value random position and time-dependent dispersions. For the usual time-
independent frequency ω2 = 1 function ε(t) = eit. We have a normal probability distri-
bution describing the quantum state of the parametric harmonic oscillator. One can see
that the Hamiltonian of the inverted osciillator (27) has symmetry related to the group
SO(1, 1) and the usual oscillator Hamiltonian has symmetry related to the group SO(2).
This means that the states of both oscillators can be related to irreducible representations
of these groups. In principle, this means that the tomographic probability distributions
related to the states of the inverted oscillator can be associated with the symmetry groups.
We can try to solve the problem to find the relation of the irreducible representation of the
Hamiltonian symmetry group with the tomographic probability distributions describing
the Hilbert space state-vectors (or density operators) associated with the inverted oscillator
states properties. This problem will be investigated in future publications following the
approach considered for the hydrogen atom in the review [25], where the dynamical group
O(4, 2) was used as the symmetry of the Hamiltonian.

4. Tomograms of Evolving States of the Inverted Oscillator Prepared Initially in the
Potential of the Usual Oscillator

Let us solve the following problem to describe the behavior of the symplectic tomo-
grams of the inverted oscillator states, which, initially at t = 0, were prepared as states of
the usual oscillator with frequency ω = 1 (and m = h̄ = 1). This means that the ground
states of the usual oscillator with the Hamiltonian Ĥ = p̂2/2 + q̂2/2, i.e., the oscillator with
a wave function in position representation
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ψ0(x, t = 0) =
1

π1/4 exp
(
− x2

2

)
(48)

starts to evolve in potential U(q) = −q̂2/2.
The tomogram of the state with the initial wave function (48) w0(X|µ, ν, t = 0) has the

form given by the relation

w0(X|µ, ν, t = 0) =
1

2π|ν|

∣∣∣∣∫ 1
π1/4 exp

(
−y2

2
+

iµy2

2ν
− iXy

ν

)
dy
∣∣∣∣2, (49)

i.e.,

w0(X, µ, ν, t = 0) =
1√

π(µ2 + ν2)
exp

(
− X2

µ2 + ν2

)
. (50)

The evolution of this tomogram obeys (25) and (26). One can solve this integral equation,
but we demonstrate the possibility to obtain the solution using the analogous relation (8)

wo(X|µ, ν, t) = Trρ̂(t)δ(X1̂− µq̂− ν p̂), (51)

where ρ̂(t) = e−iĤtρ̂(0)eiĤt and where Ĥ is given by (31). The relation (51) can be used in
the form

wo(X|µ, ν, t) = Trρ̂(0)δ(X1̂− µe−iĤt q̂eiĤt − νe−iĤt p̂eiĤt) (52)

Here, we used the property of the calculating trace of the operator product: Tr
(

ÂB̂Ĉ
)
=

Tr
(

B̂ĈÂ
)

applied to any function f (ÂB̂Ĉ), including the Dirac delta-function. But we can
then use the properties of the position q̂ and the momentum p̂ operators and these operators
in the Heisenberg representation q̂H(t) and p̂H(t), which, for the inverted oscillator, have
a form formally repeating the classical formula. This creates the possibility of solving
the kinetic Equations (25) and (26) by replacement in the known symplectic tomographic
probability representation formula of the parameters µ and ν by parameters µ̄, ν̄, expressing
the relations of the q̂H(t) and p̂H(t), with the operators q̂ and p̂. This is easy to do for
systems with a quadratic in the position q̂ and momentum p̂ operators, where we consider
the equality

µ̄H q̂ + ν̄H p̂ = µq̂H(t) + ν p̂H(t). (53)

For this, we rewrite this equality in the form

µ(cosh tq̂ + sinh tp̂) + ν(sinh tq̂ + cosh tp̂) = µH q̂ + νH p̂. (54)

This means that

µH = µ cosh t + µ sinh t and νH = µ sinh t + µ cosh t. (55)

Then, we can write the symplectic tomogram as the solution of Equations (25) and (26) for
the state of the inverted oscillator, with the additional condition that its initial value at time
t was given by (25) and (26)

w0(X|µ, ν, t) =
1√

π
(
(µ2 + ν2)(2 sinh2 t + 1) + 2µν sinh 2t

)
exp

(
− X2

(µ2 + ν2)(2 sinh2 t + 1) + 2µν sinh 2t

)
. (56)

This is the normal probability distribution with zero mean value and varying dispersions.
The physical meaning of the tomogram means that, for µ = 1, ν = 0, the relation (56)
provides the probability distribution of the position; for µ = 0, ν = 1, it is equal to the
probability distribution of the momentum of the inverted oscillator at time t prepared in



Entropy 2023, 25, 217 9 of 12

the initial time in the ground state of the usual oscillator. The dispersions of the position
and momentum are equal and satisfy the Heisenberg uncertainty relation at any time
t. The correlation coefficient r is given by the equality in the Robertson–Schrödinger
uncertainty relation

(δq)2(δp)2 ≥ 1
4(1− r2)

; (δq)2 = (δp)2 =
1
2
+ sinh2 t. (57)

This means that the correlation of the position and the momentum coefficient 1 ≥ r ≥ 0
satisfies the condition

r2 = 1− 1

4
(

1
2 + sinh2 t

)2 . (58)

For t = 0, the correlation is equal to zero and for large time periods it approaches to unity.
This means that large fluctuations are present with large kinetic energy contributions to the
behaviour of the inverted oscillator. Following our approach, we consider the behavior of
the inverted oscillator for a system with time-dependent frequency, such that the frequency
ω2(t) depends on time and ω2(t) for t < 0 equals one and for t ≥ 0, ω2 = −1. We consider
such a system if the initial state of the oscillator is a coherent state with wave function
ψα(x, t). The tomographic probability distribution in this case is a normal probability
distribution. Using the approach µ→ µ̄, ν→ ν̄, we get the time evolution of the inverted
oscillator tomogram of the form

w0(X|µ, ν, t) =
1√

π
(
(µ2 + ν2)(2 sinh2 t + 1) + 2µν sinh 2t

)

exp

−
(

X−
√

2(µ cosh t + ν sinh t)Reα−
√

2(ν cosh t + µ sinh t)Imα
)2

(µ2 + ν2)(2 sinh2 t + 1) + 2µν sinh 2t

. (59)

For the initial state with the wave function of the Fock state and its tomogram for t > 0,
we have the evolving symplectic tomogram wn(X|µ, ν, t) with replacement µ → µH(t),
ν→ νH(t), i.e.,

wn(X|µ, ν, t) =
1

2nn!
w0(X|µ, ν, t)

∣∣∣∣∣Hn

(
X

(µ2 + ν2)(2 sinh2 t + 1) + 2µν sinh 2t

)∣∣∣∣∣
2

. (60)

One can introduce the entropy of the quantum states of the inverted oscillator with the
tomogram w(X|µ, ν, t) using the Schannon entropy

S(µ, ν, t) = −
∫

w(X|µ, ν, t) ln w(X|µ, ν, t)dX. (61)

For the Gaussian states with wave initial functions (46), the initial entropy S(µ, ν, t = 0)
reads

S(µ, ν, t = 0) =
√

πe(µ2 + ν2). (62)

For the inverted oscillator, the entropy at time t is expressed in terms of the initial value of
the entropy S(µ, ν, t = 0)

S(µ, ν, t) =
√

πe((µ cosh t + ν sinh t)2 + (ν cosh t + µ sinh t)2). (63)
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5. Tomograms of Inverted Oscillator States

Let us construct the tomograms of the coherent state of the inverted oscillator. The to-
mographic probability distribution of the coherent state of the oscillator reads

wα(X|µ, ν, t = 0) = Tr[|ψα〉〈ψα|δ(X− µq̂− ν p̂)]. (64)

The explicit expression, in integral form, of the coherent state with the wave Function (46)
reads [26]

wα(X|µ, ν) =
1

2π|ν|

∣∣∣∣∫ ψα(y) exp
(

iµy2

2ν
− iXy

ν

)
dy
∣∣∣∣2. (65)

Thus, we have normal probability distributions

wα(X|µ, ν) =
1√

π(µ2 + ν2)
exp

[
− (X− X̄α)2

µ2 + ν2

]
, (66)

where X̄ = µ
√

2Reα + ν
√

2Imα. The function (46) is the eigenfunction of the integral of
motion (43) taken for t = 0, i. e.,

1√
2
(q̂ + i p̂)ψα(x, 0) = αψα(x, 0). (67)

If we write the tomogram of the initial coherent state of the inverted oscillator, we have to
calculate the following trace:

wα(X|µ, ν, t) = Trρ̂α(t)δ
(
X1̂− µq̂− ν p̂

)
. (68)

Since ρ̂α(t) = Û(t)ρ̂α(0)Û†(t), where Û(t) = exp(−iĤt) and Ĥ = p̂2

2 −
q̂2

2 , we get

wα(X|µ, ν, t) = Trρ̂(0)δ
(

X1̂− µÛ†(t)q̂Û(t)− νÛ† p̂Û(t)
)

. (69)

The operators Û†(t)q̂Û(t) and Û†(t) p̂Û(t) are the Heisenberg operators of position and
momentum q̂H(t) and p̂H(t). Using the integrals of motion (43) and (44) at time −t, we get
these operators

q̂H(t) = q̂ cosh t + p̂ sinh t, (70)

p̂H(t) = q̂ sinh t + p̂ cosh t. (71)

This means that the arguments of the delta-function take the form X1̂− µq̂H − ν p̂H =
X̄1̂− µH q̂− νH p̂. Here X̄ = X, µH = µ sinh t + ν cosh t. This means that the function (68)
can be calculated and the result gives the coherent states of the inverted oscillator at time t
with the initial state (66)

wα(X|µ, ν, t) =
1√

π[(µ sinh t + ν cosh t)2 + (ν sinh t + µ cosh t)2]

exp
[
− (X− X̄)2

(µ sinh t + ν cosh t)2 + (ν sinh t + µ cosh t)2

]
, (72)

where
X̄ =

√
2[Reα(µ sinh t + ν cosh t) + Imα(µ cosh t + ν sinh t)]. (73)

Analogously, we can calculate the states with wave function ψn(x) of the inverted oscillator
for which â† âψn(x) = nψn(x), and which has the form

ψn(x) =
e−x2/2

π1/4
1√
2nn!

Hn(x), (74)
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where Hn(x) is the Hermite polynomial. Then the tomogram of this state reads

wn(X|µ, ν) =
1

2nn!
exp

(
− X2

µ2 + ν2

)∣∣∣∣Hn

(
X

µ2 + ν2

)∣∣∣∣2 1√
π(µ2 + ν2)

. (75)

The tomogram of the eigenstates ψn(x, t) of the operators â†(t)â(t), i.e., â†(t)â(t)ψn(x, t) =
nψn(x, t), n = 0, 1, 2, . . . can be calculated and the result is given by Equation (75) with
replacement µ = µ̄ and ν = ν̄. Thus, we have the tomogram of the Fock state of the inverted
oscillator, i.e.,

wn(X, µ, ν, t) =
1

2nn!
exp

[
− X2

(µ sinh t + ν cosh t)2 + (ν sinh t + µ cosh t)2

]

×
∣∣∣∣∣Hn

(
X√

(µ sinh t + ν cosh t)2 + (ν sinh t + µ cosh t)2

)∣∣∣∣∣
2

× 1√
π[(µ sinh t + ν cosh t)2 + (ν sinh t + µ cosh t)2]

, (76)

where X̄ =
√

2[(µ cosh t + ν sinh t)Reα + (µ sinh t + ν cosh t)Imα].

6. Conclusions

To conclude, we summarize the main results of the work and provide some general
observations. We studied the evolution of coherent and Fock states prepared using the
potential of a conventional oscillator, but moved later to the potential of an inverted
oscillator or parametric oscillator. The description of the states of the inverted oscillator
was used in the probability representation of quantum mechanics, where the state of
the inverted oscillator was identified with a probability distribution function. The same
property of the evolving state of the parametric oscillator was found. For construction of
this probability distribution, we used the formalism of quantizer–dequantizer operators
and applied this formalism to the new integral equation for the probability distribution
with an explicitly constructed integral kernel. Such equations can be extended and applied
for all other known representations of quantum states, where the density operators of
the states are mapped onto the functions–symbols of density operators, for which the
star-product corresponding to the product of the operators is introduced. The evolution
of the inverted oscillator coherent states, which is the evolution of the normal probability
distributions, can also be generalized to other states, such as squeezed states and thermal
oscillator states, as well as other representations of quantum states, such as groupoids
representations [27]. The thermal oscillator states for negative temperature, as well as the
structure of the Hilbert spaces of the inverted oscillator states using negative and positive
Hilbert spaces [17], will be addressed in the tomographic probability representation. We
can also extend application of the probability representation of quantum states to the
problems of quantum-like systems discussed in [28–31]. We will investigate these problems
in future papers.
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