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Abstract: In this article, we propose a modified multiplicative thinning-based integer-valued au-
toregressive conditional heteroscedasticity model and use the saddlepoint maximum likelihood
estimation (SPMLE) method to estimate parameters. A simulation study is given to show a better
performance of the SPMLE. The application of the real data, which is concerned with the number of
tick changes by the minute of the euro to the British pound exchange rate, shows the superiority of
our modified model and the SPMLE.
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1. Introduction

In practice, we can often observe a series of integer-valued data that have their own
distinguishing characteristics, and many models were proposed for modeling integer-
valued time series, such as the integer-valued autoregressive (INAR) process introduced by
McKenzie (1985) [1], and Al-Osh and Alzaid (1987) [2]; the integer-valued moving average
process proposed by Al-Osh and Alzaid (1988) [3]; the integer-valued autoregressive
moving-average model defined by McKenize (1988) [4]; and the integer-valued generalized
autoregressive conditional heteroscedasticity (INGARCH) model proposed by Ferland et al.
(2006) [5], among others. Here we focus on two kinds of the models above: one is the INAR
process, which was introduced as a convenient way to transfer the usual autoregressive
structure to a discrete-valued time series, and a p-order model, which is defined as follows:

Xt =
p

∑
i=1

αi ◦ Xt−i + εt,

where αi ∈ [0, 1) for i = 1, . . . , p, and {εt} is a sequence of independent and identically
distributed (i.i.d.) non-negative integer-valued random variables with E(εt) = µ and
Var(εt) = σ2

ε . The binomial thinning operator ◦ is defined by Steutel and Van Harn
(1979) [6] as:

α ◦ X =
X

∑
i=1

Yi, if X > 0 and 0 otherwise,

where Yi are i.i.d. Bernoulli random variables, independent of X, with a success probability
are defined by α. This model has been generalized by Qian and Zhu (2022) [7], and Huang
et al. (2023) [8], among others.
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The other is the INGARCH model which was proposed by Ferland et al. (2006) [5] to
model the observations of integer-valued time series which exist heteroscedasticity; this
INGARCH(p, q) model with a Poisson deviate is defined as:

Xt|Ft−1 : P(λt), λt = α0 +
p

∑
i=1

αiXt−i +
q

∑
j−1

β jλt−j,

where α0 > 0, αi ≥ 0, β j ≥ 0, i = 1, . . . , p, j = 1, . . . , q, p ≥ 1, q ≥ 0, and Ft−1 is the σ-field
generated by {Xt−1, Xt−2, . . . }. This model has been generalized by Hu (2016) [9], Liu
et al. (2022) [10], and Weiß et al. (2022) [11], among others. Weiß (2018) [12] and Davis
et al. (2021) [13] gave recent reviews. According to definitions of INAR and INGARCH
models, we noticed that the INAR model is thinning-based, while the INGARCH model is
specified by a conditional distribution with a time-varying mean depending on past ob-
servations. Combining the thinning-based stochastic equations and the INGARCH model,
Aknouche and Scotto (2022) [14] proposed a multiplicative thinning-based INGARCH
(MthINGARCH) model to model the integer-valued time series with high overdispersion
and persistence. Furthermore, it fits well with heavy-tailed data regardless of the choice
of innovation distribution and does not require recourse to complex random coefficient
equations. The MthINGARCH model is denoted by:

Xt = λtεt,

λt = 1 + ω ◦m +
q

∑
i=1

αi ◦ Xt−i +
p

∑
j=1

β j ◦ λt−j,
(1)

where the symbol ◦ stands for the binomial thinning operator, and 0 ≤ ω ≤ 1, 0 ≤ αi < 1
and 0 ≤ β j < 1 (i = 1, . . . , q, j = 1, . . . , p), m is a fixed positive integer number that was
introduced for more flexibility. Since there is no explicit probability mass function for the
series {Xt}, then the traditional maximum likelihood estimation (MLE) cannot be applied
to estimate the parameters; therefore, Aknouche and Scotto (2022) [14] used a two-stage
weighted least squares estimation instead.

Note that the probability mass function of the random variables cannot be given
directly for the likelihood function in some cases; to solve this problem, saddlepoint ap-
proximation has been proposed. Daniel (1954) [15] introduced saddlepoint techniques into
the statistical field, which have been extended by Field and Ronchetti (1990) [16], Jensen
(1995) [17], and Butler (2007) [18]. Saddlepoint techniques have been used successfully
in many applications because of the high accuracy with which they can approximate in-
tractable densities and tail probabilities. Pedeli et al. (2015) [19] proposed an alternative
approach based on the saddlepoint approximation to log-likelihood, and the saddlepoint
maximum likelihood estimation (SPMLE) was used to estimate the parameters of the INAR
model, which demonstrates the usefulness of this technique. Thus, through combining the
MthINGARCH model of Aknouche and Scotto (2022) [14] and the saddlepoint approxima-
tion, we propose a modified multiplicative thinning-based INARCH model for modeling
high overdispersion, before applying the saddlepoint method to the estimated parameters.
Although the two-stage weighted least squares estimation could be used to estimate the
parameters of our modified model, we still adopted the SPMLE as it was still expected to
have a better performance than the two-stage weighted least squares estimation in practice.
Here, we just consider the INARCH model instead of the INGARCH model because it
is difficult and complex to give the conditional cumulant-generating function of random
variables for the latter model when applying the saddlepoint approximation.

This article has the following structure. A modified multiplicative thinning-based
INARCH model is given, alongside some related properties in Section 2. Moreover, we use
the Poisson distribution and geometric distribution for innovations. Section 3 discusses the
SPMLE and its asymptotic properties, then simulation studies for both models with SPMLE
are also given. A real data example is analyzed with our modified models in Section 4, and
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comparisons with existing models are made. In-sample and out-of-sample forecasts are
used to show the superiority of the SPMLE and our modified model. The conclusion is
given in Section 5. Some details of SPMLE and proof of some theorems are presented in the
Appendix A.

2. A Multiplicative Thinning-Based INARCH Model

Note that N = {0, 1, 2, . . . } and Z = {. . . ,−1, 0, 1, . . . } are the set of non-negative
integers and integers, respectively. It can be supposed that {εt, t ∈ Z} is a sequence of i.i.d.
random variables with a mean of one and finite variance of σ2. The modified multiplicative
thinning-based INARCH (denoted by the MthINARCH(q)) model, which we deal with in
this paper, is defined by

Xt = λtεt, λt = ω ◦m +
q

∑
i=1

αi ◦ Xt−i, (2)

where 0 < ω ≤ 1, 0 ≤ αi < 1, i = 1, . . . , q, m is a fixed positive integer number. In real
applications, we can set m as the upper integer part of the sample mean. It is assumed
that the Bernoulli terms corresponding to the binomial variables ω ◦m and αi ◦ Xt−i are
mutually independent and independent of the sequence {εt, t ∈ Z}. The reason that we
defined the new model in this way can be explained as follows. The additive term 1 in λt
and in (1) is unnatural, and is posed to ensure λt > 0, but we can achieve this by adjusting
the range of ω; therefore, we adopted a simple version of λt in (2).

Now that we discuss the conditional mean and conditional variance of Xt. Note that
Ft−1 is the σ-field generated by Xt−1, Xt−2, . . .. For E(εt) = 1, let µt := E(Xt|Ft−1) =
E(λtεt|Ft−1) = E(εt)E(λt|Ft−1) = E(λt|Ft−1) = ωm + ∑

q
i=1 αiXt−i. Then we can obtain

the conditional variance; first, let νt := Var(λt|Ft−1) and σ2
t := Var(Xt|Ft−1). For E(εt) =

1, Var(εt) = σ2, so E(ε2
t ) = σ2 + 1. Therefore,

νt : = Var(λt|Ft−1) = ω(1−ω)m +
q

∑
i=1

αi(1− αi)Xt−i,

σ2
t : = Var(Xt|Ft−1) = E(X2

t |Ft−1)− [E(Xt|Ft−1)]
2 = E(λ2

t |Ft−1)E(ε2
t )− µ2

t

= [Var(λt|Ft−1) + (E(λt|Ft−1))
2]E(ε2

t )− µ2
t

= (σ2 + 1)(νt + µ2
t )− µ2

t = (σ2 + 1)νt + σ2µ2
t .

Proposition 1. The necessary and sufficient condition for the first-order stationarity of Xt defined
in (2) is that all roots of 1−∑

q
i=1 αizi = 0 should lie outside the unit circle.

Proposition 2. The necessary and sufficient condition for the second-order stationarity of Xt
defined in (2) is that (σ2 + 1)∑

q
i=1 α2

i < 1.

Proofs of Propositions 1 and 2 are similar to the proofs of Theorems 2.1 and 2.2 in
Aknouche and Scotto (2022) [14], so we omit the details.

For convenience, we need to specify the distribution of {εt} in (2). First, we let
εt ∼ P(1), then E(εt) = Var(εt) = 1, and this model is denoted by PMthINARCH(q). It is
easy to obtain

µt = ωm +
q

∑
i=1

αiXt−i, σ2
t = 2νt + µ2

t .

Second, let εt ∼ Ge(p∗). The mean of εt is (1− p∗)/p∗ = 1, so we have p∗ = 0.5 and the
variance is Var(εt) = 2. This model is denoted by GMthINARCH(q), then we have

µt = ωm +
q

∑
i=1

αiXt−i, σ2
t = 3νt + 2µ2

t .
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3. Parameter Estimation

In this section, we will consider the SPMLE and its asymptotic properties, and a
simulation study will be conducted to assess the performance of this estimator.

3.1. Saddlepoint Maximum Likelihood Estimation

Let θ = (ω, α1, . . . , αq)T be the unknown parameter vector. Note that according to the
condition on εt, σ2 is no longer an unknown parameter. The maximum likelihood estimator
of θ was obtained by maximizing the conditional log-likelihood function

l(θ) =
n

∑
t=1

log P(Xt = xt|Xt−1 = xt−1, . . . , Xt−q = xt−q), (3)

giving θ̂ = arg maxθ l(θ). But the above procedure is challenging to implement because it
is difficult to give the likelihood function due to the thinning operations.

Now we discuss the SPMLE. The conditional moment generating function of Xt is

E(euXt |Xt−1 = xt−1, . . . , Xt−q = xt−q) = E(euλtεt |Xt−1 = xt−1, . . . , Xt−q = xt−q)

= E(eu(ω◦m+∑
q
i=1 αi◦Xt−i)εt |Xt−1 = xt−1, . . . , Xt−q = xt−q)

= E(eu(ω◦m)εt)
q

∏
i=1

E(eu(αi◦xt−i)εt).

Remark 1. Here we just consider the INARCH model instead of the INGARCH model because
for the INGARCH model, the conditional cumulant-generating function of Xt should be given

by E(euXt |Xt−1 = xt−1, . . . , Xt−q = xt−q) = E(eu(ω◦m+∑
q
i=1 αi◦Xt−i+∑

p
j=1 β j◦λt−i)εt |Xt−1 =

xt−1, . . . , Xt−q = xt−q). Notice that Xt and λt are correlated, it is difficult and complex to show
the conditional cumulant-generating function.

Using the binomial theorem (a + b)n = ∑n
k=0 Ck

nan−kbk, we have

E(eu(ω◦m)εt) = E
[

E(eu(ω◦m)εt |εt)
]
= E(ωeuεt + (1−ω))m

= E

[
m

∑
r=0

Cr
m(1−ω)rωm−reu(m−r)εt

]
=

m

∑
r=0

Cr
m(1−ω)rωm−rE(eu(m−r)εt).

Similarly, we also have

E(eu(αi◦xt−i)εt) =
xt−i

∑
r=0

Cr
xt−i

(1− αi)
rα

xt−i−r
i E(eu(xt−i−r)εt).

Therefore, for the PMthINARCH(q) model, we have

E(eu(ω◦m)εt) =
m

∑
r=0

Cr
m(1−ω)rωm−re(e

u(m−r)−1),

E(eu(αi◦xt−i)εt) =
xt−i

∑
r=0

Cr
xt−i

(1− αi)
rα

xt−i−r
i e(e

u(xt−i−r)−1),

while for the GMthINARCH(q) model, we have

E(eu(ω◦m)εt) =
m

∑
r=0

Cr
m(1−ω)rωm−r 1

2− eu(m−r)
,

E(eu(αi◦xt−i)εt) =
xt−i

∑
r=0

Cr
xt−i

(1− αi)
rα

xt−i−r
i

1
2− eu(xt−i−r)

.
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Thus the conditional cumulant-generating function of Xt is:

Kt(u) = log[E(euXt |Xt−1 = xt−1, . . . , Xt−q = xt−q)] = log E(eu(ω◦m)εt) +
q

∑
i=1

log E(eu(αi◦xt−i)εt).

A highly accurate approximation to the conditional mass function of Xt at xt is provided
by the saddlepoint approximation:

f̃Xt |Xt−1=xt−1,...,Xt−q=xt−q
(xt) =

(
2πK′′t (ũt)

)− 1
2 exp{Kt(ũt)− ũtxt}, (4)

where ũt is the unique value of u which satisfies the saddlepoint equation K′t(u) = xt, with
K′t and K′′t represent the first and second order derivatives of Kt with respect to u. Notice
that it is difficult to solve the saddlepoint equation K′t(u) = xt analytically; similar to that
mentioned in Pedeli et al. (2015) [19], we can use the Newton–Raphson method to solve
this equation.

The log-likelihood function (3) can be approximated by summing the logarithms of
the corresponding density approximations (4), yielding:

L̃n(θ) =
n

∑
t=1

l̃t(θ) :=
n

∑
t=1

log f̃Xt |Xt−1=xt−1,...,Xt−q=xt−q
(xt). (5)

The value θ maximizing this expression is called the saddlepoint maximum likelihood
estimator (SPMLE).

3.2. Asymptotic Properties of the SPMLE

Now we discuss the asymptotic properties of the SPMLE. First we give the first-order
Taylor expansion of K′t(u) at u = 0 yields,

K′t(u) = K′t(0) + uK′′t (0) + o(u) = µt(θ) + uσ2
t (θ) + o(u), (6)

where µt(θ) and σ2
t (θ) are the conditional mean and conditional variance of Xt. Notice that

ũt can be given by K′t(ũt) = xt, so with the Taylor series expansion of K′t(u) in (6), we have:

ũt =
xt − µt(θ)

σ2
t (θ)

+ o(1), t = q + 1, . . . , n. (7)

Then, we can obtain the second-order Taylor expansion of Kt(u) at u = 0, which is:

Kt(u) ≈ uK′t(0) +
u2

2
K′′t (0) = uµt(θ) +

u2

2
σ2

t (θ). (8)

Focusing on the exponent of the saddlepoint approximation (4), Equation (8) gives

Kt(u)− uxt ≈ u(µt(θ)− xt) +
u2

2
σ2

t (θ).

Then using Equation (7), we have

Kt(ũt)− ũtxt ≈ −
[xt − µt(θ)]2

2σ2
t (θ)

. (9)

Hence, we can derive from (8) and (9) that the first-order saddlepoint approximation to the
conditional probability mass function is approximately:
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f̃Xt |Xt−1=xt−1,...,Xt−q=xt−q
(xt) =

(
2πK′′t (ũt)

)− 1
2

× exp

− (xt −ωm−∑
q
i=1 αixt−i)

2

2
[
(σ2 + 1)(ω(1−ω)m + ∑

q
i=1 αi(1− αi)xt−i) + σ2(ωm + ∑

q
i=1 αixt−i)2

]
.

Therefore, L̃n(θ) = ∑n
t=1 l̃t(θ) = ∑n

t=1 log f̃Xt |Xt−1=xt−1,...,Xt−q=xt−q
(xt) is the quasi-likelihood

function for the estimation of θ. To establish the large-sample properties, we have

Ln(θ) =
n

∑
t=1

lt(θ) =
n

∑
t=1

log fXt |Xt−1=xt−1,...,Xt−q=xt−q
(xt),

which is the ergodic approximation of L̃n(θ). The first and second derivatives of the quasi-
likelihood function are given in the Appendix A. The strong convergence and asymptotic
normality for the SPMLE θ̂n are established in the following theorems.

First of all, the assumptions for Theorems 1 and 2 are listed as follows.

Assumption 1. The solution of the MthINARCH process is strictly stationary and ergodic.

Assumption 2. Θ is compact and θ0 ∈ Θ̊, where Θ̊ denotes the interior of Θ. For technical reasons,
we assumed the lower and upper values of each component of parameters as 0 < ωL ≤ ω ≤ ωU ≤ 1
and 0 ≤ αL ≤ αi ≤ αU < 1, i = 1, . . . , q.

Theorem 1. Let θ̂n be a sequence of SPMLEs satisfying θ̂n = arg max
θ∈Θ

L̃n(θ), then under Assump-

tions 1 and 2, θ̂n converges to θ0 almost as surely, as n→ ∞.

Theorem 2. Under Assumptions 1 and 2, there exists a sequence of maximizers θ̂n of L̃n(θ) such
as that of n→ ∞,

√
n(θ̂n − θ0)

d−→ N(0, Σ−1),

where

Σ = −Eθ0

(
∂2lt(θ0)

∂θ∂θT

)
,

and Σ is positively definite.

3.3. Simulation Study

In this section, simulation studies of PMthINARCH(q) and GMthINARCH(q) mod-
els for finite sample size are given, where q = 2. Here, we used several combinations
to show the performance of SPMLE, and the mean absolute deviation error (MADE)
1
s

s

∑
j=1
|θ̂j − θj| was used as the evaluation criterion; here, s is the number of replications.

The sample size is n = 100, 200, 500, and the number of replications is s = 200. We used
the following combinations of (ω, α1, α2)

T as the true values to generate the random sam-
ple: A1 = (0.65, 0.4, 0.4)T, A2 = (0.9, 0.5, 0.3)T for the PMthINARCH(2) model, and B1
= (0.8, 0.4, 0.4)T, B2 = (0.65, 0.3, 0.5)T for the GMthINARCH(2) model. Tables 1 and 2
show the results of these simulations. Notice that as the sample sizes become larger, the
MADEs become smaller, and the estimates seem to be close to the true values. Therefore,
the SPMLE performs well.
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Table 1. Mean and MADE of estimates for PMthINARCH(2) model with SPMLE.

Model ω α1 α2

A1 m = 3

n = 100 Mean 0.6069 0.5356 0.3569
MADE 0.3681 0.2866 0.2510

n = 200 Mean 0.5722 0.5026 0.3952
MADE 0.3557 0.2434 0.2243

n = 500 Mean 0.6436 0.4888 0.4140
MADE 0.2724 0.1287 0.1005

A2 m = 8

n = 100 Mean 0.7782 0.5076 0.4750
MADE 0.2533 0.2752 0.3007

n = 200 Mean 0.7935 0.5161 0.4701
MADE 0.2318 0.2527 0.2778

n = 500 Mean 0.8703 0.5170 0.4677
MADE 0.1752 0.2155 0.2390

Table 2. Mean and MADE of estimates for GMthINARCH(2) model with SPMLE.

Model ω α1 α2

B1 m = 4

n = 100 Mean 0.7821 0.2930 0.2870
MADE 0.1195 0.1499 0.1766

n = 200 Mean 0.8190 0.3611 0.3185
MADE 0.1121 0.1425 0.1640

n = 500 Mean 0.8456 0.3610 0.3298
MADE 0.0601 0.1331 0.1414

B2 m = 6

n = 100 Mean 0.4718 0.2086 0.3811
MADE 0.1965 0.1466 0.1463

n = 200 Mean 0.5186 0.2632 0.5080
MADE 0.1607 0.1198 0.1412

n = 500 Mean 0.5468 0.2874 0.4896
MADE 0.1415 0.1050 0.0770

4. A Real Example

Here, we considered the number of tick changes by the minute of the euro to the
British pound exchange rate (ExRate for short) on December 12th from 9.00 a.m. to 9.00
p.m. The dataset is available at the website http://www.histdata.com/ (accessed on 17
January 2023). The series comprises of 720 observations with a sample mean of 13.2153
and a sample variance of 224.2498. Obviously, the sample variance is much larger than
the sample mean, which shows high overdispersion, and this high overdispersion can
also be seen in Figure 1a. Figure 1b,c are the plots of the autocorrelation function (ACF),
and the partial autocorrelation function (PACF) means that we know the tick changes
are correlated.

We analyzed the data using the PMthINARCH(3) model, GMthINARCH(3) model,
Poisson INAR(3) (here denoted by PINAR(3) for short) model, and the INARCH(3) model.
The Poisson INAR model is mentioned in Pedeli et al. (2015) [19], and the SPMLE was used
to estimate the parameters. Here, the innovations in the PINAR model were assumed to be
Poisson with a mean of one. The INARCH model with a Poisson deviate was proposed by
Ferland et al. (2006) [5], and the MLE was used to estimate the parameters. According to
Aknouche and Scotto (2022) [14], in real applications, we can set m as the upper integer
part of the sample mean. Here the sample mean is 13.2153, so m is set to the value of 14.
Table 3 gives the estimates of SPMLE and the values of the Akaike information criterion
(AIC) and Bayesian information criterion (BIC). According to Table 3, it is clear to see that
the values of AIC and BIC of PMthINARCH(3) and GMthINARCH(3) are smaller than

http://www.histdata.com/
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those of the PINAR(3) and INARCH(3) models, the values of AIC and BIC of INARCH(3)
are smaller than those of the PINAR(3) model. Moreover, the values of AIC and BIC of
PMthINARCH(3) are smaller than those of GMthINARCH(3). In summary, the INARCH
model performed better than the PINAR model; meanwhile, the PMthINARCH model and
GMthINARCH model performed better than the PINAR model and INARCH model.
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Figure 1. (a) The plot of integer-valued series of ExRate. (b) The plot of ACF of observations. (c) The
plot of PACF of observations.

Table 3. Estimation results: AIC and BIC values for PMthINARCH(3), GMthINARCH(3), PINAR(3)
and INARCH(3) models.

PMthINARCH(3) ω α1 α2 α3 AIC BIC
0.3242 0.5214 0.1945 0.0842 1395.296 1413.613

GMthINARCH(3) ω α1 α2 α3 AIC BIC
0.4904 0.2532 0.2155 0.2392 1402.472 1420.789

PINAR(3) α1 α2 α3 AIC BIC
0.1335 0.4116 0.3901 1572.806 1586.544

INARCH(3) ω α1 α2 α3 AIC BIC
8.5670 0.1140 0.1379 0.1009 1524.638 1542.955

According to Aknouche and Scotto (2022) [14], the two-stage weighted least squares
estimation (2SWLSE) was used to estimate the parameters of the MthINGARCH model.
Therefore, to compare the performance of 2SWLSE and SPMLE, and the performance of
PMthINARCH, GMthINARCH, and PINAR models, to consider the in-sample and out-of-
sample forecasts of these two estimation methods and the three models above, respectively.
First, we considered the in-sample forecast. We used all of the observations to estimate the
model, and then we could forecast the last 10 observations 711–720, the last 15 observations
706–720, and the last 20 observations 701–720; these three-time horizons of in-sample
forecast are denoted by C1, C2, and C3, respectively. Similar to the in-sample forecast
process, we also considered the out-of-sample forecast and divided all the observations
into three-time horizons: the first one was 1–710 and 711–720, the second one was 1–705
and 706–720, and the third one was 1–700 and 701–720, which are denoted by D1, D2, and
D3, respectively.

Here we illustrate the performance of the considered models by comparing the MADEs
of each forecast. The MADEs of in-sample forecasts and out-of-sample forecasts for
three models with SPMLE are shown in Table 4. The MADEs of the in-sample forecasts
and out-of-sample forecasts for the PMthINARCH model with 2SWLSE and SPMLE are
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shown in Table 5, and the in-sample forecasts and out-of-sample forecasts for the GMthI-
NARCH model with 2SWLSE and SPMLE are shown in Table 6. According to Table 4, the
MADEs of PMthINARCH(3) and GMthINARCH(3) are smaller than those of PINAR(3),
Tables 5 and 6 show that the MADEs of PMthINARCH(3) and GMthINARCH(3) of SPMLE
are smaller than those of 2SWLSE; meanwhile, in these three Tables, the MADEs of in-
sample forecasts were smaller than those of out-of-sample forecasts. In summary, the
PMthINARCH model and GMthINARCH model were superior to the PINAR model in
modeling this real data set, and the PMthINARCH model performed better than the GMthI-
NARCH model. Meanwhile, the performance of SPMLE was better than 2SWLSE for
MthINARCH models.

Table 4. MADEs of in-sample forecasts and out-of-sample forecasts for PMthINARCH(3),
GMthINARCH(3), and PINAR(3) models with SPMLE.

Methods of
Forecast PMthINARCH GMthINARCH PINAR

In-sample

C1 15.30 16.80 17.40

C2 15.87 17.67 18.40

C3 16.65 20.70 21.90

Out-of-sample

D1 17.50 17.70 22.50

D2 19.47 19.80 23.80

D3 20.50 25.25 27.50

Table 5. MADEs of in-sample forecasts and out-of-sample forecasts for PMthINARCH(3) model with
SPMLE and 2SWLSE.

Methods of Forecast SPMLE 2SWLSE

In-sample

C1 15.30 16.20

C2 15.87 17.20

C3 16.65 18.55

Out-of-sample

D1 17.50 18.60

D2 19.47 21.67

D3 20.50 22.70

Table 6. MADEs of in-sample forecasts and out-of-sample forecasts for GMthINARCH(3) model
with SPMLE and 2SWLSE.

Methods of Forecast SPMLE 2SWLSE

In-sample

C1 16.80 17.20

C2 17.67 18.07

C3 20.70 21.05

Out-of-sample

D1 17.70 19.90

D2 19.80 22.87

D3 25.25 26.50

5. Conclusions

In this paper, we modified a multiplicative thinning-based INARCH model. The
probability mass function of random variables is provided by saddlepoint approximation.
We used the SPMLE to estimate the parameters and obtain the asymptotic distribution
of the SPMLE. Moreover, to show the superiority of the MthINARCH models and the
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SPMLE, we used the PMthINARCH(q) process and GMthINARCH(q) process for dis-
cussion and comparison. The SPMLE performs well in the simulation studies. A real
dataset indicates that the PMthINARCH model and the GMthINARCH model are able
to describe the overdispersed integer-valued data, and the real data example leads to a
superior performance of the MthINARCH models compared with the PINAR and INARCH
models. In addition, the results also show a superior performance of SPMLE compared
with 2SWLSE.

For further discussion, more research is needed for some aspects. Here we used
the Poisson distribution and geometric distribution for εt; however, we could use the
negative binomial distribution or some zero-inflated distributions as well. Moreover, we
just considered the INARCH model, so the corresponding INGARCH model should be
considered as well.

Author Contributions: Conceptualization, F.Z.; methodology, Y.X.; software, Y.X. and Q.L.; valida-
tion, Y.X. and Q.L.; formal analysis, Y.X. and Q.L.; investigation, Y.X. and F.Z.; resources, Q.L.; data
curation, Y.X. and Q.L.; writing—original draft preparation, Y.X., Q.L. and F.Z.; writing—review
and editing, Y.X., Q.L. and F.Z.; visualization, Y.X.; supervision, F.Z.; project administration, F.Z.;
funding acquisition, Q.L. and F.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: Li’s work is supported by the National Natural Science Foundation of China (No. 12201069),
the Natural Science Foundation of Jilin Province (No. 20210101160JC), the Science and Technology
Research Project of Education Bureau of Jilin Province (No. JJKH20220820KJ), and Natural Science
Foundation Projects of CCNU (CSJJ2022006ZK). Zhu’s work is supported by the National Natural
Science Foundation of China (No. 12271206) and the Natural Science Foundation of Jilin Province
(No. 20210101143JC).

Data Availability Statement: The dataset is available at the website http://www.histdata.com/
(accessed on 17 January 2023).

Acknowledgments: The authors are very grateful to three reviewers for their constructive sugges-
tions and comments, leading to a substantial improvement in the presentation and contents.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Details of SPMLE

Here, we give the derivatives of Kt(u) mentioned in Section 3.1 of PMthINARCH(q)
and GMthINARCH(q). Now we give K′t(u) and K′′t (u) of PMthINARCH(q). In Section 3.1,
we have

Kt(u) = log E(eu(ω◦m)εt) +
q

∑
i=1

log E(eu(αi◦xt−i)εt) = log a1 +
q

∑
i=1

log b1,

so the derivatives of Kt(u) are given by

K′t(u) =
c1

a1
+

q

∑
i=1

d1

b1
, K′′t (u) =

e1a1 − c2
1

a2
1

+
q

∑
i=1

f1b1 − d2
1

b2
1

,

where

a1 =
m

∑
r=0

Cr
m(1−ω)rωm−reeu(m−r)−1,

b1 =
xt−i

∑
r=0

Cr
xt−i

(1− αi)
rα

xt−i−r
i eeu(xt−i−r)−1,

c1 =
m

∑
r=0

Cr
m(1−ω)rωm−reu(m−r)eeu(m−r)−1,

http://www.histdata.com/
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d1 =
xt−i

∑
r=0

Cr
xt−i

(1− αi)
rα

xt−i−r
i eu(xt−i−r)eeu(xt−i−r)−1,

e1 =
m

∑
r=0

Cr
m(1−ω)rωm−reu(m−r)(m− r)2eeu(m−r)−1[1 + eu(m−r)],

f1 =
xt−i

∑
r=0

Cr
xt−i

(1− αi)
rα

xt−i−r
i (xt−i − r)2eu(xt−i−r)eeu(xt−i−r)−1[1 + eu(xt−i−r)].

Then we give K′t(u) and K′′t (u) of GMthINARCH(q). In Section 3.1, we have

Kt(u) = log E(eu(ω◦m)εt) +
q

∑
i=1

log E(eu(αi◦xt−i)εt) = log a2 +
q

∑
i=1

log b2,

so the derivatives of Kt(u) are given by

K′t(u) =
c2

a2
+

q

∑
t=1

d2

b2
, K′′t (u) =

e2a2 − c2
2

a2
2

+
q

∑
t=1

f2b2 − d2
2

b2
2

,

where

a2 =
m

∑
r=0

Cr
m(1−ω)rωm−r 1

2− (2− eu(m−r))
,

b2 =
xt−i

∑
r=0

Cr
xt−i

(1− αi)
rα

xt−i−r
i

1
2− (2− eu(xt−i−r))

,

c2 =
1
4

m

∑
r=0

Cr
m(1−ω)rωm−r(m− r)

eu(m−r)

[1− (1− 1
2 eu(m−r))]2

,

d2 =
1
4

xt−i

∑
r=0

Cr
xt−i

(1− αi)
rα

xt−i−r
i (xt−i − r)

eu(xt−i−r)

[1− (1− 1
2 eu(xt−i−r))]2

,

e2 =
1
4

m

∑
r=0

Cr
m(1−ω)rωm−r(m− r)2eu(m−r) 1 + 1

2 eu(m−r)

[1− (1− 1
2 eu(m−r))]3

,

f2 =
1
4

xt−i

∑
r=0

Cr
xt−i

(1− αi)
rα

xt−i−r
i (xt−i − r)2eu(xt−i−r) 1 + 1

2 eu(xt−i−r)

[1− (1− 1
2 eu(xt−i−r))]3

.

Appendix A.2. Derivatives of the Quasi-Likelihood Function

The conditional log-quasi-likelihood function lt(θ) is continuous on Θ: for 1 ≤ t ≤ n,

∂lt(θ)
∂θ

= m1
∂µt(θ)

∂θ
+ m2

∂σ2
t (θ)

∂θ
,

∂2lt(θ)
∂θ∂θT = (m1 −m3)

∂2µt(θ)

∂θ∂θT − 2m1m3
∂µt(θ)

∂θ

∂σ2
t (θ)

∂θT + (m2 +
m2

3
2
−m2

1m3)
∂2σ2

t (θ)

∂θ∂θT ,

where

m1 =
Xt − µt(θ)

σ2
t (θ)

, m2 =
(Xt − µt(θ))2 − σ2

t (θ)

2σ4
t (θ)

, m3 =
1

σ2
t (θ)

.

Then the first and second derivatives of µt(θ) and σ2
t (θ) can be easily expressed by

∂µt(θ)

∂ω
= m,

∂µt(θ)

∂αi
= Xt−i,

∂σ2
t (θ)

∂ω
= (σ2 + 1)(m− 2ωm) + 2σ2(m2ω + m

q

∑
i=1

αiXt−i),



Entropy 2023, 25, 207 12 of 18

∂σ2
t (θ)

∂αi
= (σ2 + 1)(Xt−i − 2αiXt−i) + 2σ2(mωXt−i + αiX2

t−i),

∂2µt(θ)

∂ω2 = 0,
∂2µt(θ)

∂α2
i

= 1,
∂2µt(θ)

∂ωαi
= 0,

∂2σ2
t (θ)

∂ω2 = −2m(σ2 + 1) + 2m2σ2,
∂2σ2

t (θ)

∂α2
i

= −2Xt−i(σ
2 + 1) + 2X2

t−iσ
2,

∂2σ2
t (θ)

∂ωαi
= 2mσ2Xt−i.

Appendix A.3. Proof of Theorem 1

The techniques used here are mainly based on Francq and Zakoïan (2004) [20]. We
will establish the following intermediate results:

(i) limn→∞ supθ∈Θ

∣∣∣ 1
n
(

Ln(θ)− L̃n(θ)
)∣∣∣ = 0 a.s.

(ii) E(lt(θ)) is continuous in θ.
(iii) It exists t ∈ Z such that σ2

t (θ) = σ2
t (θ0) a.s., then⇒ θ = θ0.

(iv) Any θ 6= θ0 has a neighbourhood V(θ) such that

lim sup
n→∞

sup
θ∗∈Vk(θ)∩Θ

1
n

L̃n(θ
∗) > Eθ0 l1(θ0) a.s.

First we prove (i). Let at := supθ∈Θ |µ̃t(θ) − µt(θ)|, bt := supθ∈Θ |σ̃2
t (θ) − σ2

t (θ)|.
Standard arguments from Corollary 2.2 in Aknouche and Francq (2023) [21] show that
at(1 + Xt + supθ∈Θ µt(θ))→ 0, a.s. and bt(1 + X2

t + supθ∈Θ µ2
t (θ))→ 0, a.s., t→ ∞, so we

obtain the inequality

sup
θ∈Θ

∣∣∣∣ 1n (Ln(θ)− L̃n(θ))

∣∣∣∣ = sup
θ∈Θ

∣∣∣∣∣ 1
2n

n

∑
t=1

log
σ̃2

t (θ)

σ2
t (θ)

+ (
(xt − µ̃t)2

σ̃2
t

− (xt − µt(θ))2

σ2
t

)

∣∣∣∣∣
≤ sup

θ∈Θ

∣∣∣∣∣ 1
2n

n

∑
t=1

σ̃2
t (θ)− σ2

t (θ)

σ2
t (θ)

+ (
(xt − µ̃t(θ))2

σ̃2
t (θ)

− (xt − µt(θ))2

σ2
t

)

∣∣∣∣∣
≤ sup

θ∈Θ

1
2n

n

∑
t=1

|σ̃2
t (θ)− σ2

t (θ)|
σ2

t (θ)
+
|µ̃t(θ)− µt(θ)||µt(θ) + µ̃t(θ)− 2Xt|

σ̃2
t (θ)

+

∣∣σ̃2
t (θ)− σ2

t (θ)
∣∣|Xt − µt(θ)|2

σ2
t (θ)σ̃

2
t (θ)

≤ 1
2n

n

∑
t=1

2
σ2

t (θ)
at(1 + Xt + sup

θ∈Θ
µt(θ)) +

1 + σ̃2
t (θ)

σ2
t (θ)σ̃

2
t (θ)

ct(1 + X2
t + sup

θ∈Θ
µ2

t (θ)).

The a.s. limit holds because of the Cesàro lemma.
We prove (ii) now. For any θ ∈ Θ, let Vη(θ) = B(θ, η) be an open ball centered at θ

with radius η,

∣∣lt(θ̃)− lt(θ)
∣∣ ≤ |σ2

t (θ̃)− σ2
t (θ)|

∣∣∣∣∣X2
t + µ2

t (θ) + σ2
t (θ̃)

σ2
t (θ)σ

2
t (θ̃)

∣∣∣∣∣+ |µt(θ̃)− µt(θ)||µt(θ) + µt(θ̃)− 2Xt|
σ2

t (θ̃)
.

Then

E

 sup
˜θ∈Vη(θ)

∣∣lt(θ̃)− lt(θ)
∣∣ ≤‖ σ2

t (θ̃)− σ2
t (θ) ‖2‖

X2
t + µ2

t (θ) + σ2
t (θ̃)

σ2
t (θ)σ

2
t (θ̃)

‖2

+
‖ µt(θ̃)− µt(θ) ‖2‖ µt(θ) + µt(θ̃)− 2Xt ‖2

σ2
t (θ̃)

→ 0, as η → 0.
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Next, we check (iii). By Jensen’s inequality, we have

E[lt(θ)− lt(θ0)] = E
[

E
(

1
2

log
σ2

t (θ0)

σ2
t (θ)

+
(xt − µt(θ0))

2

2σ2
t (θ0)

− (xt − µt(θ))2

2σ2
t (θ)

∣∣∣∣Ft−1

)]
≤ E

[
log E

(
σ2

t (θ0)

σ2
t (θ)

∣∣∣∣Ft−1

)]
= E(log(1)) = 0.

The equality holds if
σ2

t (θ0)

σ2
t (θ)

= 1 a.s. Ft−1, i.e. θ = θ0.

Then the proof of (iv) is similar to that in the Supplementary Material A.4 in Xu and
Zhu (2022) [22]. Here we omit the details.

Appendix A.4. Proof of the Positive Definiteness of Σ

Here, we prove the positive definiteness of Σ. By definition of positive definiteness,
we need to prove for any ξ = (ξ0, ξ1, . . . , ξq)T ∈ Rq+1, if ξTΣξ = 0, then ξ = 0.

ξTΣξ = ξTE

[
1

2σ4
t (θ0)

∂σ2
t (θ0)

∂θ

∂σ2
t (θ0)

∂θT +
1

σ2
t (θ0)

∂µt(θ0)

∂θ

∂µt(θ0)

∂θT

]
ξ

= E

[
1

2σ4
t (θ0)

(ξT ∂σ2
t (θ0)

∂θ
)2 +

1
σ2

t (θ0)
(ξT ∂µt(θ0)

∂θ
)2

]
.

Suppose the left-hand side is 0, then under Assumption 1, the expectation in the
right-hand side is 0 for any t ∈ Z. Because σ2

t (θ0) > 0, this expectation is always greater

than or equal to 0. It equals 0 only when ξT ∂σ2
t (θ0)

∂θ
= 0 and ξT ∂µt(θ0)

∂θ
= 0 almost surely.

Thus, ξTΣξ = 0 yields ξT ∂σ2
t (θ0)

∂θ
= 0 and ξT ∂µt(θ0)

∂θ
= 0 a.s. for t ∈ Z, and vice versa.

Using vector form of
∂σ2

t (θ0)

∂θ
, we have

ξaξaξa
T ∂σ2

t (θ0)

∂θ
= ξξξT


(σ2 + 1)(m− 2ωm) + 2σ2(ωm2 + m ∑

q
i=1 αiXt−i)

(σ2 + 1)(Xt−1 − 2α1Xt−1) + 2σ2(ωmXt−1 + α1X2
t−1)

...
(σ2 + 1)(Xt−q − 2αqXt−q) + 2σ2(ωmXt−q + αqX2

t−q)

.

Suppose the left-hand side is 0 almost surely, then the right-hand side is also 0 almost
surely, which can be written as

ξ0(σ
2 + 1)(m− 2ωm) + 2σ2ξ0(ωm2 + m

q

∑
i=1

αiXt−i)

+ ξ1(σ
2 + 1)(Xt−1 − 2α1Xt−1) + 2σ2ξ1(ωmXt−1 + α1X2

t−1) + Mt−2 = 0 a.s.,

where

Mt−2 =
p

∑
k=2

ξk

[
(σ2 + 1)(Xt−k − 2αkXt−k) + 2σ2(ωmXt−k + αkX2

t−k)
]
.

So the coefficients of the above equation must satisfy

ξi(σ
2 + 1) = 0, 2σ2ξi = 0, i = 0, . . . , q.
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For σ2 > 0, we must have ξi = 0, i = 0, . . . , q. Thus, ξ = (ξ0, ξ1, . . . , ξq)T = 0, which
completes the proof of the positive definiteness of Σ.

Appendix A.5. Lemmas for the Proof of Theorem 2

Similar to the proof of Theorem 1.2 in Hu (2016) [9], we give some related lemmas for
the proof of Theorem 2. According to the derivatives of the quasi-likelihood function, we
have

∂µt(θ)

∂ω
= m,

∂σ2
t (θ)

∂ω
= (σ2 + 1)(m− 2ωm) + 2σ2

(
m2ω + m

q

∑
i=1

αiXt−i

)
,

≤ (σ2 + 1)m(1− 2ωL) + 2σ2

(
m2ωU + m

q

∑
i=1

αUXt−i

)
,

thus, E( ∂µt(θ)
∂ω )2 < ∞ and E( ∂σ2

t (θ)
∂ω )2 < ∞. Likewise for the other terms of parameters.

Lemma A1. Under Assumptions 1 and 2, when n→ ∞,

1√
n

n

∑
t=1

∂l̃t(θ0)

∂θi

d−→ N(0, Σ),
1
n

n

∑
t=1

∂2 l̃t(θ0)

∂θi∂θj

P−→ −Σ.

Proof of Lemma A1. First, we show that

n−1/2
n

∑
t=1

∣∣∣∣∂lt(θ0)

∂θi
− ∂l̃t(θ0)

∂θi

∣∣∣∣ P−→ 0, n−1
n

∑
t=1

∣∣∣∣∣∂2lt(θ0)

∂θi∂θj
− ∂2 l̃t(θ0)

∂θi∂θj

∣∣∣∣∣ P−→ 0.

Notice that µ̃t(θ) and σ̃2
t (θ) are stationary approximations of µt(θ) and σ2

t (θ), since Xt
is stationary and ergodic, using arguments similar to Proposition 2.1.1 in Straumann
(2005) [23], for fixed θ ∈ Θ, µ̃t(θ) and σ̃2

t (θ), µt(θ) and σ2
t (θ) are also stationary and ergodic.

Hence, similar to the proof of Lemma A2 in Hu and Andrews (2021) [24], it is easy to have

n−1/2
n

∑
t=1

∣∣∣∣∂lt(θ0)

∂θi
− ∂l̃t(θ0)

∂θi

∣∣∣∣ P−→ 0, n−1
n

∑
t=1

∣∣∣∣∣∂2lt(θ0)

∂θi∂θj
− ∂2 l̃t(θ0)

∂θi∂θj

∣∣∣∣∣ P−→ 0.

Therefore, it suffices to show that

1√
n

n

∑
t=1

∂lt(θ0)

∂θ

d−→ N(0, Σ),
1
n

n

∑
t=1

∂2lt(θ0)

∂θ∂θT
P−→ −Σ.

First, we should guarantee that

Eθ0

∥∥∥∥∂lt(θ0)

∂θ

∂lt(θ0)

∂θT

∥∥∥∥ < ∞, Eθ0

∥∥∥∥∂2lt(θ0)

∂θ∂θT

∥∥∥∥ < ∞. (A1)

Now we prove the first part of (A1).

Eθ0

(
∂lt(θ0)

∂ω

)2

= Eθ0

[
1

2σ4
t (θ0)

(
∂σ2

t (θ0)

∂ω

)2

+
1

σ2
t (θ0)

(
∂µt(θ0)

∂ω

)2
]
< ∞.

Similarly, we can prove other terms, thus, the first part of (A1) holds. The proof of the
second part of (A1) is similar, here we omit the details.
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Under (A1),
{

∂lt(θ0)

∂θ

}
is a martingale difference sequence with respect to {Ft}, it

follows that at θ = θ0, Eθ0

(
∂lt(θ0)

∂θ

∣∣Ft−1

)
= 0, so Eθ0

(
∂lt(θ0)

∂θ

)
= 0. Moreover, we have

shown that Σ = Eθ0

(
∂lt(θ0)

∂θ

∂lt(θ0)

∂θT

)
in Section 3.2. Hence

1√
n

n

∑
t=1

∂l̃t(θ0)

∂θ

d−→ N(0, Σ)

holds by the central limit theorem for martingale difference sequence in Billingsley (1961).

Similarly, we have Eθ0

(
∂l2

t (θ0)

∂θ∂θT

)
= −Σ.

Under Assumption 1,
1
n

n

∑
t=1

∂2 l̃t(θ0)

∂θi∂θj

P−→ −Σ follows from the ergodic theorem. Thus,

Lemma A1 is proved.

Before showing Lemma A2, we have

T̃n(u) ≡ l̃n

(
θ0 +

u√
n

)
− l̃n(θ0), u ∈ Rq+1,

we use T̃n to derive the asymptotic distribution of θ̂n.
For any u ∈ Rq+1, the Taylor series expansion of T̃n(u) at θ0 is

T̃n(u) =
1√
n

n

∑
t=1

uT ∂l̃t(θ0)

∂θ
+

1
2n

n

∑
t=1

uT ∂2 l̃t(θ0)

∂θ∂θT u +
1

2n

n

∑
t=1

uT
[

∂2 l̃t(θ∗)
∂θ∂θT −

∂2 l̃t(θ0)

∂θ∂θT

]
u, (A2)

where θ∗ = θ∗n(u) is on the line segment connecting θ0 and θ0 +
u√
n

. For Euclidean distance

‖ · ‖ and any compact set K ⊂ Rq+1, supu∈K ‖ θ∗ − θ0 ‖→ 0, as n→ ∞.

Lemma A2. Under Assumptions 1 and 2, when n→ ∞,

1
n

n

∑
t=1

[
∂2 l̃t(θ∗)
∂θ∂θT −

∂2 l̃t(θ0)

∂θ∂θT

]
P−→ 0.

Proof. Similar to Lemma A1, for any 1 ≤ i, j ≤ q + 1,

1
n

n

∑
t=1

∥∥∥∥∥∂2lt(θ0)

∂θi∂θj
− ∂2 l̃t(θ0)

∂θi∂θj

∥∥∥∥∥ P−→ 0. (A3)

Using arguments similar to the proof of Theorem 2.2 of Francq and Zakoïan (2004) [20],
it suffices to show

1
n

n

∑
t=1

[
∂2lt(θ∗)
∂θi∂θj

− ∂2lt(θ0)

∂θi∂θj

]
P−→ 0. (A4)

By the Taylor series expansion, we have

1
n

n

∑
t=1

∂2lt(θ∗)
∂θi∂θj

=
1
n

n

∑
t=1

∂2lt(θ0)

∂θi∂θj
+

1
n

n

∑
t=1

∂

∂θk

(
∂2lt(θ∗∗)

∂θi∂θj

)
(θ∗ − θ0),

here θ∗∗ = θ∗∗n (u) is on the line segment connecting θ0 and θ∗, such that for any u, we have
‖ θ∗∗ − θ0 ‖→ 0 a.s., n→ ∞.

From (A2), ‖ θ∗ − θ0 ‖→ 0 a.s, so

1
n

n

∑
t=1

∂

∂θk

(
∂2lt(θ∗∗)

∂θi∂θj

)
(θ∗ − θ0)→ 0, a.s.
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if

lim sup
n→∞

∥∥∥∥∥ 1
n

n

∑
t=1

∂

∂θk

(
∂2lt(θ∗∗)

∂θi∂θj

)∥∥∥∥∥ < ∞, a.s. (A5)

Then we have
1
n

n

∑
t=1

∂2lt(θ∗)
∂θi∂θj

→ 1
n

n

∑
t=1

∂2lt(θ0)

∂θi∂θj
a.s.,

so (A4) is proved.
Using arguments similar to the proof of Theorem 2.2 of Francq and Zakoïan (2004) [20],

there exists a neighborhood ν(θ0), that

Eθ0 sup
θ∈ν(θ0)∩Θ

∥∥∥∥∥ ∂

∂θk

(
∂2lt(θ)
∂θi∂θj

)∥∥∥∥∥ < ∞, sup
θ∈ν(θ0)

∥∥∥∥∥ 1
n

n

∑
t=1

[
∂2lt(θ)
∂θi∂θj

− ∂2 l̃t(θ)
∂θi∂θj

]∥∥∥∥∥ P−→ 0. (A6)

Therefore, by the ergodic theorem, we have

lim sup
n→∞

∥∥∥∥∥ 1
n

n

∑
t=1

∂

∂θk

(
∂2lt(θ∗∗)

∂θi∂θj

)∥∥∥∥∥ ≤ lim sup
n→∞

1
n

n

∑
t=1

sup
θ∈ν(θ0)∩Θ

∥∥∥∥∥ ∂

∂θk

(
∂2lt(θ)
∂θi∂θj

)∥∥∥∥∥
= Eθ0 sup

θ∈ν(θ0)∩Θ

∥∥∥∥∥ ∂

∂θk

(
∂2lt(θ)
∂θi∂θj

)∥∥∥∥∥ < ∞,

so (A5) is proved.
In view of (A3), (A4) and (A6), we obtain Lemma A2.

Lemma A3. For any compact set K ∈ Rq+1 and any ε > 0,

lim
σ→0

lim sup
n→∞

P
(

sup
u,v∈K,‖u−v‖<σ

∣∣∣T̃n(u)− T̃n(v)
∣∣∣ ≥ ε

)
= 0.

Proof. For any ε > 0, by (A2) we have

lim
δ→0

lim sup
n→∞

P
(

sup
u,v∈K,‖u−v‖<δ

∣∣∣T̃n(u)− T̃n(v)
∣∣∣ ≥ ε

)

≤ lim
δ→0

lim sup
n→∞

P
(

sup
u,v∈K,‖u−v‖<δ

∣∣∣∣∣ 1√
n

n

∑
t=1

(u− v)T ∂l̃t(θ0)

∂θ

∣∣∣∣∣ ≥ ε

3

)

+ lim
δ→0

lim sup
n→∞

P
(

sup
u,v∈K,‖u−v‖<δ

∣∣∣∣∣ 1n
(

n

∑
t=1

uT ∂2 l̃t(θ0)

∂θ∂θT u−
n

∑
t=1

vT ∂2 l̃t(θ0)

∂θ∂θT v

)∣∣∣∣∣ ≥ 2ε

3

)

+ lim
δ→0

lim sup
n→∞

P
{

sup
u,v∈K,‖u−v‖<δ

∣∣∣∣∣ 1n
[

n

∑
t=1

uT
(

∂2 l̃t(θ∗)
∂θ∂θT −

∂2 l̃t(θ0)

∂θ∂θT

)
u

−
n

∑
t=1

vT
(

∂2 l̃t(θ∗)
∂θ∂θT −

∂2 l̃t(θ0)

∂θ∂θT

)
v

]∣∣∣∣∣ ≥ 2ε

3

}
.

Because of Lemmas A1 and A2, we have

1√
n

n

∑
t=1

∂l̃t(θ0)

∂θ
= Op(1),

1
n

n

∑
t=1

∂2 l̃t(θ0)

∂θ∂θT = Op(1),

1
n

n

∑
t=1

[
∂2 l̃t(θ∗)
∂θ∂θT −

∂2 l̃t(θ0)

∂θ∂θT

]
= op(1),



Entropy 2023, 25, 207 17 of 18

where Op(1) and op(1) for vector and matrix means Op(1) and op(1) for every elements.
By the compactness of K, we have

lim
δ→0

lim sup
n→∞

P
(

sup
u,v∈K,‖u−v‖<δ

∣∣∣∣∣ 1√
n

n

∑
t=1

(u− v)T ∂l̃t(θ0)

∂θ

∣∣∣∣∣ ≥ ε

3

)
= 0,

lim
δ→0

lim sup
n→∞

P
(

sup
u,v∈K,‖u−v‖<δ

∣∣∣∣∣ 1n
(

n

∑
t=1

uT ∂2 l̃t(θ0)

∂θ∂θT u−
n

∑
t=1

vT ∂2 l̃t(θ0)

∂θ∂θT v

)∣∣∣∣∣ ≥ 2ε

3

)
= 0,

lim
δ→0

lim sup
n→∞

P
{

sup
u,v∈K,‖u−v‖<δ

∣∣∣∣∣ 1n
[

n

∑
t=1

uT
(

∂2 l̃t(θ∗)
∂θ∂θT −

∂2 l̃t(θ0)

∂θ∂θT

)
u

−
n

∑
t=1

vT
(

∂2 l̃t(θ∗)
∂θ∂θT −

∂2 l̃t(θ0)

∂θ∂θT

)
v

]∣∣∣∣∣ ≥ 2ε

3

}
= 0,

which completes our proof.

Appendix A.6. Proof of Theorem 2

Proof. Let T(u) = uTN(0, Σ)− 1
2 uTΣu, where N is a multivariate Gaussian random vector

with mean 0 and covariance matrix Σ. By Lemmas A1 and A2, for any u ∈ Rq+1 and
n→ ∞, the finite dimensional distributions of T̃n converge to those of T: T̃n(u)→ T(u).

By Lemma A3, similar to Hu (2016) [9], T̃n(u) is tight on the continuous function
space C(K) for any compact set K ∈ Rq+1. So by Theorem 7.1 in Billingsley (1999) [25],
T̃n(·) → T(·) on C(K). From Appendix A.4 and Lemma A1, Σ is positive finite and
invertible, meanwhile, T(·) is concave with the unique maximum Σ−1N(0, Σ) = N(0, Σ−1).
T̃n(·) is maximized at umax =

√
n(θ̂n − θ0). Thus, the result of Theorem 2 can be proved by

the proof of Lemma 2.2 and Remark 1 in Davis et al. (1992) [26].
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