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The present supplemental material contains a technically detailed description our models as well as additional
examples of solutions, obtained with heuristics, CPLEX’s QUBO solver, and tensor networks. In particular, in
Section SI we describe the model’s complete notation and its constraints in a way common in the Operations Research
literature. Section SII is devoted to a linear integer programming formulation of the model which is used for a
comparison with a classical approach. Section SIII provides all the details of the quadratic unconstrained binary
(QUBO) formulation. I Section SIV we comment further on classical algorithms for solving QUBO (or Ising) problems.
Finally, Section SV contains further computational results concerning particular railway situations.

SI. OUR MODEL: DETAILS

In this section, we introduce the model of the railway line and the dispatching conditions. Table I provides a
comprehensive summary of the notation used.

A. Railway line

We assume a railway line M to be a set of block sections: segments that can be occupied by at most one train
at a time, as discussed in the paper. These are either line blocks or station blocks; both are also refereed to as block
sections or just blocks. The set of line blocks are denoted by L, and the set of station blocks by S. This model also
incorporates sidings or double-track sections by treating them as station blocks.

Trains can only meet and pass (M-P) or meet and overtake (M-O) at stations. We follow the buffer approach by
treating each station as a block that can be occupied by up to b trains at a time, where b is the number of tracks at
the station. The other blocks can be occupied by only one train at a time.

The set of trains is denoted by J and is split into the subset of trains traveling in a given direction J 0 and the
subset of trains going in the opposite direction J 1:

J 0 ∪ J 1 = J and J 0 ∩ J 1 = ∅. (S1)

Let j ∈ J be a particular train. Its route is a sequence of blocks Mj = (mj,1,mj,2, . . . ,mj,end), where mj,1 is the
starting block and mj,end is the ending block. Each block (from Mj) is passed by train j once and only once (i.e.,
we do not consider recirculation). Given a train j and a block mj,k, the preceding block is πj(mj,k) = mj,k−1, while
the subsequent block is ρj(mj,k) = mj,k+1. We assume that neither ρj(mj,end) nor πj(mj,1) belongs to the analyzed
network segment.

We assume that a route can be defined solely by a sequence of station blocks Sj = (sj,1, sj,2, . . . , sj,end), where M-P
and M-O may occur (i.e., there are no alternative routes between stations). Similarly to blocks in general, for a train
j and a station block sj,k, we denote the preceding station block as πj(sj,k) = sj,k−1, and the subsequent station
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symbol description / explanation
Aj,s discretized set of all possible delays of train j at station s
H(t), H0, Hp time-dependent Hamiltonian of the annealing process and its

time-independent components
t ∈ [0, T ] quantum annealing time
σ̂x, σ̂z Pauli matrices
j ∈ J trains (jobs)
J 0 (J 1) trains heading in a given (opposite) direction
m ∈ M blocks (machines)
s ∈ S station blocks
l ∈ L line blocks
Mj , (Sj) the sequence of blocks (station blocks) in the route of j
sj,1, sj,k, sj,end the first, k-th, and last station block in the route of j
mj,1,mj,k,mj,end the first, k-th, and last block in the route of j
Sj = (sj,1, sj,2, . . . , sj,end) a sequence of all station blocks in j’s route
S∗j , (S∗∗j ) a sequence of station blocks in j’s route without the last (last

two) elements
Sj,j′ a common path of j and j′, ordered according to j’s path
S∗j,j′ a common path of j and j′ excluding the last block, ordered

according to j’s path
ρj(m), ρj(s) the subsequent block (station block) in j’s route
πj(m), πj(s) the preceding block (station block) in j ’s route
tout(j, s), (tin(j, s)) time of leaving (entering) station block s by train j
ttimetable
out (j, s) timetable time of leaving s by j
ptimetable(j,m), pmin(j,m) timetable and minimum time of j passing m
d(j, s) delay of j leaving s
dU (j, s) primary (unavoidable) delay of j leaving s
ds(j, s) secondary delay of j leaving s
dmax(j) maximum possible (acceptable) secondary delay for train j
τ(1)(j, ...)τ(2)(j, ...) minimum time for train j to give way to another train going in

the same (opposite) direction
x, (x) binary decision variable (vector of binary decision variables),

e.g., xj,s,d = xi is 1 if j leaves s with a delay d and 0 otherwise,
i ∈ {1, 2, . . . , n}

Q ∈ Rn×n symmetric QUBO matrix, where n is the number of logical
quantum bits.

f(x) objective function; the weighted sum of secondary delays

TABLE I: Notation summary

block as ρj(sj,k) = sj,k+1. It is convenient to assume that all train paths start and end at stations; hence we have
sj,1 = mj,1 and sj,end = mj,end.

B. Delay representation

Ideally, the time tout(j, s) when train j leaves station block s should be the time prescribed by the timetable,
ttimetable
out (j, s). If, however, tout(j, s) > ttimetable

out (j, s), there is a delay in leaving station block s:

d(j, s) = tout(j, s)− ttimetable
out (j, s). (S2)

Primary or unavoidable delays (as defined in Section IIA) are denoted by dU (j, s). If an already delayed train
enters a railway lineM, the initial delay will appear at the first block dU (j, sj,1). The unavoidable delay propagates
along the line, thereby providing a lower bound of the overall delay. Unavoidable delays are non-negative, so we have

dU (j, ρj(s)) = max{dU (j, s)− α(j, s, ρj(s)), 0}, (S3)

where α(j, s, ρj(s)) accounts for the possible time reserve in passing the sequence of blocks, starting from the one
directly after s and ending at station block ρj(s). In the same way, the unavoidable delays are propagated due to the
minimum times of the rolling stock circulation at terminals. Importantly, all unavoidable delays can be computed
prior to the optimization.
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The secondary delay dS(j, s) is denoted by

dS(j, s) = d(j, s)− dU (j, s). (S4)

We introduce upper bounds dmax(j) of the secondary delays as parameters of the model. Their values can either be
determined manually (maximum acceptable secondary delays of the given trains) or be obtained by using some fast
heuristics such as the first come first served (FCFS) or first leave first served (FLFS) approach (c.f. Section IVB of
the paper). Setting them too low, however, can result in an unfeasible model.

Having established the upper and lower bounds,

dU (j, s) ≤ d(j, s) ≤ dU (j, s) + dmax(j), (S5)

we can use the (integer) values of the delays as decision variables. The bounds ensure that these variables remain in
a finite range. In what follows, we shall call this description, in terms of the discretized delays as decision variables,
“delay representation”; it will be very convenient from the QUBO modeling point of view.

C. Dispatching conditions

Consider a train j whose path Mj consists of both station and line blocks. We assume that the leaving time of the
given block equals the entering time of the subsequent block:

tout(j,m) = tin(j, ρj(m)). (S6)

(This is a slight simplification as there is a finite time in which the train is located in both blocks.) For each train
j ∈ J and each block m ∈ Mj , two kinds of passing times are assigned: a nominal (timetable) ptimetable(j,m) and a
minimum pmin(j,m). Note that the latter can be smaller or equal to ptimetable(j,m) (as there can be a reserve).

We address common dispatching conditions, including: the minimum passing time condition, the single block
occupation condition, the deadlock condition, the rolling stock circulation condition at the terminal, and the capacity
condition.

Condition SI.1. The minimum passing time condition. The leaving time from the block section cannot be
lower than the sum of the entering time and the minimum passing time:

tout(j,m) ≥ tin(j,m) + pmin(j,m). (S7)

For subsequent station blocks s = mj,k and ρj(s) = mj,l, we have

tout(j, ρj(s)) ≥ tout(j, s) +

l∑
i=k+1

pmin(j,mj,i) = tout(j, s) +

l∑
i=k+1

ptimetable(j,mi)− α(j, s, ρj(s)), (S8)

where α(j, s, ρj(s)) is the time reserve mentioned before. In the delay representation, this condition takes the simple
form

d(j, ρj(s)) ≥ d(j, s)− α(j, s, ρj(s)). (S9)

(Compare this with Eq. (S3), where we have an equal sign for the lower limit.)

Condition SI.2. The single block occupation condition. Let j and j′ be two trains heading in the same
direction and sharing their routes between station s and subsequent station ρj(s). If train j leaves station block s at
time tout(j, s), the subsequent (tout(j

′, s) ≥ tout(j, s)) train j′ can leave this block at a time for which the following
equation is fulfilled:

tout(j
′, s) ≥ tout(j, s) + τ(1)(j, s, ρj(s)), (S10)

where τ(1)(j, s, ρj(s)) is the time required for train j to give way to train j′ on the route between station block s and
subsequent station block ρj(s). In the delay representation we have:

d(j′, s) + ttimetable
out (j′, s) ≥ d(j, s) + ttimetable

out (j, s) + τ(1)(j, s, ρj(s)) (S11)



4

or

d(j′, s) ≥ d(j, s) + ttimetable
out (j, s)− ttimetable

out (j′, s) + τ(1)(j, s, ρj(s)). (S12)

Hence, taking ∆(j, s, j′, s) = ttimetable
out (j, s)− ttimetable

out (j′, s), we get

d(j′, s) ≥ d(j, s) + ∆(j, s, j′, s) + τ(1)(j, s, ρj(s)). (S13)

As mentioned before, the condition in Eq. (S13) needs to be tested for tout(j
′, s) ≥ tout(j, s), i.e., d(j′, s) ≥ d(j, s) +

∆(j, s, j′, s); otherwise trains must be investigated in the reversed order.
The actual form of τ(1)(j, s, ρj(s)) depends on the dispatching details of the particular problem. We assume that

all the time reserves are realized on stations. Consequently, τ(1)(j, s, ρj(s)) is delay independent, which makes the
problem tractable.

Condition SI.3. The deadlock condition. Assume that two trains j and j′ are heading in opposite directions
on a route determined by subsequent station blocks s and ρj(s) in the path of train j. In the path of j′, these are
reversed, so j goes s→ ρj(s), while j′ goes ρj(s)→ s. Assume for now that the train j will enter the common block
section before j′. (This condition must also be checked in the reverse order.) Let τ(2)(j, s, ρj(s)) be the time required
for train j to get from station block s to ρj(s). Given this, the deadlock condition can be stated as follows:

tout(j
′, ρj(s)) ≥ tin(j, ρj(s)), (S14)

i.e.,

tout(j
′, ρj(s)) ≥ tout(j, s) + τ(2)(j, s, ρj(s)). (S15)

In the delay representation,

d(j′, ρj(s)) + ttimetable
out (j′, ρj(s)) ≥ d(j, s) + ttimetable

out (j, s) + τ(2)(j, s, ρj(s)) (S16)

and

d(j′, ρj(s)) ≥ d(j, s) + ttimetable
out (j, s)− ttimetable

out (j′, ρj(s)) + τ(2)(j, s, ρj(s)). (S17)

Hence, taking ∆(j, s, j′, ρj(s)) = ttimetable
out (j, s)− ttimetable

out (j′, ρj(s)), we get:

d(j′, ρj(s)) ≥ d(j, s) + ∆(j, s, j′, ρj(s)) + τ(2)(j, s, ρj(s)). (S18)

Again, condition Eq. (S18) needs to be tested for tout(j
′, ρj(s)) ≥ tout(j, s); otherwise trains must be investigated in

the reversed order.
Further, similarly to Condition SI.2, the form of τ(2)(j, s, ρj(s)) depends on the dispatching details resulting from

the formulation of the problem. Again, as all time reserves are assumed to be realized at stations, τ(2)(j, s, ρj(s)) is
delay independent, which makes the problem more tractable.

As mentioned before, the particular form of the τ -s are problem dependent; we propose the following ap-
proach to this. Suppose that train j departs from station s to subsequent station ρj(s), passing the blocks
mk,mk+1, . . . ,ml−1,ml, where s = mk and ml = ρj(s). The subsequent train proceeding in the same direction
is allowed to leave at least after

τ(1) (j, s) = max
i∈{k+1,...,l−1}

(
ttimetable
in (j,mi+1)− ttimetable

in (j,mi)
)
. (S19)

The subsequent train proceeding in the opposite direction is allowed to leave at least after

τ(2) (j, s) =
∑

i∈{k+1,...,l−1}

(
ttimetable
in (j,mi+1)− ttimetable

in (j,mi)
)
≡ ttimetable

in (j, ρj(s))− ttimetable
out (j, s). (S20)

Referring to the minimum and maximum delay conditions – see Eq. (S5) – there are pairs of trains for which either
Condition SI.2, or Condition SI.3, is always fulfilled. This observation simplifies our QUBO representation of the
problem.
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Condition SI.4. Rolling stock circulation condition at the terminal. If train j with a given train set assigned
terminates at a station where the next train j′ of the same train set starts its course (after turnover), i.e., sj,end = s1,j′ ,
the following condition arises:

tout(j
′, sj′,1) > tin(j, sj,end) + ∆(j, j′), (S21)

where ∆(j, j′) is the minimum turnover time. In the delay representation, we have

d(j′, 1) + ttimetable
out (j′, 1) > d(j, sj,end−1) + ttimetable

out (j, sj,end−1) + τ(2) (j, sj,end−1)) + ∆(j, j′). (S22)

Hence, taking R(j, j′) = ttimetable
out (j′, 1)− ttimetable

out (j, sj,end−1)− τ(2) (j, sj,end−1))−∆(j, j′), we get

d(j′, 1) > d(j, sj,end−1)−R(j, j′). (S23)

Condition SI.5. The capacity condition. Here we include the buffer approach of handling stations in our model.
Suppose we have a station block s, capable of handling up to b trains at a time. Let {j1, j2, . . . , jb+1} ⊂ J be any
b+ 1-tuple of trains. No time t may exist for which all the conditions below are simultaneously fulfilled:

tin(j1, s) ≤ t ≤ tout(j1, s)

. . .

tin(jb+1, s) ≤ t ≤ tout(jb+1, s). (S24)

In the delay representation,

d(j1, πj1(s)) + ttimetable
out (j1, πj1(s)) + τ(2) (j1, πj(s)) ≤ t ≤ d(j1, s) + ttimetable

out (j1, s)

. . .

d(jb+1, πj1(s)) + ttimetable
out (jb+1, πjb+1

(s)) + τ(2) (jb+1, πj(s)) ≤ t ≤ d(jb+1, s) + ttimetable
out (jb+1, s). (S25)

As a consequence of Condition SI.5, many new constraints may arise. These may make the calculations more
complex, even exceeding the capacity of the current quantum computers. In our particular problem instances, we will
temporarily ignore this condition, but we will verify the solutions against it.

Finally, it is worth observing that Conditions SI.1 - SI.5 refer to station blocks only; line blocks do not appear. As
we have a single-track line, there is no need to analyze line blocks in the optimization algorithm: the decisions are
made at the stations. The leaving time from the ending (station) block does not have to be analyzed either.

SII. LINEAR INTEGER PROGRAMMING APPROACH

Before proceeding towards the QUBO approach we introduce a linear integer programming formulation, too. This
does not needed to get a QUBO model, however, it is in the line with the standard treatment of railway dispatching
problems. Meanwhile it is formulated so that it is compares easily with the QUBO approach. It will therefore be
used as a reference for comparisons.

Similarly to the model in [1], we opt for using precedence variables as it is very suitable for a single-track railway
model. We introduce the binary decision variables yj,j′,k so that they have a value of 1 if the train j occupies the
particular part of the track (denoted by k) before train j′, and are zero otherwise.

Train delays will be represented with discrete decision variables d(j, s) that fulfil Eq. (S5). (The discretization is
not necessary, but it is practical for the comparison with the QUBO results, as the discretization is required there
and our particular problem instances were found to be tractable with a standard solver.)

Note that the ordering of the train departures is uniquely described by the precedence variables (y-s), but for each
configuration there is still some freedom in determining the value of the delay variables (d-s). For the solution to be
valid, the values of the y-s and d-s should be consistent; this will be ensured by the constraints.

The constraints are the following. The constraints in Eq. (S9), and Eq. (S23) are linear; hence, they can directly be
included in the model. The single block occupation condition, see Eq. (S13), is expressed in terms of the precedence
and delay variables:

d(j′, s) +M · (1− yj,j′,s) ≥ d(j, s) + ∆(j, s, j′s) + τ(1)(j, s, ρj(s)), (S26)

where yj,j′,s determines the order of trains j and j′ leaving station s, and M is an arbitrary large number. For two
trains j and j′ heading in opposite directions, the deadlock condition is to be prescribed. For trains with a common
path between subsequent stations k → {s, ρj(s)}, the requirement in Eq. (S18) takes the following form:

d(j′, s) +M · (1− yj,j′,k) ≥ d(j, s) + ∆(j, s, j′ρj(s)) + τ(2)(j, s, ρj(s)), (S27)
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where yj,j′,k determines which train enters the common path first.
Finally, as to the objective function, the weighted sum of secondary delays (or the total weighted tardiness in the

scheduling terminology) will be minimized, which is also inherently linear:

min
∑
j

d(j, sj,end−1)− dU (j, sj,end−1)

dmax(j)
wj , (S28)

where wj is the weight reflecting the train’s priority. Having formulated a linear model of the problem for comparison,
let us now return to the QUBO model.

SIII. QUBO FORMULATION OF OUR MODEL

We construct a QUBO model that can be solved either by quantum annealers or by classical algorithms inspired
by them. After presenting a constrained 0-1 representation, we employ a penalty method to move the constraints to
the effective objective function to get an unconstrained problem. This is maybe the most challenging step, not only
in our present work, but also in logical programming using QUBOs.

A. 0-1 program representation

As a step toward a QUBO model, we formulate our problem entirely in terms of binary decision variables. We
achieve this by the discretization of time, i.e., the discretization of the delay variables. Hence, we need to set a delay
resolution step. We opt for a resolution of one minute as this is reasonable from train timetabling point of view (and
the generalization is straightforward). Given such a representation, Eq. (S5) can be rewritten into the following form:

d(j, s) ∈ Aj,s = {dU (j, s), dU (j, s) + 1, . . . , dU (j, s) + dmax(j)}, (S29)

where Aj,s is a discretized set of all possible delays of train j at station s.
For the QUBO representation, we introduce the binary decision variables

xs,j,d ∈ {0, 1}, (S30)

which take the value of 1 if train j leaves station block s at delay d, and zero otherwise. These variables will also be
referred to as “QUBO variables.” Their vector is x ∈ {0, 1}n. Each variable is assigned a logical quantum bit. Hence
solving the problem requires n of these bits. The number n depends on the size of the system and is dependent on
the number of trains and stations and the value of the maximum secondary delay.

We assume that each train leaves each station block once and only once:

∀j∀s∈Sj
∑
d∈Aj,s

xs,j,d = 1. (S31)

Remark SIII.1. Observe that Conditions SI.2 and SI.3 (the single block occupation condition and the deadlock
condition) refer to the subsequent stations in train j path – s and ρj(s). (Recall that ρj(sj,end) does not exist in
our model.) Time of entering of ρj(s) is computed from xs,j,d and τ(1)(j, s, ρj(s)), but it does not refer to xρj(s),j,d.
Hence we do not need to investigate the leaving time from the last block of the train’s path. We assume that the
arrival time at this block can be computed from the leaving time from the penultimate block and the passing time.
(Of course, our goal is to reduce the number of QUBO variables in the analysis.) Here, delays at the end of the route
are investigated on leaving the penultimate station of the analyzed route.

Let Sj,j′ be the sequence of blocks in the common route of trains j and j′. If both these trains are traveling in the
same direction, the order of blocks in Sj,j′ is straightforward. Alternatively, we need to regard the block sequence of
train j as the reversed sequence of blocks of train j′. Therefore, we introduce S∗j,j′ = Sj,j′ \ {sj,end} for Conditions
SI.2 and SI.3. Condition SI.2 states that two trains traveling in the same direction are not allowed to appear at the
same block section. In particular, from Eq. (S13) it follows that

∀(j,j′)∈J 0(J 1)∀s∈S∗
j,j′

∑
d∈Aj,s

 ∑
d′∈B(d)∩Aj′,s

xj,s,dxj′,s,d′

 = 0, (S32)
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where B(d) = {d+ ∆(j, s, j′, s), d+ ∆(j, s, j′, s) + 1, . . . , d+ ∆(j, s, j′, s) + τ(1)(j, s, ρj(s))− 1} is a set of delays that
violates Condition SI.2.

Assume now that two trains j and j′ are heading in opposite directions. From Eq. (S18) it follows that

∀j∈J 0(J 1),j′∈J 1(J 0)∀s∈S∗
j,j′

∑
d∈Aj,s

 ∑
d′∈C(d)∩Aj′,ρj(s)

xj,s,dxj′,ρj(s),d′

 = 0 (S33)

where C(d) = {d(j, s)+∆(j, s, j′, ρj(s)), d(j, s)+∆(j, s, j′, ρj(s))+1, . . . , d(j, s)+∆(j, s, j′, ρj(s))+τ(2)(j, s, ρj(s))−1}.
We do not need to examine delays when leaving the ending station of the train’s path; see Remark SIII.1. For the

minimum passing time – Condition SI.1 – we introduce S∗∗j = Sj \ {sj,end, sj,end−1}. From Eq. (S9) we have:

∀j∀s∈S∗∗j
∑
d∈Aj,s

 ∑
d′∈D(d)∩Aj,ρj(s)

xj,s,dxj,ρj(s),d′

 = 0, (S34)

where D(d) = {0, 1, . . . , d− α(j, s, ρj(s))− 1}.
Following the the rolling stock circulation (Condition SI.4) we have, from Eq. (S23),

∀j,j′∈terminal pairs
∑

d∈Aj,s(j,end−1)

∑
d′∈E(d)∩Aj′,1

xj,s(j,end−1),d · xj′,s(j,′1),d′ = 0, (S35)

where E(d) = {0, 1, . . . , d−R(j, j′)}.
The objective of the algorithm is to schedule trains so that secondary delays are minimized. The general objective

function can be written in the following form:

f(d, j, s) = f̂
(
d̂, j, s

)
, (S36)

where d̂ = d(j,s)−dU (j,s)
dmax(j)

. As discussed in Section IIA, primary delays (dU ) are unavoidable, so they are not relevant
for the objective. Recall that upper bounds of the secondary delays dmax(j) have been introduced as parameters,
see Eq. (S5). Thus we require f̂(d̂, j, s) to obey the following conditions:

f̂(d̂, j, s) =


0 if d̂ = 0,

maxd̂∈[0,1] f̂(d̂, j, s) if d̂ = 1,

is non-decreasing in d̂ if d̂ ∈ (0, 1).

(S37)

This non-decreasing property reflects that higher delays cannot contribute to a lower extent to the objective. Finally,
our objective function will be linear:

f(x) =
∑
j∈J

∑
s∈S∗j

∑
d∈Aj,s

f(d, j, s) · xj,s,d, (S38)

where f(d, j, s) are the weights.
Apart from the constraints discussed above, the penalty function can be chosen deliberately, which adds some

relevant flexibility to the model. By selecting the appropriate f̂(d̂, j, s), various dispatching policies can be represented.
This ensures freedom of choice in striving for the best suited dispatching solution. Let us mention just a few of them:

1. For a quasi-minimization of the maximum secondary delays, one may opt for a strongly increasing convex
function in d̂, such as an exponential or geometrical.

2. To minimize the number of delayed trains, one may opt for the step function d̂.

3. To minimize the sum of delays, one may opt for a linear function in d̂.

4. Subsequent trains can be assigned various weights for the delays on which their priorities depend.

5. A subset of stations can be selected as the only relevant stations from the point of view of delays. For practical
reasons, we analyze delays on penultimate stations – see Remark SIII.1.

For our particular dispatching problems, we select the policies set out in Points 3− 5.
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B. A remark on the penalty coefficients

To get some hint of how to determine the coefficients of the summands that warrant feasibility, let us first consider
a direct search solution of a QUBO of the form in Eq. (4). This amounts to evaluating the objective function with all
possible values of the decision variables. In our effective QUBO in Eq. (26), the total matrix Q is a sum of the terms
in Eq. (22) and Eq. (25) and the original objective function of Eq. (20). So we have a sum of three QUBOs, and the
objective function value is linear in the matrix of QUBOs. Hence, the objective value will be the sum of the original
objective function value and the values of the summands representing the constraints.

The feasibility terms have a negative minimum −L because of the omitted 0th order terms when using Eq. (25)
(instead of Eq. (24) if the solution is feasible). For each element of the outer sum in Eq. (25), the value psum contributes
to L, hence L = psum · (the number of linear constraints). The value

f ′′(x) = Ppair + Psum − L (S39)

will be zero if the solution is feasible, and non-zero otherwise. We will call it the hard constraints’ penalty.
If there is solution in which the “cost” of violating some hard constraints is lower than the particular objective

function value, the effective QUBO may yield a minimum that is unfeasible. A way to avoid this is to ensure that
the lowest violation of any hard constraint has a larger contribution to f ′(x) than a violation of all soft constraints
(encoded in the objective f(x)) of a given feasible (not necessarily optimal) solution. Such a solution can be obtained
by some fast heuristics.

This suggests that one should assign high coefficients to the hard constraints. If one employs a direct search
algorithm calculating the values of the objective very accurately, this approach can work out easily. However, the
numerical accuracy is always limited, and other inaccuracies of the minimum search can also appear. In the case
of a quantum annealer, this is due to the noise of the system. What we get in reality is not the guaranteed to be
absolute minimum but a set of samples: vectors for which the effective objective function is close to the minimum. If
the coefficients are too high, the original objective function is just a small perturbation over the feasibility violations.
Hence, while obtaining strictly feasible solutions, the actual minimum can be lost in the noise. Therefore finding the
appropriate values of psum and ppair amounts to finding the values that address both the criteria of both feasibility
and optimality to a suitable extent.

C. A simple example

Let us demonstrate our approach in a simple example. Consider two trains j ∈ {1, 2}, two stations s ∈ {1, 2}, and
a single track between them. The passing time value (scheduled and minimum) between the stations is 1 (minute)
for both trains. Train j = 1 is ready to depart from station s = 1 (heading to s = 2) at the same time as train j = 2
is ready to depart from station s = 2 (heading to s = 1). Under these circumstances, a conflict appears on a single
track between the stations.

Let the initial delay of both trains be d = dU = 1. As one of the trains needs to wait a minute to meet and pass
the other one, the maximum acceptable secondary delay is dmax = 1; see Eq. (S29). Taking the QUBO representation
as in Eq. (S30) (i.e., xs,j,d), we have the following 4 quantum bits: x1,1,1, x1,1,2 (train 1 can leave station 1 at delay
1 or 2), x2,2,1, and x2,2,2 (train 2 can leave station 2 at delay 1 or 2). The linear constraints express that each train
departs from each station once and only once, so Eq. (S31) takes the form

x1,1,1 + x1,1,2 = 1 and x2,2,1 + x2,2,2 = 1. (S40)

Referring to Eq. (25), the optimization subproblem is as follows:

Psum = −psum
(
x21,1,1 + x21,1,2 − x1,1,1x1,1,2 − x1,1,2x1,1,1 + x22,2,1 + x22,2,2 − x2,2,1x2,2,2 − x2,2,2x2,2,1

)
, (S41)

with the optimal value equal to −L = −2psum.
The quadratic constraint is that the two trains are not allowed to depart from the stations at the same time, i.e.,

x1,1,1x2,2,1 = 0 and x1,1,2x2,2,2 = 0. Using Eq. (22), the optimization subproblem takes the following form:

Ppair = ppair (x1,1,1x2,2,1 + x2,2,1x1,1,1 + x1,1,2x2,2,2 + x2,2,2x1,1,2) , (S42)

with the optimal value equal to 0. Note that since we have only two stations in this simple example, the minimum
passing time condition does not appear (S∗∗ = ∅).

Finally, a possible objective function is

f(x) = x1,1,2w1 + x2,2,2w2 = x21,1,2w1 + x22,2,2w2, (S43)
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where the secondary delay of train 1 is penalized by w1 and the secondary delay of train 2 is penalized by w2.
Let the vector of decision variables be denoted by x = [x1,1,1, x1,1,2, x2,2,1, x2,2,2]T . The QUBO problem can thus

be written in the form of Eq. (4), so

Q =

−psum psum ppair 0
psum −psum + w1 0 ppair
ppair 0 −psum psum

0 ppair psum −psum + w2

 . (S44)

As the solution is parameter dependent, we can use various trains prioritization policies. For the sake of demonstra-
tion, assume that train j = 2 is assigned a higher priority than train j = 1. This implies the assignment of different
penalty weights. We set w1 = 0.5 and w2 = 1.

As discussed in Section III C, to ensure that the calculated solution is feasible, we require that the following
conditions are met: psum > max{w1, w2} and ppair > max{w1, w2}. We propose ppair = psum = 1.75, so matrix Q to
takes following form:

Q =

−1.75 1.75 1.75 0
1.75 −1.25 0 1.75
1.75 0 −1.75 1.75

0 1.75 1.75 −0.75

 . (S45)

The optimal solution is x = [0, 1, 1, 0]T (train 2 goes first) with f ′(x) = −3. Another feasible solution (not optimal) is
x = [1, 0, 0, 1]T (train 1 goes first) with f ′(x) = −2.5. The other solutions are not feasible: for example, x = [1, 0, 1, 0]T

is not feasible as the two trains are expected to depart from the stations at the same time, with f ′(x) = 0. Observe
that the classical heuristics (such as FCFS and FLFS) do not make a difference between the two feasible solutions,
as both trains enter the conflict segment at the same time and need the same time to pass it. Also, both solutions
have the same value of the secondary delay.

Having formulated our model as a QUBO problem, it is ready to be solved on a physical quantum annealer or by
a suitable algorithm.

SIV. CLASSICAL ALGORITHMS FOR SOLVING ISING PROBLEMS

An additional benefit of formulating problems in terms of Ising-type models is that the existing methods developed
in statistical and solid-state physics for finding ground states of physical systems can also be used to solve an Ising-
type model or, equivalently, a QUBO model on classical hardware. Notably, variational methods based on finitely
correlated states (such as matrix product states for 1D systems or projected entangled pair states suitable for 2D
graphs) have had a very extensive development in the past few decades. A quantum information theoretic insight
into density matrix renormalization group methods (DMRG [2]) – being the most powerful numerical techniques in
solid-state physics at that time – helped in proving the correctness of DMRG. These methods also led to a more
general view of the problem [3], resulting in many algorithms that have potential applications in various problems,
in particular solving QUBOs by finding the ground state of a quantum spin glass. We have used the algorithms
presented in [4] to solve the models derived in the present manuscript.

Both quantum computers and the mentioned classical algorithms may not provide the energy minimum and the
corresponding ground state (as it is not trivial to reach it [5]) but another eigenstate of the problem with an eigenvalue
(i.e., a value of the objective function) close to the minimum. The corresponding states are referred to as “excited
states.” Another important point in interpreting the results of such a solver is the degeneracy of the solution: the
possibility of having multiple equivalent optima.

In analyzing these optima, it is helpful that for up to 50 variables, one can calculate the exact ground states and the
excited states closest to them using a brute-force search on the spin configurations with GPU-based high-performance
computers. In the present work, we also use such algorithms, in particular those introduced in [6] for benchmarking
and evaluating our results for smaller examples. This way we can compare the exact spectrum with the results
obtained from the D-Wave quantum hardware and the variational algorithms.

SV. FURTHER EXAMPLES OF SOLUTIONS

In this Section we present solutions of dispatching problems depicted in Fig. S1 on railway line line No. 191. Let us
first examine the solutions obtained with simple heuristics: with FCFS in Fig. S2 and with FLFS in Fig. S3. It appears
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(a) Case 1 – single conflict, observe that the additinal delay
of Ks2 will propagate to the delay of Ks3.
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(b) Case 2 – two conflicts, simillar to Fig. 1(a), but with no
impact of Ks2 on Ks3.
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(c) Case 3 – multiple conflicts.
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(d) Case 4 – conflict that is straightforward to resolve.

FIG. S1: The conflicted timetables, various types of conflicts.

that these heuristics can yield trouble-causing solutions. This situation suggests a solution in which one train needs
to have a time-consuming stopover on a particular station; see Figs. 2(c),3(b). (Such problems sometimes appear in
real-life train dispatching too.) Finally, if the problem is easily solvable, as in case 4, all the methods analyzed in the
paper give the same solution. This serves as a quality test of our method. It is also interesting to compare these with
the result of the AMCC approach in Fig. S4.

Now let us turn our attention to the solutions obtained from our QUBO model in the same situation. The model
was solved with CPLEX’s QUBO solver (results in Fig. S5) and tensor networks (results in Fig. S6). Recall that
this model offers a high flexibility in decisions on train prioritization. It focuses on the train delay propagation on
subsequent trains, as illustrated by the comparison of all the solutions of case 1. Provided Ks2 is delayed, an additional
delay of Ks3 would happen (which we call a “cascade effect”). Furthermore, the tensor network output in Fig. S6
demonstrates the degeneracy of the ground state and the solutions in the low excited state, which, however, do not
have a relevant impact on the dispatching situation. We remark also that all CPLEX solutions in this case coincide
with those obtainable from the linear IP model.

[1] J. Lange and F. Werner, J Sched 21, 191 (2018).
[2] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[3] F. Verstraete and J. I. Cirac, Phys. Rev. B 73, 094423 (2006).
[4] M. M. Rams, M. Mohseni, D. Eppens, K. Jałowiecki, and B. Gardas, Phys. Rev. E 104, 025308 (2021).
[5] J. Czartowski, K. Szymański, B. Gardas, Y. V. Fyodorov, and K. Życzkowski, Phys. Rev. A 100, 042326 (2019).
[6] K. Jałowiecki, M. M. Rams, and B. Gardas, Comput. Phys. Commun 260, 10.1016/j.cpc.2020.107728 (2021).

https://doi.org/10.1007/s10951-017-0526-0
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/PhysRevB.73.094423
https://doi.org/10.1103/PhysRevE.104.025308
https://doi.org/10.1103/PhysRevA.100.042326
https://doi.org/10.1016/j.cpc.2020.107728


11

08:00 08:15 08:30 08:45 09:00 09:15 09:30 09:45 10:00
time

1

3

7

10

st
at

io
n 

bl
oc

k

Ks1
Ks1

Ks1

Ks3
Ks3

Ks3

IC1
IC1

IC1 Ks
2

Ks
2

Ks
2

IC
2

IC
2

IC
2

Ks
4

Ks
4

Ks
4

case1, FCFS heuristics

(a) Case 1 – “cascade effect”; the delay of Ks2 causes a
further delay of Ks3.

08:30 08:45 09:00 09:15 09:30 09:45 10:00
time

1

3

7

10

st
at

io
n 

bl
oc

k

Ks1
Ks1

Ks1

Ks3
Ks3

Ks3

IC1
IC1

IC1 Ks
2

Ks
2

Ks
2

IC
2

IC
2

IC
2

Ks
4

Ks
4

Ks
4

case2, FCFS heuristics

(b) Case 2 – optimal solution reached rather “at random”:
probably it is reached because the problem is relatively

simple.
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(c) Case 3 – a problematic solution with undesirably long
waiting times of certain trains; observe the stopover of Ks2.
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(d) Case 4 – optimal solution according to all methods.

FIG. S2: The FCFS solutions, some with a trouble-causing stopover of a particular train.
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(a) Case 1 – optimal solution is reached “at random,” as is its
duplicate in Fig. 3(b), which is an undesired solution.
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(b) Case 2 – duplicate of the solution in Fig. 3(a) causing an
stopover of Ks3.
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(c) Case 3 – no unacceptable stopovers.
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(d) case 4 – optimal solution according to all methods.

FIG. S3: The FLFS solutions, some with a trouble-causing stopover of a particular train.
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(a) Case 1 – “cascade effect,” the delay of Ks2 causes further
a delay of Ks3.
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(b) Case 2 – no unacceptable stopovers.
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(c) Case 3 – no unacceptable stopovers
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(d) Case 4 – optimal solution according to all methods.

FIG. S4: The AMCC solutions. The minimization of the maximal secondary delays from AMCC excludes unacceptably long
stopovers such as those in Figs. 2(c) and 3(b). However, these solutions do not exclude the propagation of smaller delays

among several trains (“cascade effect”); see Fig. 4(a).
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(a) Case 1 – no “cascade effect” (Ks2 does not delay Ks3): a
consequence of the pioritization of Ks2.
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(b) Case 2 – no uncacceptable stopovers.
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(c) Case 3 – no unacceptable stopovers.
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(d) Case 4 – optimal solution according to all methods.

FIG. S5: The CPLEX solutions: exact ground states of the QUBOs. There are no unacceptably long stopovers. Further, the
trains’ prioritization and the delay propagation to subsequent trains are taken into account. The solutions are the same as

these of the linear solver.
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(a) Case 1 – ground state of the QUBO; the degeneracy of the
ground state is reflected by a stay of IC1 both at block 3 and at

block 7.
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(b) Case 2 – ground state of the QUBO.
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(c) Case 3 – excited state of the QUBO; notice the slightly
longer stay of IC1 at block 7.
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(d) Case 4 – excited state of the QUBO; notice the slightly
longer stay of Ks3.

FIG. S6: The tensor network solutions; although the exact ground states were not always achieved, the solutions are
equivalent from the dispatching point of view with to in Fig. S5.
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