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Abstract: Compressed sensing (CS) is a popular data compression theory for many computer vision
tasks, but the high reconstruction complexity for images prevents it from being used in many real-
world applications. Existing end-to-end learning methods achieved real time sensing but lack theory
guarantee for robust reconstruction results. This paper proposes a neural network called RootsNet,
which integrates the CS mechanism into the network to prevent error propagation. So, RootsNet
knows what will happen if some modules in the network go wrong. It also implements real-time
and successfully reconstructed extremely low measurement rates that are impossible for traditional
optimization-theory-based methods. For qualitative validation, RootsNet is implemented in two
real-world measurement applications, i.e., a near-field microwave imaging system and a pipeline
inspection system, where RootsNet easily saves 60% more measurement time and 95% more data
compared with the state-of-the-art optimization-theory-based reconstruction methods. Without losing
generality, comprehensive experiments are performed on general datasets, including evaluating the
key components in RootsNet, the reconstruction uncertainty, quality, and efficiency. RootsNet has
the best uncertainty performance and efficiency, and achieves the best reconstruction quality under
super low-measurement rates.

Keywords: compressed sensing; deep neural network; image reconstruction; low measurement rates

1. Introduction

Compressed sensing (CS) is a promising technology which enables sub-Nyquist sam-
pling, data compression, flexible measurement rate, etc. These benefits lead to ground-
breaking achievements in many computer vision applications, e.g., image super-resolution [1],
image de-noising [2], image registration [3], etc. Sub-Nyquist sampling and data com-
pression lead to significant time-saving results in fault-detection applications like belts [4],
bearing [5], composite materials [6], etc. It can also reduces the hardware requirements
for monitoring applications like pipelines [7,8]. The flexible measurement rate enables
robustness to partial data loss in harsh environments like nuclear sites. CS collects a linear
mapping collection of a scene followed by a reconstruction/estimation process to obtain
the final sensing data. Since the rigid proof of CS theory in 2006 [9], CS becomes hot
research topic; however, this interest has gradually reduced in recent decades, leading
to few applications—the high computational time for sparse estimation is a limitation in
various applications, especially in imaging tasks. For example, the reconstruction time for
traditional iterative optimization theory is usually unacceptably long. Some studies [10,11]
report that it takes around 10 min to estimate an image of size 256 × 256 in block-by-block
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manner; a full-size reconstruction may take much longer. Deep learning [12] dates back to
the previous century; it has developed quickly and has led to a huge amount of applications
compared to CS, especially in recent years. To handle the problem of high computational
time for sparse reconstruction in CS imaging, many scholars have been focused on bringing
deep learning methods to CS estimation since 2016 [13].

Existing deep-learning-based CS estimation methods are usually classified into two
categories [14,15]. The first category [13,16] uses a convolutional neural network (CNN)
to setup end-to-end models from the CS measurement data to the final image. Early
examples are ReconNet [13], SCSNet [17], CSNet+ [16], etc. CSNet+ jointly learns the
measurement matrix and completed end-to-end reconstruction. SCSNet connects multiple
neural networks that each one takes a measurement set from a measurement matrix for
training. The purpose is to handle various of measurement rates (MRs) in real applications.
This will incur huge amount of training parameters. Such end-to-end designs in the early
stage of learning-based methods regards CS reconstruction as a black-box, which has
poor reliability, i.e., the trained models are fitting to the given data rather than the CS
reconstruction problem. This leads to trust problems in imaging contexts like MRI [18]. If
the training dataset is small, or the training process is set under a specific measurement
matrix, then the trained models will fail in different settings.

The second category is a newer trial direction, which tries to unpack traditional it-
erative optimization-theory-based methods like ADMM, ISTA, and IHT [19] into neural
network layers. The core idea is to build a neural network module for each iteration step in
the traditional optimization-based methods. This feature is advertised as an interpretable
neural network in many studies on CS reconstruction. Zhang et al. [20] presented an
iterative shrinkage thresholding algorithm (ISTA) and built up an ISTA-Net. Their up-
dated versions are COAST [21] and ISTA-Net++ [22], which include the addition of a
de-blocking strategy to eliminate the blocking artifacts. The alternating direction method
of the multipliers algorithm (ADMM) led to the development of ADMM-Net [23], ADMM-
CSNet [24], Co-robust-ADMM-Net [25], and, recently, GPX-ADMM [14]. AMP-Net [26]
was a development of the traditional approximate message passing (AMP) method. In-
spired by the primal–dual algorithm, a learned primal–dual network (LPD-Net) was built.
J. Zhang et al. [27] derived a weighted `1 minimization algorithm for CS reconstruction and
built a deep unfolding network for it.

Besides the above two categories, some scholars have tried to create deeper links
to traditional optimization methods. One representative idea is Pnp-ADMM [28], which
uses neural network modules to model the error function, regularization, and Lagrange
multiplier. This idea brings better interpretation but needs more iterations, which sacrifices
the benefit of time efficiency for deep learning methods. Another idea is to build neural
networks to find the support set during sparse reconstruction [29]; with the found support,
the final image can be obtained through a further matrix reverse step. However, the
support identification neural network module is a black-box; a wrong support set will lead
to significantly different results.

The key considerations for reconstruction quality guarantee are the residual, noise,
and block effects. Residual refers to the remaining difference between the explained part
and the ground truth. Iteration steps, the measurement matrix, and sparse basis link
directly to the reconstruction residual effect. Deep-learning-based methods are not as
sensitive as optimization methods are to iteration steps but they are more sensitive to
the sparse basis and the measurement matrix. Some deep-learning-based reconstruction
works [30,31] also try to learn the measurement matrix with fewer measurements or better
reconstruction quality. However, a learned measurement matrix fits to the trained data,
thus losing generality. The block effect is incurred through decomposing the full image
into small blocks for the purpose of increasing the speed. Some works [22,26] use a built-
in or separate de-blocking module like BM3D [22] to remove the block effect. As for
de-noising, traditional methods need prior information of noise like noise distribution
in Bayesian CS [32,33], which needs a noise estimation step for reliable reconstruction,
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and the reconstruction algorithm is usually designed for only one kind of noise. Deep
learning methods can learn this prior information from the training datasets and are able to
handle multiple kinds of noise at the same time [26]. Deep learning also has the potential
for task processing during reconstruction; this has recently emerged up in traditional CS
reconstruction [34,35].

In summary, almost all the deep-learning-based CS estimation works can greatly
improve the reconstruction speed. The quantity of neural network layers may impact the
running time, but this impact is in a much lower order of magnitude than the leap from
optimization-theory-based iterative methods to the deep learning regime. Deep learning
also brings benefits to robust de-blocking and de-noising. However, none of the existing
deep learning methods can match the generality and reliability that traditional methods
attain, even if some deep learning methods are advertised as interpretable, i.e., through
the uncertainty problem. The so called ‘interpretable’ nature of these approaches involves
building neural network blocks to substitute the traditional iterative steps. One remaining
key concern is ‘Can the end-user really trust the measurement results of current deep learn-
ing reconstruction?’ No current deep-learning-based methods in the measurement field can
answer this question, which causes a gap between the good performance shown in papers
and the true benefits being attained in application. This is more important in applications
that require a high standard of reliability, e.g., medical imaging [36], infrastructure health
diagnosis [37], etc.

In seeking truly trustworthy deep-learning-based CS estimation methods, this paper
proposes a neural network called RootsNet. Instead of building neural network modules
to substitute the iterative steps, this paper considers the issue from another perspective:
can the reconstruction results be predictable if something goes wrong in the deep learning
mode? The core problem of CS reconstruction is using the measurement matrix and sparse
basis to find weightings of a small percentage of columns in sparse basis. For general sparse
basis like DCT and DWT, each column has a clear physical meaning. For example, each
column of DCT basis is corresponding to a single-frequency cosine wave. Fourier theory
tells us that every signal can be decomposed to linear weighting of different frequency
components. CS theory is based on a more general ground truth: every signal can be
decomposed to linear weighting of different unit components which can be cosine waves,
wavelets, or self-learned components. These unit components make up the sparse basis,
and the weighting is referred to as ’sparse coefficient’. So, if a deep learning model can
predict the sparse coefficients on a general sparse basis, then the reconstruction results are
much more controllable, because each weighting has a clear physical meaning.

So, this paper proposes RootsNet, which consists a Feeder-root module to predict the
sparse coefficients, and a Rootstock net module for residual processing and de-blocking.
The measurement matrix, sparse basis, and the measurement data are transformed to root
caps. The whole structure is similar to a root structure and named after it. The major
contributions are:

• This paper proposes RootsNet for a small step toward truly trustworthy deep-learning-
based CS image reconstruction. Instead of being a black-box as its counterparts are,
RootsNet integrates the CS mechanism into the network to prevent error propagation.
The error-injection test in Section 4.2.4 shows RootsNet is much more robust than its
counterparts.

• RootsNet enables real-time reconstruction and supports different measurement rates
in a single net for general measurement matrices. Section 4.2 validates this feature.

• RootsNet successfully reconstructs super-low measurement rates that are impossible
for traditional optimization-theory-based methods. The qualitative evaluation on
two real-world applications, presented in Section 4.1, shows this powerful ability. At
least 60% of the measurement time is saved in one microwave testing system using
the proposed method. The proposed method achieves extremely low measurement
rates, which saved at least 95% of storage in one pipeline monitoring system. The
quantitative evaluation, presented in Section 4.2.3, also validates this ability.
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The rest of this paper is organized as follows: Section 2 remarks the key CS theory
basis. The proposed RootsNet is introduced in Section 3. Detailed discussion and analysis
are given in Section 4. Conclusions including limitations are summarized in Section 5.

2. Compressed Sensing Measurement Theory

CS theory is based on a signal that can always be decomposed to linear weighting
of different unit components; the unit components can be cosine waves, wavelets, or
self-learned components. If a small part of the weighting already occupies most of the
total weighting power and the rest can be ignored, then the weightings become sparse
coefficients. In a more rigid way, a vector signal x ∈ Rn×1 can be decomposed on a basis
matrix Ψ ∈ Rn×n as x = Ψs, where s has only a small part of non-zero values. Then, the
CS measurement data can be represented as:

y = Φx + ξ = ΦΨs + ξ = As + ξ (1)

where Φ ∈ Rm×n, y ∈ Rm×1 are the measurement matrix and measured data, respectively.
A = ΦΨ ∈ Rm×n is the multiply of measurement matrix and sparse basis. ξ ∈ Rm×1 is the
sampling noise. The original signal x is compressed from n to m due to m� n, leading to a
data compression ratio of 1−m/n and the measurement rate is defined as m/n. This CS
measurement process is an encoding process.

CS reconstruction is the decoding process, it reconstructs the sparse coefficients s with
the measured data y and the known A:

min
s
‖s‖0 subject to ‖y−As‖2 ≤ ε (2)

where ‖·‖0 is zero-norm which means the number of non-zero elements in a vector, and ε
is a residual tolerance. If the measurement matrix is designed to let A meet the restricted
isometry property condition [38], then there are many theoretical guaranteed optimization
solutions for this problem. Independent identically distributed Gaussian matrices [38] and
0/1-Bernoulli matrices [39] can be used as general measurement matrices.

So, Equation (2) means that, instead of finding the sparse coefficients of the target
signal on a sparse basis directly, CS reconstruction converts to finding the weighting for
each column of A to represent the measurement y. Traditional reconstruction methods
light orthogonal matching pursuit (OMP) mainly based on convex optimization and greedy
algorithms, which takes unacceptably long time in many applications. End-to-end deep
learning reconstruction methods directly learn a mapping from the measured data to the
final image. They obtain great efficiency gain but the results are not interpretable and have
trustworthiness problem, i.e., if something goes wrong or out of anticipate, they do not
know what will happen on the reconstructed images. The next section proposes RootsNet
that use y and A to estimate s and x directly.

[s, x] = fRootsNet(y, A) (3)

3. The Proposed Rootsnet

This section introduces the proposed RootsNet, which implements Equation (3) and
answers what will happen if the key part of the network goes wrong while inheriting the
benefits of deep-learning-based CS reconstruction methods.

3.1. Overall Structure of RootsNet

The overall structure of RootsNet is shown in Figure 1. RootsNet consists of three
key parts, i.e., the root caps, the feeder root net module, and the rootstock net module.
These three parts work together to form a structure like roots in the background, and the
model is named after it. As a popular approach, one high-resolution image (pepper image
in the bottom right corner of Figure 1) is decomposed into same size blocks firstly and
reconstructing each block, respectively, or in parallel. Parallel reconstruction is much more
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efficient for hardware that supports tensor computing. A and the measurement data Y are
compounded to many root caps; each root cap is the input of a single feeder root branch,
Bn. A feeder root branch is responsible for predicting a single sparse coefficient value, sn.
With enough feeder root branches, the sparse coefficients can be fully predicted. Then, the
image blocks can be obtained by simply imposing linear weighting on the sparse basis.
The feeder root net module already substitute the full process of traditional optimization
algorithms. Lastly, a rootstock net module is imposed on the block reconstruction results to
handle the estimation error, the block effect, and the noise.
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Figure 1. The compressed sensing measurement process and the overall structure of RootsNet. The
target image is reshaped to b blocks with size L× L and reshaped to a n× b matrix latter as the target
signal X, where n = L2. RootsNet consists of root caps, feeder root net module, and rootstock net
module as is annotated in purple text. Each root cap takes one column from Y and A, respectively, as
input. The feeder root net consists of many branches that are denoted as B1–Bn, each branch takes
one root cap as input and outputs one sparse coefficient sn. Finally, all reconstruction blocks are used
as input to obtain the final reconstructed image through rootstock net. More details on each module
are given in the next subsection.

3.2. Key Modules in RootsNet
3.2.1. Root Caps

Root caps are the input of each feeder root net module. As is shown in Figure 1, an
image is decomposed to b blocks in same size as L× L, then reshaping to a matrix X ∈ Rn×b.
With a measurement matrix Φ ∈ Rm×n, the measured dataset Y ∈ Rm×b is compressed to
m/n of X. CS reconstruction is finding the weighting for each column of A (denote as Ai,
i = 1,2,3,...,n.) to represent the measurement vector y, so Ai and each column of Y (denote
as Yj, j = 1,2,3,...,b.) are compounded to be root caps, the corresponding feeder root branch
will output the weighting for Ai. Each feeder root branch takes only one root cap as input
and outputs one sparse coefficient. To fit with the input port of feeder root net, Ai and Yj
are reshaped to two images of size

√
m×
√

m and then simply stack together. The size of
root caps requires m to be the square of integers, which results in discontinuous for the
supported MRs. To enable support for arbitrary sampling rate, root caps pads zeros to
obtain a fixed size virtual m that meet the condition. In real applications, the virtual m is
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recommended to be the largest possible MR (usually to be around 0.3), so that a single feed
root branch can fit all measurement rates cases.

3.2.2. The Feeder Root Net Module

Each feeder root branch is responsible for reconstructing a sparse coefficient. The
structure of a single feeder root branch is shown in Figure 2. Two convolution (Conv_1
and Conv_2) and pooling layers (Pooling_1 and Pooling_2) extract features from root caps
firstly. Max pooling operation and nonlinear activation function relu() are used. Conv_1
takes two channels of input to fit with the structure of root caps. After feature extraction, all
features are flattened before sending to a dropout layer. This dropout layer can effectively
overcome overfitting and make the learned feature more robust. Finally, a fully connected
(FC) layer combines all the learned feature together to a single value, which is the target
sparse coefficient.

Input:
Block reconstruction results

Conv_1(64)

Output: Final image

Conv_2(128)

Conv_3(512)

Conv_4(128)

Conv_5(64)

Conv_6(1) tanh+k(1)+p(1)

tanh+k(2)+p(1)

tanh+k(3)+p(1)

relu+k(3)+p(2)

relu+k(3)+p(3)

relu+k(3)+p(3)

Crop

Input:
Root cap

Conv_1+relu

Pooling_1

Conv_2+relu

Pooling_2

Flatten

Dropout
FC

1 1

2 m m 

Output:
A sparse coefficient

(a) (b)

Figure 2. Network structure of (a) a single feeder root branch and (b) the rootstock module.

Feeder root simulates the correlation calculation steps in traditional matching pursuit
(MP) algorithms for CS reconstruction. In a typical MP algorithm like orthogonal matching
pursuit (OMP) [40], the measurement y will calculate correlation for every Ai; the corre-
sponding sparse coefficient for Ai can be regarded as the correlation coefficient between y
and Ai. Ai and y are used to form a root cap, so the feeder root net modules substitute the
correlation calculation in traditional MP algorithms.

The feeder root net is scalable and distributable. Sparse representation is the theory
basis for CS, i.e., only a small part of the sparse coefficients is significant, and the rest of
the values can be ignored. For this reason, for an image of flattened size n× 1, the number
of feeder root branches can be much lower than n by only predicting a part of the most
significant sparse coefficients. The contribution of later branches to image quality is less
significant, which means that the branch number is scalable. Due to the independence
between each branch and the strict one-to-one mapping between a feeder root branch and
a sparse coefficient, the feeder root net can be distributable. This distributable feature is
helpful for resource-limited devices like wireless sensor networks for structural health
monitoring [41].
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3.2.3. The Rootstock Net Module

Ideally, the feed root nets already fully substitute the traditional CS reconstruction
results, because all sparse coefficients can be obtained. In fact, there is some reconstruction
noise for the feeder roots net outputs due to wrong prediction and the limited number of
feeder root branches (these two factors also lead to the block effect), or the sampling data
already polluted by noise.

To further improve the reconstruction quality, a rootstock net that takes all block
reconstruction image as input is used; the structure is given in Figure 2b. It is a fully
convolutional network which has different kernel sizes (denote as k()), padding numbers
(denote as p()), and kernel numbers (denote as conv_()). The first three layers use relu() as
activation function, while the last three layers use tanh(). The final crop operation together
with the padding in each layer can remove the edge effect in the final image.

3.3. The Underlying Information Theory for RootsNet

The measurement data y comprise the weighted summation of some columns of A, in
theory. The task for reconstruction algorithms is to determine the sparse column positions
and the corresponding weighting values. Traditional greedy algorithms calculate the
correlation values between each column of A and y, because if one column of A belongs to
the components of y, it should have high correlation value, then removes the contribution
of this column in y to obtain the residual ŷ, followed by another round to find the next
column. So, the root caps module uses y and each column of A as input, which is the same
for greedy algorithms. Then, the feeder root net module uses parallel branches to predict
the corresponding weight values directly. So, even if some branches go wrong, they will not
influence other branches. This is one fundamental difference from existing deep learning
methods, where a tiny defect in the network structure or prediction process may leads to
totally different results.

Wrong predictions from the feeder root net can be modeled as adding a noise on the
ground truth sparse values. For a general sparse basis like DCT, the wrong prediction only
modifies the corresponding frequency weighting. If the frequency is in the middle–high
frequency range, the overall visual quality of the image will not be significantly different.
More importantly, for a general sparse basis like DCT, the sorted sparse values are in a
similar sequence, which can be used as a priori information to judge how trustworthy a
prediction result is. For example, an outlier is a highly unreliable prediction. On the other
hand, a wrong prediction can be corrected using the following rootstock net module.

3.4. Training Methods

RootsNet can be trained with open-source datasets like ImageNet; this paper used
the BSDS500 [42] dataset for training. There are 500 colorful visual images in BSDS500.
All the images were converted to grayscale and sized to 256 × 256. The feeder roots net
and rootstock net were trained separately. Feeder roots branches can be trained individ-
ually or together. All neural network layers were implemented with Paddlepaddle 2.3.0
https://github.com/PaddlePaddle/Paddle (accessed on 18 October 2023). The training
process was implemented on a desktop computer with an Intel Core i9-10900K CPU and
an NVIDIA GeForce RTX3090 GPU with Python.

This paper firstly trained the feeder root branches individually; a cost function in
Equation (4) was designed, where sp and sg are the predicted and ground truth sparse
coefficients, respectively, and ς is a random, small-enough value to prevent the denominator
to be zero. This cost function combines the absolute error and relative error, which gives
better results than the commonly used mean square error function in our test. sg is obtained
by setting the block size L as 32 and decomposing each block on sparse basis. Both DCT
and Haar wavelets are considered as the sparse basis. 0/1-Bernoulli and random Gaussian
matrices are tested as measurement matrices. The virtual m is set as 361, which corresponds
to a max MR of m/n ≈ 0.353. More measurements will counteract the compressing benefit
of CS for most applications. Users can set it as other values according to their needs. A

https://github.com/PaddlePaddle/Paddle
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predefined measurement matrix is easier to implement in real applications, so this paper
chooses seven predefined MRs from 0.05 to 0.35 with a step-size of 0.05. All kernel sizes are
set as 3, the stride step-size for convolution layer and max-pooling layer are set as 1 and 2,
respectively. The convolution kernel numbers are set as 64 for Conv_1 and Conv_2. The
issue of deciding a minimum kernel number remains a challenge for researchers across the
field of deep learning. The learning rate is initialed as 0.01 and drops to 0.00001 through
polynomial decay during 3000 epochs of training. The dropout rate is set as 0.3.

=
(
sp, sg

)
=

(
sp − sg

)2∣∣sg + ς
∣∣ (4)

Secondly, the rootstock net takes the output of feeder roots net as input for training.
The minimum reconstruction unit for rootstock net is a full image rather than image
blocks. During training, the loss metric is set to be structural similarity (SSIM [43]) in
Equation (5) between the model prediction and the ground truth, where µJ and µK are the
mean intensities of image J and K, respectively. σJ and σK are the standard deviations of
images J and K, respectively. σJK is the covariance of images J and K. ς1 and ς2 are two
constant small values that prevent the denominator from being zero. The feeder root net
predictions under different branch numbers and MR are used for training. To obtain a
de-noising ability for the rootstock net, the Gaussian noise and salt and pepper noise are
added in the feeder root net output for training. The other training settings are the same as
those used for the feeder roots training.

SSIM(J, K) =

(
2µJµK + ς1

)(
2σJK + ς2

)(
µJ2 + µK2 + ς1

)(
σJ2 + σK2 + ς2

) (5)

4. Experimental Results
4.1. Qualitative Evaluation in Real-World Applications for Low Measurement Rates
Reconstruction

The proposed RootsNet is firstly tested qualitatively on two real image measurement
applications, i.e., near-field microwave imaging of carbon fiber reinforced polymer (CFRP)
and magnetic flux leakage pipeline inspection gauge for oil and gas pipeline inspection,
which aims to show the ability of reconstructing under a high data compression ratio. There
are no deep learning reconstruction methods implemented in these two applications in the
literature yet, only iteration-based methods. Besides existing iterative methods, two typical
deep learning CS reconstruction methods are also implemented here to show the perfor-
mance gain on super-low measurement rates, i.e., ReconNet [13] and AMP-Net [26], because
they are representative methods for existing deep-learning-based CS estimation—the end-
to-end category—and another category of developing traditional optimization theories. All
the reconstruction algorithms are implemented on a desktop computer with an Intel Core
i9-10900K CPU with Python, because a trained neural network does not require a powerful
GPU to run. Deep learning training and reasoning are implemented on Paddlepaddle 2.3.0.

4.1.1. Application in Near-Field Microwave Imaging

CFRP materials are widely used in the aerospace industry due to their good weight-to-
strength ratio. Invisible impact damages on CFRP greatly influence the strength and lead
to safety risks. Near-field microwave imaging is one common technology that is used for
invisible impact damage detection, but current methods only use raster scan or traditional
iterative reconstruction methods [34,35], which take hours to perform detection.

Considering the real-time reconstruction ability of RootsNet, the same measurement
settings were used as those used in [35] for impact damage detection with the system that is
shown in Figure 3. Five specimens with impact energy from 2J to 10J, respectively, are used.
An extremely low measurement rate of 0.05 is used, which means that only 5% of locations
in the whole scanning area are scanned. Figure 4 shows the measurement results. The raster
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scan data and CS scan data under the measurement rate of 0.05 have a low correlation with
the ground truth. The state-of-the-art method in Figure 4c has much lower reconstruction
quality than RootsNet, and the reconstruction for the 8J specimen even failed due to the
low measurement rates. The proposed RootsNet also has better reconstruction quality than
ReconNet and AMP-Net-9BM, because only RootsNet is designed for the sparse-coefficient-
level reconstruction and it enables error correction on the sparse coefficients; other deep
learning methods perform image-level reconstruction. A low measurement rate like 0.05 in
this test brings reconstruction errors to the ground truth; these errors will lead to artifacts
on the final image if there is no error correction scheme.

PC

Vector Network 
Analyzer XYZ Scanner

Communication cable

Open-ended 
waveguide probe

CFRP Specimen

Scanner driver

Impact location

Figure 3. The image measurement system for invisible CFRP impact damage detection.
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Figure 4. Measurement results of different methods under 0.05 of measurement rate (95% of data
compression ratio). (a) Raster scan; (b) CS scan; (c) OMP reconstruction; (d) RootsNet reconstruction;
(e) AMP-Net-9BM reconstruction; (f) ReconNet reconstruction; (g) The ground truth by 100% of raster
scan. The built-in decimals are the 2D correlation coefficients between each measurement result and
the corresponding ground truth image in column (g). The average normalized time use ground truth
as the baseline and set it as 100.
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The normalized time under the measurement rate of 0.05 to obtain the corresponding
results is shown in the bottom part of Figure 4, where the time for 100% raster scan is set as
the normalized baseline. The total time consumption shown in Figure 4c–f consists of the
scanning time to obtain the input data and the reconstruction time. During the scanning
process, the scanner needs to switch between different locations, and each location needs a
constant delay time to prevent scanner vibrations and to perform the measurements. The
typical delay time is 0.1–0.5 s for each scanning location and it is set as 0.1 in this test, so
the scanning takes much more time than the reconstruction. The reconstruction time is
linked to the computational resources utilized; iterative reconstruction methods take much
more time than a trained deep learning model, especially when using a not-so-powerful
CPU. Some existing experiments [35] indicated that the traditional OMP needs around
0.25–0.3 measurement rate to achieve more than 0.95 reconstruction quality. However, a
large measurement rate leads to great increases in the scanning time and the reconstruction
time with the OMP. For a traditional OMP to obtain more than 0.95 reconstruction quality,
the normalized time is 35 for a measurement rate of 0.3—this compared with just 1 for a
measurement rate of 0.05. The deep learning methods generate the reconstruction results
almost immediately, so the normalized reconstruction time is around 0, compared to 1
for the OMP in Figure 4c. The total time consumption for OMP under a measurement
rate of 0.3 is 65, including 30 for scanning and 35 for reconstruction. So, to obtain an
image quality that meets the ground truth, the CS scan using RootsNet saves 95% and
60% of the measurement time in comparison with the raster scan and the state-of-the-art
OMP, respectively.

4.1.2. Application in Pipeline Inspection Robot

Oil and gas are the main sources of fuel in today’s industry, and pipelines are the most
efficient way of transporting large amounts of oil and gas. Defects in pipelines lead to
leakages or explosions that greatly impact human safety and ecosystems. Magnetic flux
leakage (MFL) measurements using pipeline inspection gauges (PIGs) are the most popular
method of detecting pipeline defects. PIG with MFL sensors will be sent into the pipeline
and collect MFL data while moving along the pipe. One challenge is that in-service oil and
gas pipelines are usually thousands of kilometers long, requiring unacceptable amounts
of storage for reasonable resolutions to be attained. So, RootsNet can be implemented to
address this challenge, using a 168-channel PIG device from SINOMARCH Sensing Co.,
Ltd. (Beijing, China) (shown in Figure 5) and a real in-service oil pipeline operated by
PipeChina.

168 channels of 
MFL sensor

Oil & gas pipeline

Pipeline Inspection Gauge

Control Unit 
in PIG

sleep

MFL 
Sensor

wake

Piece length is 10240/1 Bernoulli



Figure 5. The MFL measurement system for oil and gas pipeline inspection.

Traditionally, MFL sensor samples operate evenly in the time domain with a constant
time interval. As is shown in Figure 5, the 168 channels of MFL sensor modules are
shut down randomly for 95% of the time slots in RootsNet, which are controlled by
the 0/1 Bernoulli measurement matrix. Each measurement piece has 1024 time slots
and is controlled by the same measurement matrix. So, the wake-up time slot is only
1024 × 5% = 51 in each measurement piece, and CS measurement data comprise an under-
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sampling version of the traditional full-time wake-up sampling. Figure 6 shows one
measurement piece of two MFL sensor channels. The traditional OMP reconstruction
estimates poorly under such low measurement rates, but the proposed RootsNet almost
perfectly reconstructed it. Figures 7 and 8 show two pieces of measurement for the whole
168 MFL sensor channels, respectively. The 2D correlation coefficients are given on the
northeast corner of each measurement result section. The OMP failed to reconstruct the
pieces two due to the measurement rate being too low. RootsNet reconstructed this well,
with very high quality. So, RootsNet saved at least 95% of storage and sensor power
consumption in this application. Similar to the results attained in near-field microwave
imaging, ReconNet and AMP-Net-9BM obtained poorer results than the proposed RootsNet
under this super-low measurement rate.
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Figure 6. Examples of two measurement channels of one measurement piece under a measurement
rate of 0.05 for pipeline. The ground truth is the traditional all-time wake-up measurement.
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Figure 7. Measurement results of piece one under a measurement rate of 0.05 for the pipeline. (a) CS
sampling data; (b) OMP reconstruction; (c) ground truth by full-time wake-up sampling; (d) RootsNet
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reconstruction; (e) AMP-Net-9BM reconstruction; (f) ReconNet reconstruction. Each row is one
measurement channel. The proposed method successfully reconstructed a super-low measurement
rate of 0.05, while the traditional OMP algorithm failed.

(b)
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Figure 8. Measurement results of piece two under the measurement rate of 0.05 for pipeline. (a) CS
sampling data; (b) OMP reconstruction; (c) ground truth by full-time wake-up sampling; (d) Root-
sNet reconstruction; (e) AMP-Net-9BM reconstruction; (f) ReconNet reconstruction. The proposed
method successfully reconstructed a super-low measurement rate of 0.05 while traditional OMP
algorithm failed.

4.2. Quantitative Evaluation on SET11

Without losing generality, this part completed testing on a popular dataset, SET11 [10],
which is commonly used to evaluate CS reconstruction algorithms. Some key components
for the proposed RootsNet from the CS perspective are quantitatively tested on a popular
general dataset, e.g., determining the influence of feeder root branch number and how the
sparse basis and measurement rate in CS influences the network performance. Computa-
tional memory efficiency is not tested because it is not a key point in this paper, but the
distributable feature of RootsNet does have advantages in this area.

4.2.1. The Influence of Sparse Basis and Roostock Net Module

This section qualitatively evaluates the ability of the feeder root net module to recon-
struct the sparse coefficients firstly. Figure 9 shows two images that were recovered from
the reconstructed sparse coefficients by the feeder root net and the ground truth in SET11;
zoomed-in views of f igureprint are shown in Figure 10. Ground truth coefficients are set
by ensuring that the rest of the coefficients beyond the feeder root branch have a number
of zero. Only 32 feeder root branches show the general texture for DCT basis, while it



Entropy 2023, 25, 1648 13 of 21

needs at least 128 feeder root branches for DWT. The floor number for the DWT basis is
decided through wavelet decomposition orders: this is 128 for 3-order decomposition and
64 for 4-order decomposition. The red square in Figure 10 highlights the block effect, i.e., a
clear edge line between reconstruction blocks. The block effect under the 256 feeder root
branches is more serious for DCT, but DWT incurs a small block effect itself by using the
Haar wavelet. Generally, the DCT has a better visual quality because cosine waves are
smoother than Haar waves, as shown in Figure 11c. Using other wavelets like f k4 and
sym2 can lead to smoother images than using the Haar wavelet. More feeder root branches
lead to better texture detail due to more detail wave components being used, such as higher
frequency cosine waves in Figure 11a,b. The visual quality of the ground truth images
does not show significant differences after a certain branch number for both DWT and DCT
bases; this means setting the feeder root branch number as 384 or 512 in this dataset. This
is a good trade-off between reconstruction quality and efficiency.
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Figure 9. f igureprint (odd columns) and f linstones (even columns) images recovered from the
ground truth sparse coefficients and predicted coefficients of the feeder root net (denoted as Model in
the figure) under different branch numbers and sparse bases. MR = 0.25.

Secondly, to handle the block effect and estimation noise, the feeder root net output are
gathering to the rootstock net. Figure 12 shows the refine performance of the rootstock net
module under some worst cases. The reconstruction quality improves greatly, even better
than the baseline in some cases as is highlighted in the red circle. Rootstock net can remove
the small block effect incurred by Haar wavelet as is shown in Figure 12. This simple test
shows that RootsNet can handle the block effect, the estimation noise, and the error well.
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Figure 11. Waveform of different sparse bases. (a) a full DCT basis; (b) some columns in DCT basis;
(c) cosine and other wavelets [44,45].

4.2.2. The Influence of Feeder Root Branch Number on RootsNet

To obtain quantitative results for the proposed RootsNet, the two popular evaluation
metric peak signal-to-noise ratio (PSNR [13]) and SSIM are used. Figure 13 shows the
average results for different branch number on SET11. More branches lead to better
reconstruction quality because more components in the sparse basis are considered. DCT
basis obtains better quality than DWT basis, which coincides with the qualitative results in
Figure 10. Vertically, rootstock net greatly improves the quality from feeder root net output.
Under 512 feeder root branches, the block effect of the feeder root net output can be ignored.
The results of Figure 13 did not include noise images as the test input. Under the noise
case, the PSNR and SSIM of RootsNet output can be better than the baseline shown in these
figures. Because noise is usually in the high-frequency part of sparse coefficients, the feeder
root net only reconstructs the major components in the low- and middle-frequency parts,
which works like a de-noising filter. So, if using noisy images as input and the baseline,
the RootsNet output is a denoised version of the baseline. The PSNR, which indicates the
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signal-to-noise ratio of an image should be higher. SSIM evaluates the similarity between
two images from luminance, contrast, and structure point of view. When calculating SSIM
using the noise-free images as the ground truth, RootsNet output can have better SSIM
than the baseline. On the other hand, twisting the structure of rootstock net may improve
the model performance.

DWT-32 DWT-64 DCT-32 DWT-0.05 DCT-0.05 Gaussian noise Salt&peper noise

Figure 12. Refined performance for the rootstock net module under some worst case scenarios. Rows
from the top to bottom are the feeder root net module output, the rootstock net module output, and
the ground truth image, respectively. The number behind ‘-’ represents branch number for integers
or MR for float decimals.

(a) (b)

Figure 13. The influence of branch number on average reconstruction quality in SET11 by (a) SSIM
and (b) PSNR. MR = 0.25.

4.2.3. The Influence of Measurement Rates on RootsNet

Measurement rate is a key parameter in CS that shows data compression ratio.
Figure 14 shows the reconstruction results under 256 branches for different MRs. Gener-
ally, higher MRs lead to better reconstruction results but it is not so sensitive as branch
numbers. An MR of 0.05 already shows the general texture, both for DCT and DWT basis.
Under same MR, the quality of DCT basis is better than DWT basis. Figure 15 shows the
quantitative results for different MRs with 256 branches. Both PSNR and SSIM almost
linearly increase with measurement rate. Rootstock net also shows great improvements in
reconstruction quality.
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Figure 14. Reconstruction results under 256 feeder root branches for different measurement rates.
The red square shows the zoom-in location.
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Figure 15. The influence of feeder root branch number on average reconstruction quality in SET11 by
(a) SSIM and (b) PSNR. The branch number is 256.

4.2.4. Evaluation of Robustness

This section compares the robustness performance of the RootsNet to two typical
deep learning CS reconstruction methods—CSNet+ [16] and AMP-Net [26]. They are
representative methods for existing deep-learning-based CS estimation, i.e., the end-to-end
category and another category, in developing the traditional optimization theory. The main
reliability concern for this paper framed in the following question: what will happen to
the measurement results (with the reconstruction image as a case study) if some modules
generate unexpected results? This happens when the measurement target has new features
that have not been learned by the neural network or the low measurement rates, or they
occur as a result of a software defect or a memory error. So, a robustness test is performed
by manually stimulating the middle results of the network blocks. CSNet+ jointly learns
the measurement matrix and reconstruction process, the reconstruction process consists of
an initial module and multiple convolution modules. AMP-Net also has multiple modules
that correspond to traditional iteration processes. Of the results, 1% and 10% for the first
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module of all the testing methods were manually set to a constant value (e.g., 0.3) for error
injection. The measurement rate was set as 0.25. The results for all the testing methods are
shown in each column of Figure 16. CSNet+ and AMP-Net incur artifacts quickly even with
a 1% error injection, which means a tiny measurement or estimation noise can easily lead
to uncertain results. RootsNet shows much better results even under 10% error injection,
which reduces the uncertainty caused by the measurement noise and the estimation error.
RootsNet obtains better performance, because only RootsNet integrates the CS mechanism
in the network, i.e., it is designed for sparse-coefficient-level reconstruction through the
root caps module and the feeder root net module, and it enables error correction on the
sparse coefficients through the rootstock net module; other deep learning methods perform
image-level reconstruction.

(a) (b) (c)

Figure 16. Robustness test results by different error injection rate (1% for the first row, 10% for the
second row) for different methods. (a) The proposed RootsNet; (b) CSNet+; (c) AMP-Net. The ground
truth results are given in the middle.

4.2.5. Evaluation of Reconstruction Time

Popular traditional CS reconstruction algorithms include greedy algorithms (e.g.,
OMP, IHT [46]) and convex optimization methods (e.g., SpaRSA [47]); they reconstruct
the CS measurement iteratively before reaching a predefined stop threshold, and there
may be some hyper-parameters that are usually set empirically. Deep-learning-based CS
reconstruction methods (e.g., ReconNet, ISTA-Net+) can greatly reduce the reconstruction
time. This part records the average reconstruction time for both the optimization-theory-
based methods and the deep-learning-based methods to show the efficiency of the proposed
RootsNet approach. All reconstruction methods are implemented on a desktop computer
with an Intel Core i9-10900K CPU with Python. The training process of deep learning
methods is implemented on an NVIDIA GeForce RTX3090 GPU, and the trained networks
only run on the CPU. The distributed implementation of RootsNet is implemented using
parallel processing on the same computer. So, all reconstruction methods use the same
hardware and software platforms. As is shown in Table 1, block reconstruction saves
significant time. The time taken for all optimization-theory-based methods increases greatly
with greater MRs from just several seconds to hundreds of seconds. The reconstruction
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time for deep learning methods are not sensitive to MRs, which almost keeps the same for
different MRs because the number of forward parameters is the same for low and high MRs.
The proposed RootsNet supports distributed reconstruction, which has the least parameters
for a single feeder root branch. So, a state-of-the-art reconstruction time is achieved, which
is suitable for real-time measurement applications. Generally, deep learning methods are at
least 100 times faster than traditional optimization-theory-based methods.

Table 1. Average reconstruction time in seconds for different methods on SET11.

Methods

Time MR

0.3 0.25 0.2 0.15 0.1

OMP [40] 564.3 172.5 58.9 15.6 6.3
IHT [46] 571.8 176.5 57.7 12.5 5.7
SpaRSA [47] 692.3 224.1 71.8 22.6 9.2
OMP-block 99.7 32.9 10.0 2.8 0.9
IHT-block 96.1 30.8 9.3 2.4 0.8
SpaRSA-block 192.4 58.8 18.0 4.9 1.4

ReconNet [13] 0.021 0.022 0.021 0.021 0.021
ISTA-Net+ [20] 0.048 0.048 0.048 0.047 0.048
CSNet+ [16] 0.028 0.027 0.028 0.028 0.028
GPX-ADMM [14] 0.071 0.069 0.070 0.069 0.069
AMP-Net-2BM [26] 0.032 0.031 0.031 0.033 0.031
AMP-Net-9BM [26] 0.041 0.042 0.041 0.041 0.041
RootsNet -SinglePC 0.047 0.046 0.046 0.047 0.047
RootsNet-Distributed 0.008 0.008 0.008 0.008 0.008

Note: The blue, green, and red colors are the deep-learning-based methods, the worst values, and the best values,
respectively.

4.2.6. Evaluation of Reconstruction Quality

This section compares the proposed RootsNet with some state-of-the art methods
on SET11; the PSNR in dB and SSIM are shown in Table 2. The test results of some deep
learning methods come from recently published papers [14,26]. All tests in this paper use
an MR range of 0.01–0.35, because higher measurement rates counteract the compressing
benefit of CS, so five typical MRs are chosen in Table 2. The best and worst results are
highlighted in red and green, respectively. A total of 512 feeder root branches are used in this
test. Generally, deep learning methods have better reconstruction quality because the neural
network models learned some a priori information during training. Block reconstruction
leads to poorer performance due to the incurred block effect. Among all methods, the
proposed RootsNet is sub-optimal in reconstruction quality for measurement rates above
0.1. RootsNet obtains the best performance in super-low MRs—those below 0.1—because
only RootsNet is designed for sparse-coefficient-level reconstruction and it enables error
correction through the rootstock net; other deep learning methods perform image-level
reconstruction. A low measurement rate like 0.05 in this test brings reconstruction errors to
the ground truth; these errors lead to the presence of artifacts in the final image if there is
no error correction scheme. This study did not give attention to the effort of improving the
reconstruction quality. For example, the structure of the rootstock net is very simple; there
is more twist, and adding a cross-like layer connection may be helpful in improving the
reconstruction quality.
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Table 2. Reconstruction quality on SET11.

Methods

PSNR/SSIM MR

0.3 0.25 0.1 0.05 0.01

OMP [40] 29.91/0.8641 28.65/0.8517 24.37/0.7143 21.26/0.5646 17.65/0.2426
IHT [46] 29.31/0.8602 28.58/0.8500 24.43/0.7108 21.17/0.5538 17.22/0.2331
SpaRSA [47] 30.86/0.8994 29.42/0.8676 26.12/0.7729 22.13/0.6629 19.17/0.3016
OMP-block 27.14/0.8449 26.48/0.8303 23.60/0.7002 20.03/0.5321 16.895/0.2234
IHT-block 26.66/0.8346 25.21/0.8151 23.52/0.6985 19.65/0.5482 16.01/0.1951
SpaRSA-block 28.23/0.8537 27.70/0.8497 25.42/0.8177 21.72/0.5771 17.62/0.2568

D-AMP [32] 32.64/0.7544 31.62/0.7233 19.87/0.3757 14.38/0.1034 5.58/0.0034
ReconNet [13] 33.17/0.938 32.07/0.9246 27.63/0.8487 21.73/0.6211 17.54/0.4426
DCS [30] 21.98/0.5358 21.85/0.5166 21.53/0.4546 17.67/0.2235 12.51/0.1937
ISTA-Net+ [20] 33.66/0.9330 32.27/0.9127 25.93/0.7840 18.34/0.4715 17.12/0.3251
CSNet+ [16] 33.90/0.9449 32.76/0.9322 27.76/0.8513 21.07/0.6103 20.09/0.5334
GPX-ADMM [14] 33.85/0.9501 32.43/0.9382 26.96/0.8561 19.13/0.5421 18.21/0.4653
AMP-Net-2BM [26] 35.21/0.9530 33.92/0.9417 28.67/0.8654 20.82/0.5614 20.41/0.5539
AMP-Net-9BM [26] 36.03/0.9586 34.63/0.9481 29.40/0.8779 21.88/0.6441 20.20/0.5581
RootsNet 34.16/0.9542 32.84/0.9471 28.86/0.8597 24.74/0.7734 22.73/0.7335

Note: The blue, green, and red colors are the deep-learning-based methods, the worst values, and the best values,
respectively. ‘PSNR/SSIM’ means the value in front of ‘/’ is PSNR, and the value behind ‘/’ is SSIM.

5. Conclusions

In dealing with the significant time consumption and low reliability encountered in
current CS image reconstruction, this paper proposes RootsNet. RootsNet outperforms
current deep learning CS reconstruction methods in the following aspects: Firstly, by map-
ping the network structure to sparse coefficients, RootsNet prevented error propagation.
This unique feature ensures that it can achieve a good performance under super-low mea-
surement rates, where other deep learning CS reconstruction methods suffer from error
propagation. The qualitative evaluation sections, error injection test, and the data in Table 2
demonstrate this advantage. The applications in a near-field microwave imaging system
and a pipeline inspection system show that a CS with RootsNet easily saves 60% of measure-
ment time and 95% of data in comparison with the state-of-the-art measurement techniques
in the field, respectively. RootsNet also obtains better results in comparison with other CS
deep learning reconstruction methods under a measurement rate of 0.05 in these two ap-
plications. Without losing generality, quantitative tests on SET11 show RootsNet achieves
the state-of-the-art reconstruction quality for super-low measurement rates—below 0.1.
Secondly, the proposed RootsNet enables distributed implementation. This unique feature
makes it suitable for resource-limited applications like wireless sensor networks, where
it is impossible for current iterative CS reconstruction methods and deep-learning-based
methods. This feature also ensures that the proposed RootsNet approach can obtain the
best efficiency for distributed implementation. Although it was only tested on a two-
dimensional image dataset, the proposed method also works for one-dimensional and
high-dimensional signals through reshaping them into images.

RootsNet is just a small step toward truly trustworthy deep-learning-based CS image
reconstruction. The reliability is still lower than that of optimization-theory-based methods,
i.e., the feeder root net module has good reliability, but the rootstock net still leads to
measurement uncertainty. There is also some room to improve the reconstruction quality.
For example, the structure of the rootstock net is very simple; there is an addition of a
twist-like addition in the cross-layer connection that may be helpful in improving the
reconstruction quality. A cost function that integrated more physical mechanisms of the CS
may supervise the network to obtain better performance. On the other hand, no single deep
learning method has the same level of generality as the traditional optimization-theory-
based methods currently do, e.g., RootsNet works for predefined measurement matrices
but cannot deal with arbitrary measurement matrices and sparse basis.
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