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Abstract: Animal motion and flocking are ubiquitous nonequilibrium phenomena that are often
studied within active matter. In examples such as insect swarms, macroscopic quantities exhibit
power laws with measurable critical exponents and ideas from phase transitions and statistical
mechanics have been explored to explain them. The widely used Vicsek model with periodic
boundary conditions has an ordering phase transition but the corresponding homogeneous ordered
or disordered phases are different from observations of natural swarms. If a harmonic potential
(instead of a periodic box) is used to confine particles, then the numerical simulations of the Vicsek
model display periodic, quasiperiodic, and chaotic attractors. The latter are scale-free on critical
curves that produce power laws and critical exponents. Here, we investigate the scale-free chaos
phase transition in two space dimensions. We show that the shape of the chaotic swarm on the critical
curve reflects the split between the core and the vapor of insects observed in midge swarms and
that the dynamic correlation function collapses only for a finite interval of small scaled times. We
explain the algorithms used to calculate the largest Lyapunov exponents, the static and dynamic
critical exponents, and compare them to those of the three-dimensional model.

Keywords: chaos; phase transition; critical exponents; harmonically confined Vicsek model; scale-free
chaos phase transition; insect swarms; largest Lyapunov exponent

1. Introduction

Experiments on the social behavior of animals in the laboratory may give rise to
unreproducible results due to imposing artificial tasks on the animals and subsets of
animals behaving differently [1]. Experiments in natural environments may allow for
observing the emergence of social behavior free from artificial laboratory constraints.
Examples include flocks of birds [2] and sheep [3], fish schools [4], marching locusts [5],
swarms of midges [6], and hordes of rodents [7,8]. In these systems, collective behavior
results from the dynamical interaction between individuals often producing power laws,
which poses the question of whether biological systems are in the critical region of a phase
transition [9,10].

Many works have tried to apply ideas from phase transitions in statistical mechanics
(scale-free behavior, finite size scaling, renormalization group, critical exponents, and
universality [11–14]) to the emergent collective behavior in animals and to compare them
to experiments [15]. Many theoretical studies have dealt with the Vicsek model (VM)
of particles moving at a constant speed in a box with periodic boundary conditions and
changing their velocity at discrete times by selecting the mean average velocity of all
particles in their neighborhood plus an alignment noise [16–18]. This model presents an
ordering phase transition when the alignment noise falls below a critical value [18], which
reminds one of an equilibrium second-order phase transition between disordered and
ordered homogeneous phases at the critical temperature [11]. For animal collectivities, the
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periodic boundary conditions are artificial and it has been argued that placing the particles
in a confining harmonic potential maintains the cohesion of the flock [19–22].

In recent works, we have numerically simulated the three-dimensional (3D) harmoni-
cally confined Vicsek model (HCVM) and discovered a phase transition between phases
within chaos [23]. We have also analyzed the mean field HCVM near the free-scale-chaos
phase transition and found that its static critical exponents are the same as in the Landau
theory of equilibrium phase transitions [24]. The critical exponents obtained from our nu-
merical simulations [23,25] are close to those measured in natural midge swarms [21,26,27].
In swarms, midges acoustically interact when their distances are sufficiently small [26].
The distribution of speeds is peaked about some value and exhibits heavy tails for large
swarms (perhaps due to the formation of clusters) [22]. The statistics of accelerations of
individual midges in a swarm is consistent with postulating a linear spring force (therefore
a harmonic potential) that binds insects together [22]. Laboratory experiments have shown
that the swarm consists of a condensed core and a vapor of insects that leave or enter it [28].
Swarms of midges form over specific darker spots on the ground (wet areas, cow dung,
human-made objects, etc) called markers [29]. This empirical fact precludes states of the
swarm that are invariant under space translations, such as the ordered and disordered
homogeneous phases that are conspicuous in theories of active matter [18,27].

Other animals in a flock, such as starlings [2], define neighbors topologically not
metrically. Bird rotations propagate swiftly as linear waves [15]. Metric-free models may
incorporate a distributed motional bias [30]; visual and auditory sensing are compared
in [31]; the influence of time delay is studied in [32]; the influence of metric and topological
interactions on flocking is studied in [33]; the authors of [34] consider a swarming model
based on effective velocity-dependent gravity.

Here, we consider the 2D HCVM, which may model large vertical insect swarms [26].
As in the 3D case, the 2D HCVM exhibits scale-free chaos on a curve in the parameter space
of alignment noise and spring constant (confinement parameter) for, finitely, many particles.
This curve separates chaotic states in which the swarm is split into several subgroups from
chaotic single-cluster states [23]. On the critical curve, the swarm size is proportional to
the correlation length, which is the only length scale entering power laws for macroscopic
quantities. Thus, the swarm is scale-free on the critical curve. Using the finite size and
dynamical scaling hypotheses [13,14], we can extrapolate power laws obtained for finitely
many particles to the phase transition comprising infinitely many particles [15,21,26,27],
which we call scale-free chaos phase transition [23]. For infinitely many particles, the
confinement parameter and the largest Lyapunov exponent are both zero [23]. In the
3D case, there are other critical curves that coalesce at the same rate to the line of zero
confinement as the number of particles N → ∞. For finite N, these critical curves form an
extended criticality region, which may describe data from natural swarms [25]. We calculate
the static and dynamic critical exponents and show their relation to the 3D ones. We show
that the origin of the parameter space (zero confinement and zero noise) is an organizing
center that helps understanding the scale-free chaos phase transition. In particular, it is
possible to calculate one static critical exponent by varying the noise at fixed N instead of
the traditional approach of varying N for confinement on the critical curve at fixed noise
strength [25].

The present paper is organized as follows. Section 2 describes the HCVM and the
deterministic attractors that appear at different values of the confinement strength for zero
noise in numerical simulations. We find periodic, quasiperiodic, and chaotic attractors. To
distinguish the latter, we chiefly use the Benettin algorithm (BA) [35] to compute regions in
parameter space where the largest Lyapunov exponent (LLE) is positive. The alignment
noise of the HCVM changes the attractors as explained in Section 3. Section 4 describes
the extended criticality region of the scale-free chaos phase transition and the associated
power laws with critical exponents determined from our numerical simulations. For this
purpose, we use the critical curve separating single and multicluster chaos: on it, we fix
the strength of the noise and vary the number of particles N. In Section 5, we determine
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critical exponents by fixing N and varying the noise strength on an interval of small values.
Section 6 discusses our results and Section 7 contains our conclusions.

2. HCVM and Its Deterministic Attractors

In 2D, the HCVM consists of N particles with positions xj(t) = (xj(t), yj(t)) and
velocities vj(t) = v (cos θj(t), sin θj(t)), j = 1, . . . , N, that are updated at discrete times m∆t,
m = 0, 1, . . ., according to the following rule:

xj(t+∆t) = xj(t) + ∆t vj(t + ∆t), zj = xj + iyj, (1a)

θj(t+∆t)=Arg

 ∑
|xk−xj |<r1R0

eiθj(t)− β0

v
zj(t)

+ξ j(t). (1b)

In Equation (1b), we sum that the particles (including j) that, at time t, are inside a circle
of influence with radius r1R0 centered at xj(t); r1 is the time-averaged nearest-neighbor
distance within the swarm and R0 is the dimensionless radius. At each time, ξ j(t) is a
random number chosen with equal probability in the interval (−η/2, η/2).

We nondimensionalize the model using data from the observations of natural midges
reported in the Supplementary Materials provided by [21]. We measure times in units
of ∆t = 0.24 s, lengths in units of the time-averaged nearest-neighbor distance of the
20120910_A1 swarm in Table I of [21], which is r1 = 4.68 cm, and velocities in units
of r1/∆t, whereas v = 0.195 m/s. The nondimensional version of Equation (1) has ∆t = 1,
r1 = 1, speed v0, and confinement parameter β, given by

v0 = v
∆t
r1

, β = β0∆t. (1c)

For the example, we selected v0 = 1, whereas other entries in the same table produce order-
one values of v0 with average 0.53. For these values, the HCVM has the same behavior as
that described here. Thus, our HCVM describing midge swarms is far from the continuum
limit v0 � 1. Cavagna et al. consider a much smaller speed for their periodic VM, v0 = 0.05,
closer to the continuum limit where derivatives replace finite differences [21]. Thus, the
nondimensional equations of the HCVM are

xj(t+ 1) = xj(t) + vj(t + 1), vj = v0(cos θj, sin θj), (2a)

θj(t+ 1)=Arg

 ∑
|xk−xj |<R0

eiθj(t)− β

v0
zj(t)

+ξ j(t). (2b)

Equation (2b) can be written equivalently as

vj(t + 1) = v0RηΘ

 ∑
|xj−xi |<R0

vj(t)− βxi(t)

, (2c)

Rη =

(
cos ξ − sin ξ
sin ξ cos ξ

)
, −η

2
≤ ξ ≤ η

2
. (2d)

Here, Θ(x) = x/|x| and ξ is a random number selected with equal probability on the
specified interval of width η.

The HCVM has chaotic attractors among its solutions for appropriate values of the
parameters. We identify these attractors by calculating the largest Lyapunov exponent
(LLE), which is positive for chaos. To this effect, we use the Benettin algorithm (BA) [35]. We
have to simultaneously solve Equation (2) and the following linearized system of equations:
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δx̃i(t + 1) = δx̃i(t) + δṽi(t + 1), i = 1, . . . , N, (3a)

δṽi(t + 1) = v0Rη

(
I2 −

[∑|xj−xi |<R0
vj(t)− βxi(t)]T [∑|xj−xi |<R0

vj(t)− βxi(t)]

|∑|xj−xi |<R0
vj(t)− βxi(t)|2

)
(3b)

·
∑|xj−xi |<R0

δṽj(t)− βδx̃i(t)

|∑|xj−xi |<R0
vj(t)− βxi(t)|

,

in such a way that the random realizations Rη are exactly the same for
Equations (2) and (3). Here, I2 is the 2D identity matrix. The initial conditions for the
perturbations, δx̃i(0) and δṽi(0), can be randomly selected so that the overall length of the
vector δχ = (δx̃1, . . . , δx̃N , δṽ1, . . . , δṽN) equals 1. After each time step t, the vector δχ(t)
has length αt. At that time, we renormalize δχ(t) to χ̂(t) = δχ(t)/αt and use this value as
initial condition to calculate δχ(t + 1). With all the values αt and for sufficiently large l, we
calculate the Lyapunov exponent as

λ1 =
1
l

l

∑
t=1

ln αt, αt = |δχ(t)| = |(δx̃1(t), . . . , δx̃N(t), δṽ1(t), . . . , δṽN(t))|. (4)

See Figures 17 and 18 of [23] for the convergence of the BA.
Figure 1 shows different attractors for N = 5000 in the deterministic case η = 0.

Initially, the particles are randomly placed within a sphere with unit radius and the particle
velocities are pointing outwards. As β decreases from very large values, we observe,
from top to bottom and from the left to the right, period-two (P2) solutions, period-four
(P4) solutions, quasiperiodic solutions, large-period solutions, and chaotic solutions. At
β = 109, the particles remain inside the unit circle forming a symmetric pulsating pattern
that repeats itself every two iterations. P2 solutions also occur for β = 2× 105 but the
particles form a pattern with unoccupied spaces within the unit circle. At β = 104, the
period has duplicated, the particles form two subgroups and pass from one to the other,
repeating their positions every four iterations. At β = 500, there are large period solutions
with subgroups of particles inside the unit circle and others oscillating outside, forming
orbits reminiscent of the Bohr atomic model (the different colors correspond to different
times). Close to these solutions, there are quasiperiodic ones. At β = 0.1, quasiperiodicity
has evolved to chaos, as shown in the last panel of Figure 1.

Figure 2 shows the bifurcation diagram of the center of mass (CM) coordinates X + Y
versus β for N = 128. Here, X(t) = N−1 ∑N

j=1 xj(t). At decreasing values of β, there are P2,
P4, P6, quasi-periodic solutions interspersed with larger-period solutions (e.g., P14), and
different chaotic attractors for smaller β. The CM trajectories illustrate the different types
of attractors in the HCVM.
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Figure 1. Visual patterns for N = 5000, R0 = 0.472, η = 0 and decreasing values of β. Period-2
solutions occur at β = 109 and at β = 2× 105: the particles remain inside the unit circle forming
either connected patterns or patterns with large holes (reminding of the vibration mode of a plate).
At β = 104, there are two subgroups within the unit circle that exchange their positions in a period-4
solution. At β = 500, there are large period solutions with subgroups of particles inside the unit circle
and others oscillating outside, forming orbits reminiscent of the Bohr atomic model (the different
colors correspond to different times). At β = 0.1, the pattern corresponds to a chaotic attractor
displaying many more subgroups (of smaller density) and also single particles.

Figure 2. Bifurcation diagram of the center of mass coordinates X + Y versus β for N = 128. At
different values of confinement there are P2, P4, P6, quasi-periodic solutions interspersed with
larger-period solutions (e.g., P14), and different chaotic attractors for smaller β.

3. Noisy Attractors of the HCVM

In this section, we describe the attractors of the noisy HCVM and characterize the
regions of deterministic and noisy chaos in parameter space. To this purpose, below, we
define the scale-dependent Lyapunov exponents (SDLEs) from the time traces of the CM
position [23].
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As the confinement parameter decreases, different attractors are shown in the left and
right columns of Figure 3, corresponding to two values of the noise strength, η = 0.1, 0.5,
respectively, (N = 5000). For η = 0.1 and β = 5× 104, β = 2× 104, the solutions are period-
2 noisy cycles consisting of subgroups of particles forming different patterns alternating
densely populated regions with sparsely populated regions. For β = 500, there are noisy
quasiperiodic attractors consisting of a densely populated inner region and a number of
orbits comprising different subgroups of particles. This pattern is similar to that in Figure 1
for β = 500. For the larger noise value η = 0.5 and β = 109, the right column of Figure 3
shows that the annulus with six densely populated regions seen on the left column has
been filled. For η = 0.5 and β = 5000, a rotating chaotic pattern with dense regions appear.
These chaotic patterns change their shape for β = 1000 and β = 100.

Figure 3. Visual patterns for N = 5000, R0 = 0.472, η = 0.1 (left column) and η = 0.5 (right column).
Left column from top to bottom: β = 5× 104 and β = 2× 104 (noisy period-2 cycles), β = 500
(concentric circular orbits of a noisy quasiperiodic attractor with radii 7/4 and 5/4, points with
different color distinguish times at different iterations). Right column from top to bottom: β = 109

(noisy period-2 cycle), β = 5000 (noisy chaos: cumulus of particles rotating inside the unit circle),
β = 1000 (two groups of particles oscillate chaotically outside the unit circle while the others remain
inside), β = 100 (deformable group with chaotic dynamics).

Adding the components of X(t), we form the time series x(t) = X(t) + Y(t). To
calculate the SDLE, we construct the lagged vectors: Xα = [x(α), x(α + τ̃), . . . , x(α + (m−
1)τ̃)]. The simplest choice is m = 2 and τ̃ = 1 (other values can be used, see below). From
this dataset, we determine the maximum εmax and the minimum εmin of the distances
between two vectors, ‖Xα − Xβ‖. Our data are confined in [εmin, εmax]. Let ε0, εt, and εt+∆t
be the average separation between nearby trajectories at times 0, t, and t + ∆t, respectively.
The SDLE is

λ(εt) =
ln εt+∆t − ln εt

∆t
. (5a)

The smallest possible ∆t is of course the time step τ̃ = 1, but ∆t may also be chosen as
an integer larger than 1. The following scheme yields the SDLE [36]—find all the pairs
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of vectors in the phase space whose distances are initially within a shell of radius εk and
width ∆εk:

εk ≤ ‖Xα − Xβ‖ ≤ εk + ∆εk, k = 1, 2, . . . (5b)

We calculate the Lyapunov exponent (5a) as follows:

λ(εt) =
〈ln ‖Xα+t+4t − Xβ+t+4t‖−ln ‖Xα+t − Xβ+t‖〉k

4t
, (5c)

where 〈〉k is the average within the shell (εk, εk +4εk). The shell-dependent SDLE λ(ε) in
Figure 4 displays the dynamics at different scales for τ̃ = 9 and m = 6 [36]. In deterministic
chaos, λ(ε) > 0 presents a plateau with ends ε1 < ε2 � 1; in noisy chaos, this plateau is
preceded and succeeded by regions in which λ(ε) decays as −γ ln ε, whereas it shrinks and
disappears when noise swamps chaos. As η increases, λ(ε) first decays to a plateau for
η = 0.1. A criterion to distinguish (deterministic or noisy) chaos from noise is to accept the
largest Lyapunov exponent as the positive value at a plateau (ε1, ε2), satisfying

log10
ε2

ε1
≥ 1

2
. (5d)

For η = 0.5, the region where log10(ε2/ε1) = 1/2 is marked in Figure 4 by vertical lines.
Plateaus with smaller values of log10(ε2/ε1) or their absence indicate noisy dynamics [36].
This occurs for η = 1.

Figure 4. SDLE λ(ε) vs. log10(ε) for different noise values, β = 0.01 and N = 128. The right panel
visualizes the chaotic attractors by showing the trajectories of the CM. Increasing the noise η (in the
sense marked by the arrows) transforms a deterministic chaotic attractor into a noisy chaotic attractor
until noises predominates at η = 2.

Figure 5 shows that noise can induce chaos. Starting from a period-14 cycle in the
deterministic case, the periodic solution becomes a noisy annular quasiperiodic solution for
η = 0.1, which then turns into noisy chaos for η = 0.5; see Figure 5a. We have calculated
the LLEs by using the BA, Figure 5b, Gao-Zheng algorithm (GZA) [37], Figure 5c, and by
the SDLE, Figure 5d. The GZA consists of constructing the quantity Λ(k),

Λ(k) =

〈
ln
‖Xα+k − Xβ+k‖
‖Xα − Xβ‖

〉
, (6)

whose slope near the origin gives the LLE [37], as shown in Figure 5c. In Equation (6),
the brackets indicate ensemble average over all vector pairs with ‖Xα − Xβ‖ < r∗ for
an appropriately selected small distance r∗. The LLEs are λ1 = 0 (P-14 and NQP) and
λ1 = 0.023 for η = 0.5.
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Figure 5. Noise can induce chaos starting from a period-14 cycle in the deterministic case: (a) for
η = 0.25 the periodic solution has become a noisy annular quasiperiodic solution, which turns into
noisy chaos for η = 0.5 (left panel). Here, β = 99.52, N = 128. (b) LLEs λ1 = 0 for η = 0 and
λ1 = 0.025 for η = 0.5 calculated by the BA [35]. (c) Λ(k) vs. k as calculated by the GZA [37] of
Equation (6), which yields λ1 = 0.023 for η = 0.5. (d) The SDLE (with m = 6, τ̃ = 9) distinguishes
deterministic periodic solutions (zero slope) from NQP (η = 0.1) and noisy chaos (η = 0.5) while
yielding the same LLE as the GZA.

For the SDLE to produce accurate values for the LLE, we need sufficient lagged
coordinates for safely reconstructing the chaotic attractor. This is achieved if the dimension
of the lagged vectors is twice the fractal dimension D0 or larger [38]. Thus, we have used
m = 6 lagged coordinates and τ̃ = 9 in Figure 5c and then GZA and SDLE yield the same
values of the LLE. Moreover, P-14 and NQP solutions have zero and negative slope of λ(ε)
at the beginning of the ε interval, denoting deterministic and noisy solutions, respectively.

4. Scale-Free Chaos Phase Transition

In the previous sections, the numerical simulations of the 2D HCVM have shown the
existence of different attractors for fixed values of the number of particles N, confinement
strength β and noise η. Figure 6 shows the phase diagram of different attractors on the
plane (β, η). As in the case of the 3D HCVM [23–25], as β → 0 and N → ∞, there is a
phase transition of scale-free chaos. At finite N, scale free means that the correlation length
is proportional to the size of the swarm, so that all other characteristic lengths are not
important. There are several critical curves on the phase diagram that tend to β = 0 at
the same rate as N → ∞. We describe here the critical curve βc(N; η) separating single
cluster from multicluster chaotic attractors [23]. There are other critical curves that have
been studied for the 3D HCVM at fixed η and increasing valued of N: (i) The critical curve
βm(N; η) of local maxima of the susceptibility as a function of β; (ii) the curve βi(N; η) of
inflection points of the susceptibility vs. β; (iii) the curve β0(N; η) separating regions of
zero and positive LLE. These curves satisfy the relation β0(N; η) < βc(N; η) < βi(N; η) <
βm(N; η) [23,25]. In 3D, all these critical curves converge to β = 0 at the same rate as
N → ∞ [23,25]. In 2D, we have not found a curve β0(N; η) because the algorithms used
to compute the LLE do not converge at values of β that are too small: for all β < βc(N; η)
within the range of convergence of the BA, the LLE is positive.



Entropy 2023, 25, 1644 9 of 19

Figure 6. Phase diagram β vs. η for N = 500.

4.1. Correlation Functions and Power Laws

Let us first define the static and dynamic correlation functions, the correlation length
and time and the susceptibility with the corresponding power laws and critical exponents.
The dynamic connected correlation function (DCCF) is [15,26]

C(r, t) =

〈
∑N

i=1∑N
j=1 δv̂i(t0)·δv̂j(t0+ t) δ[r− rij(t0, t)]

∑N
i=1 ∑N

j=1 δ[r− rij(t0, t)]

〉
t0

, C(r) = C(r, 0), (7a)

where

δv̂i =
δvi√

1
N ∑k δvk · δvk

, δvi = vi −V, (7b)

rij(t0, t) = |ri(t0)− rj(t0 + t)|, ri(t0) = xi(t0)−
1
N

N

∑
j=1

xj(t0), (7c)

〈 f 〉t0 =
1

tmax − t

tmax−t

∑
t0=1

f (t0, t). (7d)

In Equation (7a), δ(r − rij) = 1 if r < rij < r + dr and zero otherwise, and dr is the
space binning factor. The averages are over time and over five independent realizations
corresponding to five different random initial conditions during 10,000 iterations [23]. The
SCCF is the equal time connected correlation function C(r) = C(r, 0) given by Equation (7a).
Note that C(∞) ∝ |∑N

i=1 δv̂i|2 = 0. The correlation length ξ can be defined as the first zero
of C(r), r0, corresponding to the first maximum of the cumulative correlation function [26]:

Q(r) =

〈
1
N

N

∑
i=1

N

∑
j=1

δv̂i ·δv̂jθ(r− rij(t0, 0))

〉
t0

, χ = Q(ξ), (8)

ξ = argmaxrQ(r), C(ξ) = 0 with C(r) > 0, r ∈ (0, ξ),

where θ(x) is the Heaviside unit step function. For r larger than the swarm size, Q(r) =
〈|∑N

i=1 δv̂i|2〉t0 /N = 0. The susceptibility χ is the value of Q(r) at its first maximum, as in
Ref. [26]. Alternatively, we can use the Fourier transform of Equation (7a),

Ĉ(k, t)=

〈
1
N

N

∑
i,j=1

sin(krij(t0, t))
krij(t0, t)

δv̂i(t0)·δv̂j(t0 + t)

〉
t0

(9)
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and define the critical wavenumber kc =argmaxkĈ(k, 0), the susceptibility as χ = maxk
Ĉ(k, 0), and the correlation length as ξ = 1/kc [15,21,23]. It turns out that kc ∝ 1/r0 on
critical curves and we can use either the real-space or the Fourier space SCCF to find
correlation length and susceptibility. On the critical curves where the correlation length is
proportional to the swarm size, the correlation length and the susceptibility obey power
laws with critical exponents ν and γ, respectively:

ξ ∼ β−ν, χ ∼ β−γ. (10a)

As N → ∞, the confinement on the critical curve β tends to zero and correlation length and
susceptibility diverge [11,13]. Similarly, the polarization, i.e., the average speed of the CM
velocity, tends to zero as a power law with critical exponent b:

〈W〉t ∼ βb, W =

∣∣∣∣∣ 1
N

N

∑
j=1

vj

|vj|

∣∣∣∣∣ =
∣∣∣∑N

j=1 vj

∣∣∣
Nv0

. (10b)

For the DCCF, the dynamic scaling hypothesis implies

Ĉ(k, t)
Ĉ(k, 0)

= f
(

t
τk

, kξ

)
= g(kzt, kξ); g(t) =

Ĉ(kc, t)
Ĉ(kc, 0)

; τk = k−zφ(kξ). (11)

Here, z is the dynamic critical exponent and the correlation time τk = k−zφ(kξ) of the
normalized DCCF (NDCCF) (11) at wavenumber k obtained by solving the equation: [21,23]

tmax

∑
t=0

1
t

sin
(

t
τk

)
f
(

t
τk

, kξ

)
=

π

4
. (12)

At kc =argmaxkĈ(k, 0), the correlation time τkc is a function of β, η and N. For fixed N and
η, there is a value of β = βc at which τkc reaches a minimum. This minimum correlation
time corresponds to the smallest time tm(β; η, N) at which Ĉ(kc, t) = 0 [23]. See Figure 5(a)
of Ref. [23] for the 3D HCVM.

4.2. Scale-Free Chaos and Critical Exponents

For finite N, the 2D HCVM exhibits a region of chaos and noisy chaos for small values
of β and η, as shown in Figure 6. Deep into this region, there is a transition between two
types of chaotic attractors: multicluster chaos, in which the swarm is split into several
groups of particles, as shown in Figure 7a, and single cluster chaos (only one group), as
shown in Figure 7b (at the transition value β = βc) and Figure 7c (β < βc).

Figure 7. Visual patterns of the chaotic attractors in (a) chaotic multicluster phase for β = 0.1,
(b) scale-free chaos phase transition for βc = 0.0003, and (c) chaotic single-cluster phase for β = 10−5.
Here, η = 0.5 and N = 500.

The polarization order parameter goes to zero as β → 0 following the power law
Equation (10b) with b = 0.42 ± 0.02; see Figure 8a. Moreover, the chaotic attractor is
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multifractal [38], as shown by Figure 8b. Then, some regions of the chaotic attractor are
visited more often than others, which indicates that different length and timescales coexist
within the attractor. This is made manifest by calculating the multifractal dimension
Dq. After a long transient (30,000 time steps), a set of M values of the CM position
~xi = X(ti) + Y(ti), i = 1, . . . , M, form a Poincaré map of the attractor. The multifractal
dimension is

Dq =
1

q− 1
lim
r→0

ln[Cq(r)]
ln(r)

, Cq(r) =
1
M

M

∑
i=1

[
1
M

M

∑
j=1

θ(r− |~xi −~xj|)
]q−1

, (13)

where θ(x) is the Heaviside unit step function, M ≈ 70,000, and Cq(r) is the generalized
correlation function. D0, D1, and D2 are the box counting (capacity) dimension, the
information dimension, and the correlation dimension, respectively. As we vary q, different
regions of the attractor will determine Dq. D∞ corresponds to the region where the points
are mostly concentrated, while D−∞ is determined by the region where the points have the
least probability to be found. If Dq is a constant for all q, then the CM trajectory will visit
different parts of the attractor with the same probability and the point density is uniform
in the Poincaré map. This type of attractor is called trivial, whereas a non constant Dq
characterizes a nontrivial attractor with multifractal structure. Figure 8b shows that the
box-counting dimension D0 and Dq for q > 0 undergo a downward trend with increasing
N (decreasing βc). Then, the dimension of the more commonly visited sites of the attractor
decreases. The chaotic attractor remains multifractal when β → 0 as N → ∞ and chaos
disappears: different time scales persist [39].

As explained above, βc =argminβτkc(β; η, N), where τkc is the minimum correlation
time given by the solution of Equation (12) for fixed η and N. At βc, the correlation length
and the size of the swarm are proportional for different values of N as shown by Figure 9a.
This indicates that the chaotic attractor of the HCVM is scale-free for the curve βc(η; N).

Figure 8. Scale-free chaos phase transition for β → 0, N → ∞ and η = 0.5. (a) Polarization order
parameter vs. β power law yielding the critical exponent b = 0.42± 0.02. (b) Multifractal dimension
Dq calculated from the chaotic attractor center of mass.

Figure 9b,c show that, for increasing N → ∞, correlation length and susceptibility
scale with β = βc (with limN→∞ βc(η; N) = 0) following the power laws (10a) with critical
exponents ν = 0.30± 0.02 and γ = 0.78± 0.05, respectively, while the correlation length
and time are calculated using numerical simulations of the HCVM on the critical curve
βc(η; N), the susceptibility does not tend to a definite value as N increases due to the
very small values of βc for large N (which are much smaller for the 2D HCVM than the
corresponding values for the 3D HCVM). To fix this problem of the 2D HCVM, we recall
that the scale-free chaos phase transition in the 3D HCVM has an extended critical region
which collapses to β = 0 at the same rate for all values of the noise as N → ∞ [23]. The
critical curve with larger values of β is βm(η; N), corresponding to the local maximum of
the susceptibility χ with respect to β (at fixed N and noise) calculated as in χ in Equation (8),
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χ = Q(r0), or as χ = maxk Ĉ(k, 0) [23]. The curve βm(η; N) is also scale-free and it yields
scaling laws as in Equation (10). Figure 10a,b illustrate that the power law Equation (10a)
for the susceptibility χ = Q(r0) at β = βm. Moreover, Figure 9d shows that the curves
βc and βm tend toward β = 0 at the same rate: βc/βm → 0.035 as N → ∞. Thus, we
calculate the critical exponent of the susceptibility using βm(η; N) instead of βc(η; N),
thereby obtaining Figure 9c.

Figure 9. Scale-free chaos phase transition for β → 0, N → ∞ and η = 0.5. (a) Scale free ξ ∼ L
(ξ = r0). (b) Correlation length vs. β power law producing the critical exponent ν = 0.30± 0.02.
(c) Susceptibility vs. β power law from the critical curve βm(N; η) yielding γ = 0.78± 0.05. (d) Ratio
of βc/βm vs. N giving βc/βm → 0.035 as N → ∞.

Figure 10. (a) Power law of the susceptibility vs. β. (b) Scaled susceptibility vs. scaled β yielding
γ = 0.78 ± 0.05 as N → ∞. The colors correspond to different values of N in the interval
300 ≤ N ≤ 2500.

The dynamical critical exponent relating correlation time and length, τk ∼ ξz ∼ k−z
c , is

z = 0.99± 0.03; see Figure 11a. For different values of N, the NDCCF g(t) of Equation (11)
is shown in Figure 11b. As shown in Figure 11c, the different NDCCF curves collapse into
a single curve for small values of the scaled time kz

ct. The same collapse of the NDCCF as a
function of kz

ct only for 0 < kz
ct < 4 occurs using data from natural swarms, as shown in

Figure 2a,b of Ref. [21] for z = 1.2. We ascribe the partial collapse of the NDCCF to the
multifractality of the chaotic attractors shown in Figure 8b, which indicates that different
length and time scales persist for all the critical values of β. Thus, a single rescaling of
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time as in Figure 11c cannot collapse the full NDCCF in our simulations. Furthermore,
Figure 11d indicates that the LLE scales with β = βc as

λ1 ∼ βϕ, (14)

with ϕ = 0.29± 0.02 = zν. As for the 3D HCVM, these scaling laws illustrate the scale-free
chaos phase transition [23].

Figure 11. Scale-free chaos phase transition for β→ 0, N → ∞ and η = 0.5. (a) Correlation time vs.
kc = 1/ξ for 100 ≤ N ≤ 2500 yielding zLS = zRMA = 0.99± 0.03. (b) Normalized dynamic connected
correlation function (NDCCF) g(t) = Ĉ(kc, t)/Ĉ(kc, 0) for β = βc(N; η). (c) Visual collapse of the
NDCCF as a function of kz

ct for z ≈ 1. (d) LLE vs. β with critical exponent ϕ = 0.29± 0.02 = zν.

5. Unfolding of the Phase Transition at Small Noise

The scale-free chaos phase transition in the 3D HCVM is such that all critical curves
tend to β = η = 0 for finite number of particles [25]. There are power laws in η that allow
the calculation of critical exponents without having to increase N as we did in Section 4. The
point β = η = 0 acts as an organizing center of codimension two for the phase transition
in a sense that reminds of singularity theory [40]. The critical curves including η = 0
and βc(η; N) issue from the organizing center at finite N and the attractors in the regions
between these lines have specific properties (non-chaotic, single-cluster chaos, multicluster
chaos, deterministic chaos, etc). Two parameters, β and η, unfold these behaviors as they
take on nonzero values. As N → ∞, all critical curves tend to β = 0 (scale-free chaos phase
transition). On the critical curve βc, the 2D power law is [25]

βc(N; η) = CcN−
1

2ν ηmc . (15a)

For N = 100, CcN−
1

2ν = 0.017± 0.003 and mc = 2.1± 0.1. Taking into account the power
law (10a) for the correlation length, the previous equation can be rewritten as

ξ ∼ N
1
2 η−νmc . (15b)

This expression can be used to obtain ν for fixed N. Consider the critical curve βc(η; N) for
N = 100 in Figure 12a and the points on it corresponding to noise values 0.1 ≤ η ≤ 0.5.
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Figure 12b compares the curves βc(η) at N = 100 for the 2D and 3D HCVM. We observe
that the 2D values of critical confinement become much smaller than the corresponding
3D values as the noise decreases. Figure 13a shows that the critical curve is indeed scale
free as the size L of the swarm is proportional to the correlation length ξ. Figure 13b
plots ξ as a function of β on the critical curve βc and yields ν = 0.34± 0.05. This value is
compatible with ν = 0.30± 0.02 obtained in Section 4 by calculating several points on the
curve βc(η; N) for fixed η = 0.5 and 100 ≤ N ≤ 2500.

Figure 12. Scale-free chaos phase transition for β→ 0 and η → 0. (a) Critical curve βc(η, N) on the
parameter space (β, η) separating phases of single cluster from multicluster chaos for N = 100 and
0.1 ≤ η ≤ 1.0. The power law fitting this curve is βc = Cc N−

1
2 ηmc with Cc/

√
100 = 0.017± 0.003

and mc = 2.1± 0.1 for 0.1 ≤ η ≤ 0.5 (η = 0.7 and η = 1 are outside the fit). (b) Comparison of the
curve βc vs. η for N = 100 for the 2D HCVM (blue curve with slope mc = 2.1) and 3D HCVM (brown
curve with slope mc = 1.2).

We can also obtain the dynamical critical exponent by scaling time in the graph of
the NDCCF g(t) to kz

ct, with kc = 1/ξ, as shown in Figure 13c. Least square (LS) and
reduced major axis (RMA) regressions [27] shown in this figure produce similar values of
the dynamical critical exponent, zLS = 1.18± 0.11 and zRMA = 1.24± 0.12, respectively.
Figure 13d,e shows that the curves for different values of η ∈ [0.1, 0.5] visually collapse
when time is rescaled with z ≈ 1.15.

Figure 13. Scale-free chaos phase transition for β → 0 and η → 0, for N = 100 and 0.1 ≤ η ≤ 0.5.
(a) Scale free property ξ ∼ L. (b) Power law of ξ vs. β with ν = 0.34 ± 0.05. (c) Dynamical
critical exponent from correlation time vs. kc = 1/ξ: zLS = 1.18± 0.11 and zRMA = 1.24± 0.12.
(d) Normalized dynamic connected correlation function g(t) = Ĉ(kc, t)/Ĉ(kc, 0) for β = βc(N; η).
(e) Visual collapse of the NDCCF as a function of kz

ct for z ≈ 1.15. (f) LLE vs. β yielding
ϕ = 0.46± 0.01 ≈ zν.
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As the number of particles goes to infinity, the LLE tends to zero according to the
scaling law Equation (14). Using noise values between 0.1 and 0.5 for N = 100, we find
ϕ = 0.46± 0.01; see Figure 13f. This exponent is compatible with the dynamic relation
ϕ = zν found for the 3D HCVM in Ref. [23]. However, this value is different from that
obtained in Section 4 by considering increasing values of N at fixed η = 0.5.

6. Discussion

We have numerically simulated the 2D HCVM for different values of the noise strength
η and the number of particles N. As the confinement parameter decreases, the model
exhibits periodic attractors with periods 2, 4, and so on, followed by quasiperiodic attractors
and, eventually, chaotic attractors with different shapes that occupy regions of finite area
and comprise one or several groupings. The noise modifies these attractors. Using SDLEs,
we can distinguish essentially deterministic chaos from chaos modified by noise (noisy
chaos) and from predominantly noisy signals [36]; see Figure 4 and the phase diagram in
Figure 6. Within the parameter region of deterministic and noisy chaotic solutions, there is
a phase transition at β = 0, N = ∞. To study this transition using numerical simulations,
we use the finite size scaling and dynamical scaling hypotheses [11,13–15,21,26]: on critical
curves, the characteristic timescale, and the static and dynamic connected correlation
functions depend on the control parameters β and η only through the correlation length
ξ. On critical curves, the swarm size and the correlation length are proportional, hence
ξ ∝ N

1
d (d is the space dimension, 2 in the present work). Finite-size scaling allows us

to extrapolate power laws of macroscopic variables obtained for finite N to the case of
infinitely many particles, which characterize phase transitions [13].

For finite N, there is an extended critical region comprising different critical curves on
the plane (η, β) that converge to β = 0 at the same rate as N → ∞. On the critical curves,
the chaotic attractors are multifractal, spanning many different length scales, even as N
increases. Compared to the 3D case [25], the confinement parameter on the critical curves
is much smaller. In fact, the BA algorithm used to find the LLE ceases to converge before
we succeed in finding a zero value of the LLE. This precludes studying the curve β0(N; η)
separating chaotic from non-chaotic regions, which necessarily lies below the critical curve
βc(N; η) separating single from multicluster chaos. For values on this critical curve, the
chaotic attractor occupies a connected finite region of space. It is shaped as a condensed
core plus particles that enter and exit the core, as shown in Figure 7b,c. This is similar to
observations of midge swarms in the laboratory [28]

With these limitations, we have used our numerical simulations to evaluate static
and dynamical critical exponents of the scale-free chaos phase transition in 2D. We have
characterized the critical curve βc(N; η) and computed the static critical exponents ν and γ
associated with correlation length and susceptibility, respectively, as well as the dynamical
critical exponents z and ϕ. To derive the power laws and calculate critical exponents, we
have used two limiting procedures. In the traditional one, we keep η fixed and calculate
βc(N; η) for increasing values of N, using to calculate γ (corresponding to the susceptibility)
that the curve of local maxima of the susceptibility, βm(N; η), collapses to β = 0 at the same
rate as βc(N; η); see Figure 9d. The other procedure follows from the fact that all critical
curves tend to η = 0, β = 0, which produces power laws in η for fixed N [25]. Using this
second procedure as in Equation (15b), we have found a value of ν (corresponding to the
correlation length) compatible with that obtained by the first procedure. For the static
critical exponent γ, the proportionality coefficient between χN−γ/(dν) and η is independent
of η and therefore we cannot use the power laws in η to find it [25].

The exponent z characterizes the collapse of the normalized dynamical correlation
function when expressed as a function of kz

ct = t/ξz. Unlike the case of critical dynamics
near equilibrium, the NDCCF collapses only for an interval of small rescaled times (of width
about 4), not for all rescaled times. This partial collapse is also observed in experiments [21],
but not in models that try to explain experiments by an ordering phase transition between
spatially homogeneous phases [21,27]. We ascribe this partial collapse of the NDCCF to



Entropy 2023, 25, 1644 16 of 19

the multifractal nature of chaotic attractors, which contain many different length and time
scales [23]. As the scale-free chaos phase transition occurs as β→ 0, N → ∞, the LLE of the
chaotic attractor tends to zero and it follows a new power law while doing so. This power
law has a critical exponent ϕ, which we have also calculated.

How can we compare our results with observations of swarms of midges? On the
qualitative side, the shape of the swarm is similar to that found in our numerical simula-
tions: a condensed core with a gas of particles (insects) going in and out of the core [28].
Furthermore, the partial collapse of the NDCCF for a finite interval of scaled time hav-
ing about 4 units of width agrees with observations [21], whereas theories based on the
ordering transition in different models produce a collapse of the NDCCF for all values
of the scaled time [21,27]. On the quantitative side, the numerical simulations of the 2D
HCVM produce static exponents ν = 0.30± 0.02, γ = 0.78± 0.05 and dynamical exponents
z = 0.99± 0.03, ϕ = 0.29± 0.02 (Section 4). Numerical simulations of the 3D HCVM
(using the same critical curve βc(N; η) as in the present work) yield ν = 0.436± 0.009,
γ = 0.92± 0.05, z = 1.01± 0.01, and ϕ = zν [23]. Critical exponents measured from natural
swarms are ν = 0.35± 0.10, γ = 0.9± 0.2 (Ref. [26]), and z = 1.37± 0.10 (RMA regression,
with zLS = 1.16± 0.12; see Ref. [27]).

We note that the static exponent ν (correlation length) and γ (susceptibility) in the ex-
periments are between the ν and γ exponents of the 2D and 3D simulations. The dynamical
exponent z for the 2D and 3D is about 1, which is clearly different from the calculated from
experimental data using RMA regression zRMA = 1.37 (using LS regression, zLS = 1.16 is
still larger than in the 2D or 3D simulations). No data about ϕ exist at the present time.

Data from natural swarms include observations under different environmental con-
ditions and different number of insects or even midges of different species are involved.
If we believe that swarms live in the criticality region of the scale-free chaos phase tran-
sition, then data from natural swarms will correspond to points on the critical curves of
parameter space that have different values of η and N. Recently, we have tried to mimic
data from experimental observations by using a mixture of data from numerical simu-
lations of the 3D HCVM that have different values of N and η on the critical curves βc
and β0 [25], while we obtain the same values of the exponent z using LS or RMA regres-
sion if we simulate a single value of βc or β0, the LS and RMA values of z are different
for the mixture of data. The resulting exponents of the 3D HCVM are ν = 0.43± 0.03,
γ = 0.92± 0.13, z = 1.37± 0.10 (calculated using RMA regression; with LS regression, we
obtain z = 1.24± 0.11), ϕ = zν [25]. These values are very close to the experimental ones
listed above. Contrastingly, the mixtures of data that produce Figure 5 for the 2D HCVM
yield critical exponents ν = 0.34± 0.05, zLS ≈ zRMA ≈ 1.2: the static exponent ν is within
the range of the experimental one but the dynamic exponent is somewhat smaller.

The theories based on the ordering phase transition predict accurately the dynamical
critical exponent (z = 1.35 for the active version of models E/F and G in Ref. [14]), but
fail to predict the static critical exponents. In Ref. [27] in addition to z = 1.35, ν = 0.748,
γ = 1.171 are obtained, when the observed values are ν = 0.35± 0.10 and γ = 0.9± 0.2 [26].
Furthermore, these theories fail to predict the limited collapse of the NDCCF [21], or the
shape of the swarm [26,28].

7. Conclusions

We have analyzed the scale-free chaos phase transition of the 2D HCVM based on
numerical simulations of values of noise and number of particles on the critical curve βc
separating single from multicluster chaotic attractors. The shape of the swarm (condensed
core plus a vapor of particles entering and leaving it) and the partial collapse of the NDCCF
in terms of rescaled time are the same as both 3D simulations and experimental data. The
values of the static critical exponents ν and γ are close to those obtained from simulations
of the 3D HCVM and from experimental data. The dynamical exponent z is different
from that of the 3D HDVM and from experiments. We could not investigate the critical
curve β0(N; η) separating chaotic and non-chaotic attractors due to non-convergence of the
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Benettin algorithm used to calculate the LLE at values of the confinement parameter that
are too small. It would be interesting to study the 3D HCVM having different confinement
parameters in the vertical and transversal directions. This would be closer the observations
of natural swarms, which are elongated in the vertical direction, and the results might be
interpolations between the 2D and 3D models. These interpolations could also be useful to
study renormalization group properties of the scale-free chaos phase transition based on
the quasiperiodic route to chaos [39,41].
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Abbreviations
The following abbreviations are used in this manuscript:

VM Vicsek model
HCVM harmonically confined Vicsek model
2D, 3D two-dimensional, three dimensional
BA Benettin algorithm
LLE largest Lyapunov exponent
Pm period-m
NPm noisy period-m
NQP noisy quasiperiodic
GZA Gao-Zheng algorithm
DCCF dynamic connected correlation function
SCCF static connected correlation function
NDCCF normalized dynamic connected correlation function
CM center of mass
LS least square
RMA reduced major axis
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