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Abstract: We present a modified characteristic finite element method that exhibits second-order
spatial accuracy for solving convection–reaction–diffusion equations on surfaces. The temporal
direction adopted the backward-Euler method, while the spatial direction employed the surface finite
element method. In contrast to regular domains, it is observed that the point in the characteristic
direction traverses the surface only once within a brief time. Thus, good approximation of the
solution in the characteristic direction holds significant importance for the numerical scheme. In
this regard, Taylor expansion is employed to reconstruct the solution beyond the surface in the
characteristic direction. The stability of our scheme is then proved. A comparison is carried out
with an existing characteristic finite element method based on face mesh. Numerical examples are
provided to validate the effectiveness of our proposed method.

Keywords: surface convection–reaction–diffusion equations; explicit–implicit method; Taylor expansion;
surface finite element; stability

1. Introduction

The convection–reaction–diffusion (CRD) equation holds significant importance in the
field of fluid mechanics as it serves as a model that captures the interconnected processes
of convection, reaction, and diffusion. This equation proves instrumental in elucidating
various natural phenomena such as alterations in liquid pollutants upon discharge into
rivers, the durability of reinforced concrete in seawater [1], and heat conduction, among
others. However, certain practical phenomena frequently manifest in irregular domains,
including biological films, pattern formation [2,3], surfactant transportation [4], evolution
of colonies on irregular surfaces [5], and cell migration [6,7]. The governing equation of
these phenomena is the CRD equation on surfaces, thus necessitating the exploration of
numerical methods for solving these equations on surfaces.

The numerical methods for solving partial differential Equations (PDEs) on surfaces
can be divided into two main categories: mesh-free methods [8–12] and mesh-based
methods [13–30]. For mesh-free methods, the implementation of this particular method is
relatively straightforward. However, there are challenges in stability and error estimation.
Conversely, mesh-based methods are highly dependent on the mesh, but improve the
stability of the numerical method. We focus here on the finite element method which is one
of the mesh-based methods for solving PDEs on surfaces. The mesh generation include
two prevalent strategies: embedding the surface in the narrow-band domain [16–23] and
directly discretizing the surface [25–30].

When convection is dominant, the effectiveness of classical finite element methods is
reduced, yielding non-physical oscillations in the numerical solution. To alleviate these
oscillations, various finite element methods have been introduced, such as Olshanskii
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et al. [22], who have presented error estimates for a trace finite element method with
streamline-upwind/Petrov–Galerkin stabilization. This represents the first residual-based
stabilization method for convection–diffusion equations on surfaces. However, the accuracy
and stability of this method depend on the careful selection of the stabilization param-
eters, which requires rigorous theoretical considerations. For the same problem, Simon
and Tobiska provide a priori error estimation for a fitted finite element local projection
stabilization in their study, which is symmetric stability terms [26]. Recently, Xiao et al.
developed gradient recovery-based adaptive techniques in [27]. Jin et al. [28] subsequently
utilized their work [27] to address the convection-dominated problem on surfaces using
mixed finite element methods and provided theoretical analysis.

The characteristic finite element method [23,29,31] is easier to operate than the above
methods [22,26–28]. To implement this method, it is necessary to convert the CRD equa-
tion into a reaction–diffusion equation and interpolate the solution in the characteristic
direction [31]. Unlike the regular domains [31], the point in the characteristic direction pass
through the surface only once during a short time. Consequently, the solution situated
beyond the surface in the characteristic direction needs to be reconstructed based on avail-
able information. This task is straightforward for the characteristic finite element method
based on volume mesh [23]. However, it presents challenges for the face mesh-based
method in Section 4 of [25]. In response, Xiao et al. [29] introduced a characteristic finite
element method (CFEM) that relies on the face mesh. By incorporating mass lumping,
CFEM ensures the preservation of positivity, albeit at the cost of diminished accuracy. Here,
we will propose a modified characteristic finite element method with second-order spatial
accuracy for solving the CRD equation on surfaces. The temporal discretization strategy
employed is the backward-Euler method, while the spatial mesh adopts the face mesh
method. To reconstruct the solution beyond the surface in the characteristic direction, we
consider the Taylor expansion. However, the high accuracy is concomitant with a reduction
in the stability. This will result in the transformation of our characteristic finite element
method into an explicit–implicit method, thereby compromising its ability to maintain
positivity. Then, the reasons for the deterioratation in spatial accuracy of the characteristic
finite element method based on face mesh are analyzed.

The rest of this paper is organized as follows. We start, in Section 2, with an introduc-
tion to differential operators, Green’s theorem on surface and the CRD equation on surfaces.
The reaction–diffusion equation with a characteristic directional derivative is then given.
Additionally, we propose a modified characteristic finite element method based on Taylor
expansion in Section 3. Then, the reconstruction methods proposed by us and the CFEM
are examined. Lastly, in Section 4, we present a series of numerical examples to assess the
disparities between our scheme and the CFEM. The conclusion of our findings is provided
in Section 5.

2. Preliminaries

This section aims to present a thorough introduction to surface operators, Green’s
theorem on surface and the CRD equation involved. Subsequently, the CRD equation is
converted into a reaction–diffusion equation with a characteristic directional derivative
employing a characteristic finite element method.

2.1. Surface Operators and Green’s Theorem on Surface

Let Γ = {x ∈ R3| ψ(x) = 0} be a connected and oriented surface without boundary
for such ψ ∈ C2(R3). For x ∈ Γ, P(x) = I − n(x)nT(x) denotes the tangential projection
operator where n(x) = ∇ψ(x)

|∇ψ(x)| in the unit vector normal to Γ. The tangential gradient of

f ∈ C2(Γ) is obtained with

∇Γ f (x) = P(x) · ∇ f (x) x ∈ Γ, (1)
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and the Laplace–Beltremi operator is defined as

∆Γ f (x) = ∇Γ · ∇Γ f (x) f (x) ∈ C2(Γ). (2)

Let H be the mean curvature of Γ; Green’s theorem on any hypersurface is as follows.

Theorem 1 ([25]). If the boundary ∂Γ of a hypersurface Γ ⊂ Rn+1, n = 1, 2, . . . , is smooth, then
f ∈ C1(Γ̄) satisfy ∫

Γ
∇Γ f dA =

∫
Γ

H f ndA +
∫

∂Γ
f νdσ,

where ν is the co-normal of Γ, and dA and dσ are the measures of Γ and ∂Γ, respectively.

By choosing the inner product (u, v)Γ =
∫

Γ uvdA, the norms || · ||L2(Γ) and || · ||H1(Γ)
are defined with

||u||L2(Γ) =
√
(u, u)Γ ||u||2H1(Γ) = ||u||

2
L2(Γ) + ||∇Γu||2L2(Γ). (3)

2.2. The Convection–Reaction–Diffusion Equations on Surface

In this paper, we will focus on the following equation:{
∂tu + β · ∇Γu− ε∆Γu + µu = f (x, t) ∈ Γ× (0, T],
u(x, 0) = u0(x) x ∈ Γ,

(4)

where the diffusion parameter ε and the reaction coefficient µ are positive constants.
The convection velocity β are assumed to be time-independent and continuous function
satisfying

µ− 1
2
∇Γ · βΓ ≥ κ > 0. (5)

According to orthogonality, the convection term in (4) can be modified as

β · ∇Γu = βΓ · ∇Γu = βΓ · (P∇)u = βΓ · (I − P + P)∇u = βΓ · ∇u, (6)

where βΓ represents the projection of β onto the tangent plane of Γ. This means that we
only need to pay attention to the tangential component βΓ of β at the surface Γ.

2.3. The Reaction–Diffusion Equation with Characteristic Directional Derivative

For a small positive parameter δ, let U(Γ, δ) be the neighbourhood of the surface Γ
and tn = n∆t, n = 0, 1, . . . , N, and parameter ∆t = T/N is the time step with ∆t ≤ δ. We
extend u(x, tn) from surface Γ to neighborhood U(Γ, δ). Assume that there is a characteristic
direction τ in U(Γ, δ)× [tn−1, tn] and the point (χ(t), t) on direction τ satisfy

d
dt

χ(t) = βΓ t ∈ [tn−1, tn),

x = χ(tn).
(7)

Integrating the characteristic Equation (7) over [tn−1, tn] , the backtracking characteristic
point obtained is as follows:

χ(tn−1) = x− ∆tβΓ ≡ x̌. (8)

Thanks to (7), the characteristic directional derivative at point (χ(t), t) is

∂τu =
d
dt

u(χ(t), t) = ∂tu +∇u · d
dt

χ(t) = ∂tu + βΓ · ∇u. (9)
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It follows from (4) and (9) that{
∂τu− ε∆Γu + µu = f (x, t) ∈ Γ× (0, T],
u(x, 0) = u0(x) x ∈ Γ.

(10)

Several discrete schemes of the characteristic directional derivative ∂τu(tn) are known,
including the backward-Euler method, the Crank–Nicolson method, and the Runge–Kutta
method. In this paper, we employ the backward-Euler scheme:

∂τu(x, tn) =
u(x, tn)− u(x̌, tn−1)

∆t
+ O(∆t). (11)

The backtracking characteristic point x̌ is evidently not situated on Γ. Consequently, it is
of utmost significance to reconstruct u(x̌, tn−1) by utilizing the available information on
surfaces.

3. A Modified Characteristic Finite Element Method (MCFEM) Based on Taylor
Expansion

In this section, we will introduce a modified characteristic finite element method
(MCFEM) which employs the Taylor expansion to obtain the solution beyond the surface
in the characteristic direction. Then, we will provide a specific discrete formulation of the
MCFEM and analyze its stability.

3.1. The Reconstruction Method Based on Taylor Expansion

The approximation of the solution in the characteristic direction is heavily mesh-
dependent. If the volume mesh [16–23] is used, the solution beyond the surface can be
reconstructed using interpolation. However, the face mesh in Section 4 of [25] cannot
generate a narrow band which contains surfaces similar to the volume mesh. Consequently,
if a point in the characteristic direction is situated on the current mesh, it must have
resided beyond the mesh at the previous moment. This presents novel challenges to the
reconstruction method.

At present, the reconstruction method based on face mesh is only used by Xiao
et al. [29], as illustrated in Figure 1. They will identify the nearest mesh point xc and project
x̌ vertically onto the tangent plane Tc of xc as x∗. Subsequently, the mesh points on each
element containing xc are extended into the tangent plane Tc along their normal direction
to form a new local element. Linear interpolation is then employed to approximate u(x∗)
within these local elements, which is used to approximate u(x̌). It is evident that the CFEM
in [29] fails to account for the discrepancy between u(x∗) and u(x̌), resulting in a spatial
accuracy lower than the second order.

Figure 1. The schematic diagram of the CFEM in [29] for approximate u(x̌).

We will suggest a more accurate method for reconstructing the solution beyond the
surface. It should be noted that the backtracking characteristic point x̌ can be situated
within the tangent plane Tx of point x ∈ Γ through the selection of the suitable characteristic
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direction τ. Considering the Taylor expansion within the tangent plane Tx and (8), we have

u(x̌, t) = u(x, t) + (x̌− x) · ∇u(x, t) + O(|x̌− x|2)
= u(x, t)− ∆tβΓ(x) · ∇u(x, t) + O(∆t2)
= ˇ̃u(x, t) + O(∆t2),

(12)

where ˇ̃u(x) is an approximation of u(x̌) with second-order accuracy in time.
Taking this approximation, we obtain the reconstruction method based on Taylor

expansion, as shown in Figure 2. First, the backtracking characteristic point (x̌, tn−1) of
point (x, tn) on Γ is found along the characteristic direction τ. Due to (8), it is easy to know
that the backtracking characteristic point is obtained with x̌ = x− ∆tβΓ(x). Second, the
reconstructed function ˇ̃u(x, tn−1) = u(x, tn−1)− ∆tβΓ(x) · ∇u(x, tn−1) is obtained using
the Taylor expansion of u(x̌, tn−1) at point (x, tn−1).

Figure 2. The schematic diagram of our MCFEM for approximate u(x̌).

3.2. Temporal Discretization of the MCFEM

Let ∂̄τu(tn) = u(tn)− ˇ̃u(tn−1)
∆t be an approximation of the characteristic directional deriva-

tive ∂τu(tn). An estimate between ∂τu(tn) and ∂̄τu(tn) is provided below.

Theorem 2. If u ∈ C2(U(Γ, δ)× [0, T]) satisfies Equation (7), then the following estimate holds:

||∂τu(tn)− ∂̄τu(tn)||L2(Γ) ≤
∫ tn

tn−1
||∂ttu||L2(Γ) + ||∂t(∂τu)||L2(Γ)dt, 1 ≤ n ≤ N. (13)

Proof. By the definition of operator ∂τu(tn) and ∂̄τu(tn)

||∂τu(tn)− ∂̄τu(tn)||L2(Γ)
= 1

∆t ||∆t(∂tu(tn) + βΓ · ∇u(tn))− (u(tn)− u(tn−1) + ∆tβΓ · ∇u(tn−1))||L2(Γ)
= 1

∆t ||
[
∆t∂tu(tn)− (u(tn)− u(tn−1))

]
+
[
∆tβΓ · ∇(u(tn)− u(tn−1))

]
||L2(Γ)

:= 1
∆t ||T1 + T2||L2(Γ).

(14)

For T1, we see that

T1 = ∆t∂tu(tn)− (u(tn)− u(tn−1))

=
∫ tn

tn−1 ∂tu(tn)− ∂tu(t)dt
= (t− tn−1)(∂tu(tn)− ∂tu(t))

∣∣tn

tn−1 +
∫ tn

tn−1(t− tn−1)∂ttu(t)dt
=
∫ tn

tn−1(t− tn−1)∂ttudt.

(15)

For T2, we have
T2 = ∆tβΓ · ∇(u(tn)− u(tn−1))

= ∆tβΓ · ∇(
∫ tn

tn−1 ∂tudt)
= ∆t

∫ tn

tn−1 βΓ · ∇(∂tu)dt.
(16)
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By substituting (15) and (16) into (14), the bound of |∂τu(tn)− ∂̄τu(tn)| can be obtained
with

||∂τu(tn)− u(tn)− ˇ̃u(tn−1)
∆t ||L2(Γ)

= 1
∆t ||

∫ tn

tn−1(t− tn−1)∂ttu + ∆tβΓ · ∇(∂tu)dt||L2(Γ)

= 1
∆t ||

∫ tn

tn−1(t− tn)∂ttu + ∆t(∂ttu + βΓ · ∇(∂tu))dt||
= 1

∆t ||
∫ tn

tn−1(t− tn)∂ttu + ∆t∂t(∂τu)dt||L2(Γ)

≤
∫ tn

tn−1 ||∂ttu||+ ||∂t(∂τu)||L2(Γ)dt.

(17)

This completes the proof.

Let un be an approximation of u(tn) and ˇ̃un−1 = un−1 − ∆tβΓ · ∇un−1. The temporal
discretization of (10) is to find un ∈ H1(Γ), n = 1, 2, . . . , N, recursively{

(∂̄τun, v)Γ + ε(∇Γun,∇Γv)Γ + (µun, v)Γ = ( f n, v)Γ ∀vs. ∈ H1(Γ),
u0 = u0,

(18)

where f n = 1
∆t
∫ tn

tn−1 f (t)dt. The stability of the problem (18) is demonstrated in the follow-
ing manner.

Theorem 3. Suppose that {un}n=1,2,...,N ⊂ H1(Γ) satisfy (18). If ∆t ≤ 2ε
||βΓ ||2L2(Γ)

, then the

following inequality holds:

max
{
||un − ∆tβΓ · ∇Γun||2L2(Γ), ||u

n||2L2(Γ) + 2∆tµ||un||2L2(Γ) + 2∆tε||∇Γun||2L2(Γ)

}
≤ eT

(
||u0 − ∆tβΓ · ∇Γu0||2L2(Γ) +

∫ T
0 || f (t)||

2
L2(Γ)dt

)
,

(19)

for all n.

Proof. By the definition of ∂̄τun, (18) can be written as

(
un − [un−1 − ∆tβΓ · ∇Γun−1]

∆t
, v)Γ + ε(∇Γun,∇Γv)Γ + µ(un, v)Γ = ( f n, v)Γ. (20)

Taking v = 2∆tun into (20), we have

(2un + 2∆tµun, un)Γ + 2∆tε||∇Γun||2L2(Γ)

= 2(un−1 − ∆tβΓ · ∇Γun−1 + ∆t f n, un)Γ

≤ ||un−1 − ∆tβΓ · ∇Γun−1 + ∆t f n||2L2(Γ) + ||u
n||2L2(Γ)

≤ ||un−1 − ∆tβΓ · ∇Γun−1||2L2(Γ) + 2∆t(un−1 − ∆tβΓ · ∇Γun−1, f n)Γ + ∆t2|| f n||2L2(Γ) + ||u
n||2L2(Γ)

≤ (1 + ∆t)||un−1 − ∆tβΓ · ∇Γun−1||2L2(Γ) + ∆t(1 + ∆t)|| f n||2L2(Γ) + ||u
n||2L2(Γ).

(21)

For || f n||2L2(Γ), we see that

|| f n||2L2(Γ) =
∫

Γ(
1

∆t
∫ tn

tn−1 f (t)dt)2dA

= 1
∆t2

∫
Γ

∫ tn

tn−1

∫ tn

tn−1 f (t) f (s)dsdtdA

≤ 1
∆t2

∫
Γ

∫ tn

tn−1

∫ tn

tn−1
( f (t))2+( f (s))2

2 dsdtdA
≤ 1

∆t
∫ tn

tn−1 || f (t)||2L2(Γ)dt.

(22)

Taking above inequality into (21), we get

||un||2L2(Γ) + 2∆t(µun, un)Γ + 2∆tε||∇Γun||2L2(Γ)

≤ (1 + ∆t)
(
||un−1 − ∆tβΓ · ∇Γun−1||2L2(Γ) +

∫ tn

tn−1 || f (t)||2L2(Γ)dt
)

.
(23)
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It follows (5) that the bound

−2(βΓ · ∇Γun, un)Γ = (∇Γ · βΓ, (un)2)Γ ≤ 2(µun, un)Γ, (24)

holds. If ∆t ≤ 2ε
||βΓ ||2L2(Γ)

holds, we have

∆t||βΓ · ∇Γun||2L2(Γ) ≤ ∆t||βΓ||2L2(Γ) · ||∇Γun||2L2(Γ) ≤ 2ε||∇Γun||2L2(Γ). (25)

Combining inequalities (24), (25) and (23), the key idea of proving Theorem 3 is obtained
with

||un − ∆tβΓ · ∇Γun||2L2(Γ)
= (un, un)Γ − 2(∆tβΓ · ∇Γun, un)Γ + ∆t2||βΓ · ∇Γun||2L2(Γ)
≤ (un, un)Γ + 2∆t(µun, un)Γ + 2∆tε||∇Γun||2L2(Γ)

≤ (1 + ∆t)
(
||un−1 − ∆tβΓ · ∇Γun−1||2L2(Γ) +

∫ tn

tn−1 || f (t)||2L2(Γ)dt
)

.

(26)

After repeated application of the inequality (26), we have

||un − ∆tβΓ · ∇Γun||2L2(Γ)

≤ (1 + ∆t)n||u0 − ∆tβΓ · ∇Γu0||2L2(Γ) + ∑n
i=1
∫ ti

ti−1(1 + ∆t)n+1−i|| f (t)||2L2(Γ)dt

≤ (1 + ∆t)n
(
||u0 − ∆tβΓ · ∇Γu0||2L2(Γ) +

∫ T
0 || f (t)||

2
L2(Γ)dt

)
.

(27)

Due to (1 + ∆t)n ≤ (1 + ∆t)N = (1 + ∆t)
T
∆t ≤ eT , the following inequality obviously holds:

||un − ∆tβΓ · ∇Γun||2L2(Γ) ≤ eT
(
||u0 − ∆tβΓ · ∇Γu0||2L2(Γ) +

∫ T

0
|| f (t)||2L2(Γ)dt

)
, (28)

By combining (28), (27) and (23), the proof of Theorem 3 is completed.

3.3. The Surface Finite Element Method

Let {Γh}h>0 be a family of discrete surfaces which is composed of plane open triangles
Kj with edge ∂Kj and vertexes xl , l = 1, . . . , Nv

h . The point xl is also the vertex points of the
curved open triangle K ∈ Γ such that

NTh∪
j=1
K̄j = Γ,

and for j 6= k, K̄j ∩ K̄k = ∅ or common curved edge of K̄j and K̄k or common vertex of K̄j

and K̄k. For an interior edge Ej, j = 1, 2, . . . , NE
h , there are two triangles, K j

l and K j
r, such that

∂K j
l ∩ ∂K j

r = Ej. Following [25], we adopt the projection PΓh : Γ → Γh which is Lipschitz
continuous and PΓh(Kj) = Kj for any triangle element Kj ⊂ Γh. For any f ∈ C0(Γ), its
projection on Γ is obtained with fPΓh

= f ◦ P−1
Γh

. The projection of βPΓh
on the tangent

plane of the discrete surface Γh is denoted as βPΓh
,Γh . Let finite dimensional space Sh

be a continuous function space on Γh that is linear on each triangle Kj. Considering the
variational problem (18), we obtain the MCFEM using Equation (10): For n = 1, 2, . . . , N,
find un

h = uh(x, tn) ∈ Sh, such that{
(∂̄τun

h , vh)Γh + ε(∇Γh un
h ,∇Γh vh)Γh + µ(un

h , vh)Γh = ( f n
PΓh

, vh)Γh ∀vh ∈ Sh,

u0
h(x) = Ihu0(x),

(29)
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where ∂̄τun
h =

un
h−[u

n−1
h −∆tβPΓh

,Γh
·∇un−1

h ]

∆t , f n
PΓh

= 1
∆t
∫ tn

tn−1 fPΓh
(t)dt, and Ih is a piecewise

linear interpolation operator.
Although method (29) is based on the idea of characteristic finite element, it utilizes

Taylor’s expansion to restructure u(x̌). Consequently, the MCFEM (29) degenerates into an
explicit–implicit method, imposing stringent restriction on the mesh size h and time step
∆t. Before analyzing the stability of the MCFEM (29), we need to restrict the mesh size.

Theorem 4. For any point x0 ∈ Γ, there are two triangles Kl and Kr ⊂ Γh such that x0 ∈
∂Kl ∩ ∂Kr or x0 is not the vertex points of Kl and Kr. νr and νl denote the unit outward normal
vectors to Kl and Kr, respectively. If the convection velocity βPΓh ,Γh

∈ C0(Γ3
h), then there exists a

specific mesh size hκ such that the following inequality holds:∣∣[[ν · βPΓh ,Γh
]](PΓh(x0))

∣∣ ≤ κ ∀ h < hκ ,

where [[ν · βPΓh
,Γh ]](PΓh(x0)) = lim

h→0+

[
νl · βPΓh ,Γh

∣∣
x=PΓh

(x0)+hνl
+ νr · βPΓh ,Γh

∣∣
x=PΓh

(x0)+hνr

]
.

Proof. By the definition, we have

[[ν · βPΓh ,Γh
]](PΓh(x0))

= limh→0+

[
νl · βPΓh ,Γh

∣∣
x=PΓh

(x0)+hνl
+ νr · βPΓh ,Γh

∣∣
x=PΓh

(x0)+hνr

]
= limh→0+

[
νl · βPΓh ,Kl

∣∣
x=PΓh

(x0)+hνl
+ νr · βPΓh ,Kr

∣∣
x=PΓh

(x0)+hνr

]
= limh→0+

[
(νl · (βPΓh

− (βPΓh
· nKl )nKl ))

∣∣
x=PΓh

(x0)+hνl

]
+ limh→0+

[
(νr · (βPΓh

− (βPΓh
· nKr )nKr ))

∣∣
x=PΓh

(x0)+hνr

]
,

(30)

where nKl and nKr are the unit vectors normal to Kl and Kr, respectively. Considering the
orthogonality, (30) can be rewritten as

[[ν · βPΓh ,Γh
]](PΓh(x0))

= limh→0+

[
νl · βPΓh

∣∣
x=PΓh

(x0)+hνl
+ νr · βPΓh

∣∣
x=PΓh

(x0)+hνr

]
.

(31)

It is obvious that

[[ν · βPΓh ,Γh
]](PΓh(x0))

= limh→0+

[
νl · βPΓh

∣∣
x=PΓh

(x0)+hνl
+ νr · βPΓh

∣∣
x=PΓh

(x0)+hνr

]
= ν · β

∣∣
x=x0
− ν · β

∣∣
x=x0

= 0.

(32)

Hence, the existence of the mesh size hκ required by Theorem 4 can be established. The
proof is completed.

Next, the stability of scheme (29) will be demonstrated.

Theorem 5. Assume that ∆t ≤ 2ε
||βPΓh ,Γh

||2
L2(Γh)

, h ≤ hκ and (5) hold. Then, the solution un
h of

Problem (29) satisfies

max
{
||un

h − ∆tβPΓh ,Γh
· ∇Γh un

h ||
2
L2(Γh)

, ||un
h ||

2
L2(Γh)

+ 2∆tµ||un
h ||

2
L2(Γh)

+ 2∆tε||∇Γh un
h ||

2
L2(Γh)

}
≤ eT

(
||u0

h − ∆tβPΓh ,Γh
· ∇Γh u0

h||
2
L2(Γh)

+
∫ T

0 || fPΓh
(t)||2L2(Γh)

dt
)

,
(33)

for n = 1, 2, . . . , N.
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Proof. Choose vh = 2∆tun
h in (29) so that

(2un
h + 2∆t · µun

h , un
h)Γh + 2∆tε||∇Γh un

h ||
2
L2(Γh)

= 2(un−1
h − ∆tβPΓh ,Γh

· ∇Γh un−1
h + ∆t f n

PΓh
, un

h)Γh

≤ ||un−1
h − ∆tβPΓh ,Γh

· ∇Γh un−1
h + ∆t f n

PΓh
||2L2(Γh)

+ ||un
h ||

2
L2(Γh)

.
(34)

Similarly to Theorem 3, we have

||un
h − ∆tβPΓh ,Γh

· ∇Γh un
h ||

2
L2(Γh)

+ 2∆t(µun
h + βPΓh ,Γh

· ∇Γh un
h , un

h )Γh

≤ (1 + ∆t)
(
||un−1

h − ∆tβPΓh ,Γh
· ∇Γh un−1

h ||2L2(Γh)
+
∫ tn

tn−1 || fPΓh
(t)||2L2(Γh)

dt
)

.
(35)

We claim that (µun
h + βPΓh ,Γh

· ∇Γh un
h , un

h)Γh ≥ 0. Owing to (5), the following inequality
holds:

2(µun
h + βPΓh ,Γh

· ∇Γh un
h , un

h)Γh

≥ 2κ(un
h , un

h)Γh + (∇Γh · βPΓh ,Γh
, (un

h)
2)Γh + 2(βPΓh ,Γh

· ∇Γh un
h , un

h)Γh .
(36)

Since the discrete surface Γh is a piecewise linear approximation of Γ, the unit outward
normal vectors to any adjacent triangles, K j

l and K j
r, are discontinuous at a common edge

Ej. Consequently, the last two terms on the right side of inequality (36) are not equal to 0.
Using Theorem 1, we obtain

(∇Γh · βPΓh ,Γh
, (un

h )
2)Γh + 2(βPΓh ,Γh

· ∇Γh un
h , un

h )Γh

=
∫

Γh
∇Γh (βPΓh ,Γh

(un
h )

2)dAh

= ∑
NTh
j=1

∫
Kj
∇Kj (βPΓh ,Kj

(un
h )

2)dAh

= ∑
NTh
j=1

[∫
Kj

HKj (u
n
h )

2βPΓh ,Kj
· nKj dAh +

∫
∂Kj

(un
h )

2βPΓh ,Kj
· ν∂Kj dσh

]
,

(37)

where nKj is the unit vector normal to Kj, and ν∂Kj
is the unit normal vector of boundary

∂Kj and tangent to Kj. Note that dAh and dσh are the measures of Γh and interior edge ∂Kj,
respectively. The mean curvature of triangular element Kj is defined as HKj . It follows that
Kj is a triangular plane and that HKj is equal to 0. By choosing the mesh size h < hκ and
applying Theorem 4, a lower bound for the inequality (37) can be obtained with

(∇Γh · βPΓh ,Γh
, (un

h)
2)Γh + 2(βPΓh ,Γh

· ∇Γh un
h , un

h)Γh

= ∑
NTh
j=1

∫
∂Kj

(un
h)

2βPΓh ,Kj
· ν∂Kj

dσh

= ∑
NE

h
j=1

∫
∂K j

l∩∂K j
r
(un

h)
2
[

βP
Γh ,Kj

l

· ν
∂K j

l
+ βP

Γh ,Kj
r
· ν

∂K j
r

]
dσh

≥ −κ ∑
NE

h
j=1

∫
∂K j

l∩∂K j
r
(un

h)
2dσh = −κ ∑

NTh
j=1

∫
∂Kj

(un
h)

2dσh.

(38)

If we plug inequality (38) into (36), we obtain

2(µun
h + βPΓh ,Γh

· ∇Γh un
h , un

h)Γh ≥ 2κ

NTh

∑
j=1

∫
∂Kj

(un
h)

2dσh − κ

NTh

∑
j=1

∫
∂Kj

(un
h)

2dσh ≥ 0. (39)

Others are similar to Theorem 3. The proof of Theorem 5 is completed.

3.4. The Analysis of Reconstruction Methods in MCFEM and CFEM

The reconstruction method proposed in Section 3.1 is different from that employed
in the CFEM [29], as the scheme of the MCFEM does not involve projection. This method
pre-processes the convection velocity β to guarantee that the backtracking characteristic
point x̌ is situated on the tangent plane Tx of the surface Γ. Taylor expansion is utilized in
the MCFEM to maintain a second-order spatial accuracy. However, it also transforms the
MCFEM into an explicit–implicit method, reducing its stability compared to the CFEM.
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As described in Subsection 3.1, the reconstruction method employed by the CFEM
involves projecting the backtracking characteristic point x̌ and its closer mesh points onto
tangent planes Tc, thereby generating a novel local mesh. This also makes the CFEM
more stable than the MCFEM. Since the characteristic finite element employs the definition
domain of the solution u to be a neighborhood U(Γ, δ) containing the surface Γ, the value
of u should be different at the same normal vector on Γ. This is contrary to the more widely
accepted understanding in the use of conventional surface finite element method described
in [25].

Employing the notations given in Section 3.1, the errors in the reconstruction method
of the CFEM consist of |u(x̌)− u(x∗)| and |u(x∗)− uh(x∗)|. Obviously,

|u(x̌)− u(x∗)| ≤ max
x∈U(Γ,δ)

|∇u(x)| · |x̌− x∗|. (40)

Here, |x̌− x∗| is not easy to estimate. The only certainty is that |x̌− x∗| is related to the
time step ∆t. Similarly, the error of |u(x∗)− uh(x∗)| encompasses errors arising from the
projection of mesh points onto the tangent plane Tc , in addition to interpolation errors.
Consequently, the presence of |x̌− x∗| and the projection error in |u(x∗)− uh(x∗)| results
in a deterioration in the convergence order of the CFEM when compared to the MCFEM.

4. Numerical Examples

In this section, we evaluate the precision of the MCFEM under both diffusion-dominated
and convection-dominated conditions. Then, the impact of variation in curvature and multi-
connected surfaces on the MCFEM is verified. To simulate the phenomenon of pollutant
injection on torus, a discontinuous source term problem is employed. Furthermore, the
nonlinear convection velocity’s impact on the MCFEM is evaluated by applying the Burgers
equation on a peanut-shaped surface. Finally, the impact of random initial conditions on
our method is confirmed by employing the convection Allen–Cahn equation on other
multi-connected surface. The L2 errors (denoted by ErrL2 = ||u(T)− uN

h ||L2(Γh)
) and the H1

errors (denoted by ErrH1 = ||u(T)− uN
h ||H1(Γh)

) of the numerical solutions are computed,
respectively.

4.1. Accuracy Test on the Sphere

Initially, we will evaluate the spatial accuracy of the MCFEM and compare it with the
CFEM, assuming a time step of ∆t ≈ h2. Consider the CRD Equation (4) on a sphere

ψ(x, y, z) = x2 + y2 + z2 − 0.25 = 0, (41)

where the reaction coefficient µ is set to 1 and the convection velocity β is set to [0, 0, 0.5].
The exact solution can be expressed as follows:

u(x, y, z, t) = t2(1− tanh(
z√
ε
)). (42)

When the diffusion parameter ε � ||β||L2(Γ), the exact solution u is discontinuous at the
equator of sphere (42), resulting in a convection-dominated (singular perturbation) problem.
To investigate this phenomenon, we set the diffusion parameter ε to 1, 1 × 10−1, 1 × 10−2,
1 × 10−3 and 1 × 10−4, respectively. The corresponding results are presented in Tables 1–5.
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Table 1. The errors of different methods with ε = 1 and 2ε
||β||2

L2(Γ)

= 1.27.

h
MCFEM CFEM

ErrL2 Rate ErrH1 Rate ErrL2 Rate ErrH1 Rate

2.04 × 10−1 2.42 × 10−2 – 4.33 × 10−2 – 2.30 × 10−2 – 4.23 × 10−2 –
1.08 × 10−1 1.44 × 10−2 0.82 2.70 × 10−2 0.74 1.49 × 10−2 0.69 2.80 × 10−2 0.65
5.38 × 10−2 3.63 × 10−3 1.99 1.05 × 10−2 1.37 3.85 × 10−3 1.96 1.08 × 10−2 1.37
2.67 × 10−2 4.27 × 10−4 3.05 4.57 × 10−3 1.18 3.98 × 10−4 3.23 4.57 × 10−3 1.23
1.32 × 10−2 1.05 × 10−4 2.00 2.25 × 10−3 1.01 1.09 × 10−4 1.85 2.26 × 10−3 1.00

Table 2. The errors of different methods with ε = 1 × 10−1 and 2ε
||β||2

L2(Γ)

= 1.27 × 10−1.

h
MCFEM CFEM

ErrL2 Rate ErrH1 Rate ErrL2 Rate ErrH1 Rate

2.04 × 10−1 2.65 × 10−2 – 1.34 × 10−1 – 2.19 × 10−2 – 1.31 × 10−1 –
1.08 × 10−1 1.68 × 10−2 0.71 6.86 × 10−2 1.05 2.01 × 10−2 0.14 7.76 × 10−2 0.82
5.38 × 10−2 4.24 × 10−3 1.99 3.19 × 10−2 1.11 6.01 × 10−3 1.74 3.58 × 10−2 1.12
2.67 × 10−2 4.75 × 10−4 3.12 1.54 × 10−2 1.04 1.04 × 10−3 2.51 1.63 × 10−2 1.12
1.32 × 10−2 1.17 × 10−4 2.00 7.59 × 10−3 1.01 5.55 × 10−4 0.89 8.15 × 10−3 0.99

Table 3. The errors of different methods with ε = 1 × 10−2 and 2ε
||β||2

L2(Γ)

= 1.27 × 10−2.

h
MCFEM CFEM

ErrL2 Rate ErrH1 Rate ErrL2 Rate ErrH1 Rate

2.04 × 10−1 4.15 × 10−2 – 7.20 × 10−1 – 4.77 × 10−2 – 7.31 × 10−1 –
1.08 × 10−1 1.90 × 10−2 1.22 3.39 × 10−1 1.18 3.48 × 10−2 0.49 4.25 × 10−1 0.85
5.38 × 10−2 4.73 × 10−3 2.00 1.64 × 10−1 1.05 1.54 × 10−2 1.18 2.29 × 10−1 0.89
2.67 × 10−2 6.64 × 10−4 2.80 8.04 × 10−2 1.01 6.59 × 10−3 1.21 1.17 × 10−1 0.96
1.32 × 10−2 1.63 × 10−4 2.00 3.94 × 10−2 1.02 3.43 × 10−3 0.93 5.99 × 10−2 0.95

Table 4. The errors of different methods with ε = 1 × 10−3 and 2ε
||β||2

L2(Γ)

= 1.27 × 10−3.

h
MCFEM CFEM

ErrL2 Rate ErrH1 Rate ErrL2 Rate ErrH1 Rate

2.04 × 10−1 1.03 × 10−1 – 2.86 × 100 – 1.09 × 10−1 – 2.65 × 100 –
1.08 × 10−1 4.95 × 10−2 1.15 2.40 × 100 0.27 7.23 × 10−2 0.65 2.15 × 100 0.33
5.38 × 10−2 1.18 × 10−2 2.07 1.32 × 100 0.92 4.10 × 10−2 0.82 1.55 × 100 0.47
2.67 × 10−2 1.47 × 10−3 2.97 4.54 × 10−1 1.50 2.14 × 10−2 0.92 8.29 × 10−1 0.89
1.32 × 10−2 3.37 × 10−4 2.10 2.21 × 10−1 1.03 1.12 × 10−2 0.93 4.31 × 10−1 0.93

Table 5. The errors of different methods with ε = 1 × 10−4 and 2ε
||β||2

L2(Γ)

= 1.27 × 10−4.

h
MCFEM CFEM

ErrL2 Rate ErrH1 Rate ErrL2 Rate ErrH1 Rate

2.04 × 10−1 1.04 × 10−1 – 5.90 – 1.54 × 10−1 – 5.33 –
1.08 × 10−1 1.53 × 10−1 −0.61 5.49 0.11 1.07 × 10−1 0.56 5.06 0.80
5.38 × 10−2 8.20 × 10−2 0.90 8.32 −0.60 7.84 × 10−2 0.45 5.41 −0.97
2.67 × 10−2 2.75 × 10−2 1.56 5.94 0.48 4.64 × 10−2 0.75 4.66 0.22
1.32 × 10−2 2.78 × 10−3 3.27 1.57 1.90 2.41 × 10−2 0.94 2.65 0.81

The L2 errors and H1 errors of the MCFEM in Table 1 show the same trend as that
of the CFEM. When h > 2.67 × 10−2, the mesh size h is not fine enough to ignore the
existence of geometric errors. Consequently, the outcomes for h ≥ 2.67× 10−2 deviate from
the anticipated results. As the mesh size h diminishes, the L2 errors convergence order of
the MCFEM attains 2, while the H1 errors convergence order attains 1. This observation
indicates that the MCFEM has second-order spatial accuracy when diffusion is dominant.
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With the decrease in parameter ε, the diffusion of the equation begins to weaken and
convection gradually dominates. The L2 errors and H1 errors of the MCFEM, as shown in
Tables 2 and 3, are smaller than those of the CFEM. When ε = 1 × 10−3, the discontinuity
of the exact solution u is obviously enhanced, resulting in a noticeable increase in the
error of the MCFEM compared to ε > 1 × 10−3. Fortunately, the MCFEM still maintains
second-order spatial accuracy in this case. Compared with the MCFEM, the L2 errors
convergence order of the CFEM fails to reach 2 when ε = 1 × 10−1. This decrease occurs as
a result of the discrepancy in u on the same normal vector when it is convection-dominated.
The projection error in the CFEM’s reconstruction method cannot be disregarded. However,
the MCFEM only involves Taylor expansion and surface finite element discretization
without introducing other spatial errors. This is why our method ensures that the L2 errors
convergence order is O(h2).

The continuity of the exact solution u is significantly compromised when the diffusion
parameter ε = 1 × 10−4 as opposed to ε = 1 × 10−3. Consequently, the numerical
solutions of the MCFEM and the CFEM under coarse mesh have obvious oscillation, as
shown in Table 5. Analogous to the CFEM, the MCFEM demonstrates stability solely when
h = 1.32 × 10−2. This observation underscores the influence of continuity on the mesh
requirements for the MCFEM. Thus, it becomes imperative to employ a finer mesh size h to
ensure the efficacy of the MCFEM when the diffusion parameter ε is very small.

To visually reveal the distinctions between our proposed MCFEM and CFEM, we
present a comparison of numerical solutions and error for various methods at
h = 2.67 × 10−2, as illustrated in Figures 3 and 4. As depicted in Figure 3, the L2

errors of both the MCFEM and CFEM exhibit an upward trend over time. Prior to t = 0.04,
the L2 errors of the MCFEM is equivalent to that of the CFEM. With the increase in time,
the L2 errors growth rate of the CFEM is obviously faster than that of the MCFEM. This
observation indicates that the accumulation of errors over time is significantly smoother
for the MCFEM compared to the CFEM. The errors at the final moment of the MCFEM
and the CFEM are shown in the subgraph (c, e) in Figure 4. We can see that the error
distribution of the MCFEM is sparsely concentrated near the equator and is an order of
magnitude smaller than that of the CFEM. In contrast, the CFEM produces a narrow error
band near the equator with slight oscillations above it. These findings suggest that the
MCFEM produces less error than the CFEM once it reaches stability.

Figure 3. The L2 errors of various methods with time at ε = 1 × 10−3.
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Furthermore, we also considered the curvature variation surfaces,

tooth: ψ(x, y, z) = x4 + y4 + z4 − (x2 + y2 + z2) = 0, (43)

and multi-connected surface,

torus: ψ(x, y, z) = (0.5−
√

x2 + y2)2 + z2 − 0.12 = 0. (44)

The exact solution will be modified with

u(x, y, z, t) = e−t xy
π

arctan(
z√
ε
), (45)

while maintaining the convection velocity β and keeping the reaction coefficient µ un-
changed. The diffusion parameter ε is set to 1 × 10−3, and the time step ∆t is set to
2h2. Additionally, the exact solution of u at T = 0.5 is simulated using the MCFEM and
the CFEM on a tooth and a torus, respectively. The corresponding results are shown in
Figures 5 and 6.

(a) Exact solution (b) Simulation (MCFEM) (c) Error (MCFEM)

(d) Simulation (CFEM) (e) Error (CFEM)

Figure 4. The simulations and corresponding errors of various methods with ε = 1× 10−3 at T = 0.5.

As depicted in Figures 5 and 6, the error is centered at z = 0, aligning with the antici-
pated results. Our proposed MCFEM demonstrates its efficacy in handling surfaces with
varying curvatures and multi-connected topologies. The errors of both the MCFEM and
the CFEM suggest that the stabilized MCFEM outperforms the CFEM in terms of accuracy.
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(a) Exact solution (b) Simulation (MCFEM) (c) Error (MCFEM)

(d) Simulation (CFEM) (e) Error (CFEM)

Figure 5. The simulations and corresponding errors of various methods with ε = 1 × 10−3 and
h = 3.13 × 10−2 on a tooth.

(a) Exact solution (b) Simulation (MCFEM) (c) Error (MCFEM)

(d) Simulation (CFEM) (e) Error (CFEM)

Figure 6. The simulations and corresponding errors of various methods with ε = 1 × 10−3 and
h = 2.5 × 10−2 on a torus.

4.2. The Discontinuous Source Term Problem on Torus

Here, the MCFEM will be utilized to simulate the movement of pollutants on a
torus, which is tantamount to resolving the convection-dominated problem that contains
discontinuous source terms. The level set function expression of the torus is indicated
in Equation (44). In order to maintain stability within the MCFEM, it is imperative to
restrict the mesh size to h = 1.25 × 10−2 and the time step to ∆t = 1 × 10−3. Additionally,
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the reaction coefficient should be fixed at µ = 1, the parameter at ε = 1 × 10−3, and the
convection velocity at β = [−y, x, 0]. Furthermore, the pollutant is yet to be introduced
into the torus at time t = 0; therefore, an initial value of u0 = 0 is selected. Four points
{xs}4

s=1 on the torus are arbitrarily selected, and the pollutants are continuously injected at
these points {xs}4

s=1, respectively, to create a discontinuous source term:

f =

{
5, |x− xs| < 0.03, s = 1, 2, 3, 4, x ∈ Γ,
0, otherwise.

(46)

According to the findings presented in Figure 7, pollutants form four stable regions on
the torus are under the influence of discontinuous source terms and convection velocity.
This observation illustrates that the numerical solutions acquired through the MCFEM
demonstrate comparable physical phenomena with the ones obtained from the CFEM
in [29].

Figure 7. The simulations of discontinuous source term problem at various time in Example
Section 4.2.

4.3. The Burgers Equation on Peanut-Shaped Surface

To investigate the impact of nonlinear problems on our methods, we selected the
convection velocity β = [u, 0, 0]. Assigning the diffusion parameter ε = 1 × 10−3, reaction
coefficient µ = 0, and setting the source term to f = 0, the problem transforms into a
typical Burgers problem on surfaces. Without loss of generality, a peanut-shaped surface

ψ(x, y, z) = ((2x− 1)2 + 4y2 + 4z2)((2x + 1)2 + 4y2 + 4z2)− 1.5 = 0, (47)

is selected and the initial condition is as follows:

u0 =

{
− sin(2πx), |y| ≤ 0.5,
0, otherwise.

(48)

The corresponding mesh size h = 1 × 10−2 and time step ∆t = 1 × 10−3. Since the convec-
tion velocity β depends on time, the velocity β at the current moment is approximated by
the velocity β at the previous moment.

The findings are presented in Figure 8. As time progresses, the numerical solution
displays a marked modification at the centre of the peanut. To depict this trend visually,
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we projected the numerical solution un
h , where |y| < 4 × 10−4, onto the X-axis, and the

result is illustrated in Figure 9. The wave clearly propagates forward over time, and the
gradient near x = 0 exhibits progressive increments. The results of the calculations bear
similarity to the one-dimensional case [32], implying the applicability of the MCFEM in
addressing nonlinear convection-dominated problem on surfaces.

Figure 8. The MCFEM for simulating Burgers problem in Section 4.3.

Figure 9. The X-axis projection of the numerical solution un
h is restricted to |y| < 4 × 10−4 in

Section 4.3.

4.4. The Convection Allen–Cahn Equation on Multi-Connected Surface

In this example, we will analyze the impact of random initial conditions on the MCFEM
using the convection Allen–Cahn equation,

∂τu− ε∆Γu = f (u), (49)

on a multi-connected surface,

ψ(x, y, z) = (x2 + y2 − 4)2 + (x2 + z2 − 4)2 + (z2 + y2 − 4)2 + (x2 − 1)2 + (y2 − 1)2 + (z2 − 1)2 − 15 = 0. (50)

The convection velocity β = [0, 0,−2], the diffusion parameter ε = 1 × 10−3 and nonlinear
function f (u) = 1

ε (u
3 − u) are selected. The initial condition is randomly chosen within

the range of −0.1 to 0.1, as depicted in Figure 10. We define the discrete free energy as

En
h =

∫
Γh

ε|∇Γh un
h |

2 + F(un
h)dσ, (51)

where F(un
h) =

1
ε ((u

n
h)

2 − 1)2. Additionally, the nonlinear function f (un
h) can be approxi-

mated as f (un−1
h ) + 2

ε (u
n
h − un−1

h ).
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The decrease in energy is a well-established property of the convection Allen–Cahn
equation. To observe the energy variation in the numerical solution, we control the mesh
size h = 1.08 × 10−1 and the time step ∆t = 1 × 10−2 to obtain Figure 11. The presented
data in Figure 11 demonstrate a decrease in discrete energy over time, ultimately reaching a
state of stability at t = 56. This observation indicates that the random initial condition does
not significantly impact the effectiveness of the MCFEM. To visually depict the progression
from the initial condition to the steady state, numerical solutions at various time points
within the range of [0, 100] were extracted and uniformly rotated. The outcomes are
illustrated in Figure 12, revealing that the time trend of phase separation is consistent with
the results observed in Figure 11.

Figure 10. The initial condition of convection Allen–Cahn equation in Section 4.4.

Figure 11. The evolution of energy of convection Allen–Cahn equation with time in Section 4.4.
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(a) t = 0.5 (b) t = 5 (c) t = 10

(d) t = 20 (e) t = 50 (f) t = 100

Figure 12. Time snapshot of the numerical solution for convection Allen–Cahn equation in Section 4.4.

5. Conclusions

This paper introduces a modified characteristic finite element method that exhibits
second-order spatial accuracy. Our method employs Taylor expansion to reconstruct the
solution beyond the surface in the characteristic direction. In contrast, the CFEM’s [29]
reconstruction method introduces additional spatial errors, resulting in a lower spatial
convergence order compared to our method. The reason for this phenomenon is that the
definition domain of the solution has been extended from the surface to the neighborhood
containing the surface with the characteristic finite element method. Consequently, the
solutions along the same normal vector remain unequal by default, which is contrary
to [25]. Despite the superior spatial accuracy of our proposed MCFEM in comparison to
the CFEM, this advantage comes at the expense of stability. The reason for this sacrifice
in stability is that our reconstruction method transforms the characteristic finite element
method to an explicit–implicit method.
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