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Abstract: This paper studies the performance of location-based beamforming with the presence of
artificial noise (AN). Secure transmission can be achieved using the location information of the user.
However, the shape of the beam depends on the number of antennas used. When the scale of the
antenna array is not sufficiently large, it becomes difficult to differentiate the performance between
the legitimate user and eavesdroppers nearby. In this paper, we leverage AN to minimize the area
near the user with eavesdropping risk. The impact of AN is considered for both the legitimate user
and the eavesdropper. Closed-form expressions are derived for the expectations of the signal to
interference plus noise ratios (SINRs) and the bit error rates. Then, a secure beamforming scheme is
proposed to ensure a minimum SINR requirement for the legitimate user and minimize the SINR
of the eavesdropper. Numerical results show that, even with a small number of antennas, the
proposed beamforming scheme can effectively degrade the performance of eavesdroppers near the
legitimate user.

Keywords: physical layer security; artificial noise; wiretap channel; location-based beamforming

1. Introduction

Due to the broadcast nature of wireless networks, they face a variety of security
threats. Passive eavesdropping is difficult to detect and prevent in wireless communication
systems. Although legitimate users can engage in encrypted communication, the cost of
secret key distribution is also significant. Physical layer security is promising to achieve
secure transmission without key distribution. Physical layer security techniques include
artificial noise, security-oriented beamforming, diversity-assisted security approaches,
etc. [1–3]. Their security is independent of the computational capability of eavesdroppers.
The multiple-input multiple-output (MIMO) technique can be used to enhance transmission
security thanks to the diversity gain of beamforming.

Based on the channel state information (CSI) of the legitimate user, beamforming can
be achieved towards the desired user, with a power gain higher than that of other users in
different locations [4,5]. As more antennas are used at the base station, the beam becomes
more concentrated. Moreover, artificial noise (AN) can be applied in the null space of
the channel of the legitimate user to prevent potential eavesdropping [6–9]. Closed-form
expressions for the secure transmission probability and the effective secrecy throughput are
derived in [10] for a Rayleigh fading channel. The impact of the imperfect CSI is considered
in [11]. A two-phase transmission scheme with AN injection is proposed in [12] to achieve
zero secrecy outage probability under imperfect channel estimation. By assuming that
the statistical CSI of the eavesdropper is also available at the base station [13–16], secure
beamforming schemes have been proposed where the secrecy rate is maximized. Moreover,
under the assumption that the CSIs of both the legitimate user and the eavesdropper are
available at the base station, a secrecy capacity optimization artificial noise is proposed
in [17], which is not aligned into the null space of the legitimate channel.
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However, the CSI of the user is difficult to obtain by the base station in certain sce-
narios, such as when the user has not yet connected to the network. In addition, after
the user has connected to the network, an eavesdropper can also disrupt beamforming
and achieve eavesdropping through pilot contamination attacks [18–20]. For millimeter
wave (mmWave) systems, the estimation of CSI requires a huge overhead for channel
training [21].

Therefore, some works consider using alternative user information for beamforming,
such as statistical CSI [13,15,16] and location information [21–25]. In certain scenarios, the
location information of the user could be available. For example, the legitimate user is
within a confidential area and dedicated networks can only be accessed within this area.
We hope that users outside the confidential area cannot eavesdrop on the information of
the dedicated network, because attackers can launch jamming, spoofing [26], or distributed
denial-of-service attacks based on the network information. Location-based beamforming
can be used to protect the dedicated networks.

The performance of location-based beamforming has been studied in [22] in Rician
wiretap channels. Based on the location information of the legitimate user and the eaves-
dropper, the optimal location-based beamformer has been determined for the legitimate
user through a grid search algorithm, which minimizes the secrecy outage probability of
the system. Due to the absence of AN, eavesdroppers near legitimate users have a high
secrecy outage probability when the number of antennas at the base station is small. The
authors in [23] considered a wiretap system with the presence of a jammer. By assuming
that the CSI of the legitimate user is known to the base station and the jammer, while the
location of the eavesdropper is also available at the base station, the optimal beamformer
that minimizes the secrecy outage probability has been proposed. Because the CSI between
the legitimate user and the jammer is known, the AN signal is transmitted in the null space
of the channel of the legitimate user. The authors of [25] studied the covert threat region of
three-dimensional (3D) location-based beamforming, and the covertness performance for
resisting detection from a location-unknown warden has been evaluated and compared
with that of the conventional maximal ratio transmitting scheme.

In this paper, we study the performance of location-based beamforming with the
assistance of AN. Based on the location information of the legitimate user, we minimize the
area near the user that has eavesdropping risks. Hence, the eavesdropping performance
of eavesdroppers at different locations next to the user has been studied. The impact of
AN has been considered for both the legitimate user and the eavesdropper. The main
contributions of this paper can be summarized as follows:

1. Based on the location information of the legitimate user and the eavesdropper, the
signal to interference plus noise ratio (SINR) expressions have been derived for
both the user and the eavesdropper, and the impact of AN has been considered.
Close approximations of the probability density functions (PDFs) of SINRs have been
proposed for Rician channels.

2. The expectations of SINRs have been derived in closed-form expressions. More-
over, the bit error rate (BER) expressions are derived using Gaussian-Laguerre (GL)
approximation.

3. A quality of service (QoS)-based beamforming scheme is proposed to minimize
the SINR of the eavesdropper and ensure the minimum SINR requirement of the
legitimate user. Simulation results show that, when eight antennas are used at the
base station, the block error rate (BLER) of eavesdroppers located 5◦ away from the
legitimate user reaches 1.

Some works in the literature considered using ergodic secrecy rate [16,27] or secrecy
outage probability [22,28] to design a secure transmission strategy. The ergodic secrecy
rate refers to the difference in ergodic rate between the legitimate user and the eaves-
dropper. Ref. [16] proposed a power allocation algorithm for a discrete Fourier transform
(DFT) beamforming matrix to maximize the ergodic secrecy rate. A deep neural network
(DNN)-based secure precoding scheme is proposed in [29] to jointly design the precoder
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and AN signal when the channel estimation is imperfect and the channels are spatially
correlated. Because the secrecy rate cannot be arbitrary values in real systems, the authors
in [22,28] minimize the secrecy outage probability when a specific target secrecy rate is
chosen. However, maximizing the secrecy rate does not imply that the capacity of the
eavesdropper is sufficiently small. Due to the application of error correcting code (ECC)
in the communication systems, an eavesdropper can successfully decode the information
when the minimum SINR requirement is satisfied. To reduce the risk of eavesdropping,
we consider maximizing the BLER of the eavesdropper by minimizing the SINR of the
eavesdropper. QoS-based transmit beamforming has proven to be a viable and versatile
approach [30]. The QoS is measured by the average SINR. Two design formulations are
proposed in [30] for AN-aided secret transmit beamforming, namely a total power mini-
mization formulation and a user’s SINR maximization formulation. The signal-to-noise
ratio (SNR) outage probability criterion is proposed in [31]. In this paper, based on the error
correction capability of ECC, a beamforming design scheme is proposed to minimize the
SINR of an eavesdropper and maintain the minimum SINR requirement of the legitimate
user. The performance of the proposed scheme is verified through simulations using Polar
code [32].

Location-based beamforming can be implemented with low-cost at an analog beam-
forming module. Analog circuits can significantly improve the power efficiency of the
device compared to digital circuits [33]. Due to the non-linear characteristics of power
amplifiers, it is not suggested to adjust the amplitude of the signals for beamforming use
at the radio frequency (RF) module [34]. The location-based beamformer only shifts the
phase of the signal without changing its modulus, which can be considered as a phase-
adjusted DFT beamformer. DFT codebook can be embedded on field-programmable analog
arrays [33] with reduced power consumption. We note that when the system operates at
mmWave band with an extremely large-scale antenna array (ELAA), near-field propagation
needs to be considered [35]. Due to the spherical wavefront of near-field radiation, the DFT
type beamforming is no longer applicable [36,37]. Secure beamforming with ELAA can be
considered for our future work.

The rest of this paper is organized as follows. Section 2 introduces the system model,
where the SINR expressions of the legitimate user and the eavesdropper are derived. In
Section 3, the approximate PDFs of the SINRs are derived, and then the expectations of
the SINRs and the BERs are deduced. In Section 4, the beamforming design scheme is
proposed to minimize the SINR of the eavesdropper. The simulation results are presented
in Section 5. Section 6 concludes this paper.

2. System Model

We consider a typical wiretap scenario, where a base station Alice and an eavesdropper
Eve are equipped with uniform linear arrays (ULA) with M and N antenna elements,
respectively. A legitimate user Bob is equipped with a single antenna. To facilitate the
presentation of location for the users, we adopt the polar coordinate system and Alice
is considered as the origin [22]. Then, the locations of Bob and Eve can be denoted as
(dab, θb) and (dae, θe), respectively. We assume that the location of Bob is known to Alice.
To investigate the impact of Eve’s location on eavesdropping performance, we assume
that the location of Eve is also known to Alice. Then, an optimal beamforming scheme
can be designed using AN. In the case where the location of Eve is unknown to Alice,
the beamforming scheme can still be used to minimize the area with eavesdropping risk.
We note that the CSIs of Bob and Eve are unknown to Alice. Based on the location
information of Bob, Alice is able to transmit confidential information via a beam aiming
to Bob. Moreover, Alice may transmit a jamming signal via another beam aiming to Eve.
We assume that all of the channels are subject to quasi-static independent and identically
distributed (i.i.d) Rician fading with different Rician K-factors, and that the K-factors are
known to Alice via some a priori measurement campaigns. Hence, the channel vector from
Alice to Bob, denoted as Hb ∈ C1×M, can be written as
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Hb =

√
Kb

1 + Kb
Ho

b +

√
1

1 + Kb
Hr

b (1)

where Kb is the Rician K-factor of Hb, Ho
b ∈ C

1×M denotes the LOS component, and
Hr

b ∈ C
1×M denotes the scattered component, the elements of which are assumed to

be i.i.d. complex Gaussian random variables with zero mean and unit variance, i.e.,
Hr

b ∼ CN (0, IM). Moreover, Ho
b can be written as

Ho
b =

[
1, ejτacos(θb), ..., ej(M−1)τacos(θb)

]
(2)

where τa =
2π f0ρa

c , f0 is the carrier frequency, ρa is the space between two adjacent antenna
elements of the ULA of Alice, and c is the speed of propagation of the plane wave. When
ρa is equal to a half wavelength, i.e., ρa =

c
2 f0

, we have τa = π.

Likewise, the channel matrix from Alice to Eve, denoted as He ∈ CN×M, can be
written as

He =

√
Ke

1 + Ke
Ho

e +

√
1

1 + Ke
Hr

e (3)

where Ke is the Rician K-factor of He, Ho
e ∈ CN×M denotes the LOS component, and

Hr
e ∈ CN×M denotes the scattered component with i.i.d circularly-symmetric complex

Gaussian random variables with zero mean and unit variance. Moreover, Ho
e can be

written as

Ho
e = hT

e hae (4)

where he and hae are the array responses at Eve and Alice, respectively, which can be
written as

he =
[
1, e−jτecos(φe), ..., e−j(N−1)τecos(φe)

]
(5)

hae =
[
1, ejτacos(θe), ..., ej(M−1)τacos(θe)

]
(6)

where τe =
2π f0ρe

c , ρe is the space between two adjacent antenna elements of the ULA of
Eve and φe is the direction of arrival from Alice to Eve.

The signal transmitted at Alice can be expressed as

xa =
√

gbwbsb +
√

gANwANsAN (7)

where sb is the normalized information signal, sAN is the normalized jamming signal, i.e.,
E
[
|sb|2

]
= E

[
|sAN|2

]
= 1, wb ∈ CM×1 is the normalized beamformer for Bob, wAN ∈ CM×1

is the normalized beamformer for jamming signal, i.e., ‖wb‖2 = ‖wAN‖2 = 1, gb is the
power allocated to the information signal, and gAN is the power allocated to the jamming
signal. Without loss of generality, the total transmit power of Alice is normalized to 1 and
hence we have gb + gAN = 1.

Therefore, the signal received at Bob can be expressed as

yb =
√

gbHbwbsb +
√

gANHbwANsAN + nb (8)

where nb represents the complex baseband thermal noise at Bob, such that nb ∼ CN
(
0, σ2

b
)
.

Likewise, the signal received at Eve can be expressed as

ye =
√

gbHewbsb +
√

gANHewANsAN + ne (9)

where ne represents the complex baseband thermal noise at Eve, such that ne ∼ CN
(
0, σ2

e IN
)
.
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Then, the SINR at Bob can be written as

SINRb =
gb|Hbwb|2

gAN|HbwAN|2 + σ2
b

=
ḡb|Hbwb|2

ḡAN|HbwAN|2 + 1

(10)

where ḡb = gb
σ2

b
and ḡAN = gAN

σ2
b

.

Moreover, assuming Eve applies maximum ratio combining (MRC) to combine the
signals received from different antennas, the SINR at Eve can be written as

SINRe =
gb‖Hewb‖2

gAN‖HewAN‖2 + σ2
e

=
g̃b‖Hewb‖2

g̃AN‖HewAN‖2 + 1

(11)

where g̃b = gb
σ2

e
and g̃AN = gAN

σ2
e

, ‖ · ‖2 denotes the square of the norm of a vector.

3. Performance Analysis

In this section, we first derive the PDF of the SINR for Bob and Eve, and then the
expectation of the SINR and the BER performance can be deduced.

3.1. Distribution of the SINR

According to (1), we have

Hbwb =

√
Kb

1 + Kb
Ho

bwb +

√
1

1 + Kb
Hr

bwb. (12)

The distribution of |Hbwb| has been analyzed in [22] for a general wb. It has been shown that
Ho

bwb is deterministic and Hr
bwb is a complex Gaussian random variable with zero mean

and unit variance. Hence, |Hbwb| follows a Rician distribution with the parameters [22]:

K̄b = Kb|Ho
bwb|2 (13)

Ω̄b =
1 + Kb|Ho

bwb|2

1 + Kb
(14)

The PDF of the Rician distribution involves the modified Bessel function of the first kind,
which is difficult to derive. However, the Rician distribution can be closely approximated by
Nakagami distribution [38], with the parameters mb = (K̄b + 1)2/(2K̄b + 1) and ωb = Ω̄b.
Hence, ḡb|Hbwb|2 can be approximated by a gamma distribution with the PDF written as

pḡb |Hbwb |2(x) =
β

αb
b

Γ(αb)
xαb−1e−βbx (15)

where αb = mb, βb = mb
ḡbωb

and Γ(·) is the gamma function.
Furthermore, we have

HbwAN =

√
Kb

1 + Kb
Ho

bwAN +

√
1

1 + Kb
Hr

bwAN. (16)

Similarly, we can obtain that ḡAN|HbwAN|2 can also be approximated by a gamma distri-
bution, with the parameters αb,AN = mb,AN and βb,AN =

mb,AN
ḡANωbAN

where
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mb,AN =
(Kb|Ho

bwAN|2 + 1)2

2Kb|Ho
bwAN|2 + 1

(17)

ωb,AN =
1 + Kb|Ho

bwAN|2

1 + Kb
. (18)

Because wb and wAN are independent, |Hbwb| and |HbwAN| can be considered as
independent. Hence, the PDF of SINRb can be obtained following a similar derivation as
in [39]

pSINRb(γ) =
∫ +∞

0
(1 + x)pḡb |Hbwb |2((1 + x)γ)pḡAN|HbwAN|2(x)dx

= β
αb
b β

αb,AN
b,AN

γαb−1e−βbγ

Γ(αb)Γ(αb,AN)

∫ +∞

0
(1 + x)αb xαb,AN−1e−x(βbγ+βb,AN)dx

= β
αb
b β

αb,AN
b,AN

γαb−1e−βbγ

Γ(αb)
U(αb,AN; αb + αb,AN + 1; βbγ + βb,AN)

(19)

where U(a; b; x) is the confluent hypergeometric function of the second kind, which is
defined as [39]

U(a; b; x) =
1

Γ(a)

∫ +∞

0
ta−1(1 + t)b−a−1e−xtdt (20)

For the case gAN = 0, we have pSNRb(γ) = pḡb |Hbwb |2(γ).

For the SINR of the eavesdropper in (11), we have

‖Hewb‖2 =
N

∑
n=1
|He,nwb|2 (21)

where He,n is the nth row of He which can be written as

He,n =

√
Ke

1 + Ke
Ho

e,n +

√
1

1 + Ke
Hr

e,n

=

√
Ke

1 + Ke
he,nhae +

√
1

1 + Ke
Hr

e,n

(22)

where he,n is the nth element of he, i.e., he,n = e−j(n−1)τecos(φe) and Hr
e,n is the nth row of

Hr
e. Hence, |he,nhaewb| = |haewb|, the PDF of |He,nwb|2 can be approximated by a gamma

distribution with the parameters αe,n = me and βe,n = me/ωe where

me =
(Ke|haewb|2 + 1)2

2Ke|haewb|2 + 1
(23)

ωe =
1 + Ke|haewb|2

1 + Ke
. (24)

Because the rows of He are independent from each other, the PDF of term g̃b‖Hewb‖2

can also be approximated by a gamma distribution with the parameters αe = Nme and
βe = me

g̃eωe
. Moreover, the PDF of term g̃AN‖HewAN‖2 can also be approximated by a

gamma distribution with the parameters αe,AN = Nme,AN and βe,AN =
me,AN

g̃eωe,AN
where

me,AN =
(Ke|haewAN|2 + 1)2

2Ke|haewAN|2 + 1
(25)

ωe,AN =
1 + Ke|haewAN|2

1 + Ke
. (26)
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Therefore, the PDF of SINRe, denoted as pSINRe(γ), can be expressed by replacing αb,
βb, αb,AN, and βb,AN with αe, βe, αe,AN, and βe,AN in (19).

3.2. Expectation of SINR

The expectation of SINR can be used to design a QoS-based beamforming scheme [30].
Using the PDF of SINR in (19), the expectation of SINR for Bob can be derived as

E[SINRb] =
∫ +∞

0
γpSINRb(γ)dγ

=
1

Γ(αb)
β

αb
b β

αb,AN
b,AN

∫ +∞

0
γαb e−βbγU(αb,AN; αb + αb,AN + 1; βbγ + βb,AN)dγ

(27)

According to [40], we have the equation

e−xU(a; b; x) = G2,0
1,2

(
x

a− b + 1,
0, 1− b

)
(28)

where Gm,n
p,q

(
x

a1, · · · , ap
b1, · · · , bq

)
is the Meijer’s G-function ([41], 9.301). Then, by performing a

change of variable t = βbγ + βb,AN, a closed-form expression for expectation of SINR for
Bob can be derived using [42]

E[SINRb] =
1

Γ(αb)
β

αb
b β

αb,AN
b,AN eβb,AN

∫ +∞

0
γαb G2,0

1,2

(
βbγ + βb,AN

−αb,
0,−αb − αb,AN

)
dγ

=
β

αb,AN
b,AN

βbΓ(αb)
eβb,AN

∫ +∞

βb,AN

(t− βb,AN)
αb G2,0

1,2

(
t
−αb,
0,−αb − αb,AN

)
dt

=
αb
βb

β
αb+αb,AN+1
b,AN eβb,AN G3,0

2,3

(
βb,AN

−αb, 0
−αb − 1, 0,−αb − αb,AN

) (29)

For the case gAN = 0, the expectation of SINR for Bob can be derived using ([41], 3.326),
such that

E[SNRb] =
∫ +∞

0
γpḡb |Hbwb |2(γ)dγ

=
β

αb
b

Γ(αb)

∫ +∞

0
γαb e−βbγdγ

=
αb
βb

.

(30)

Moreover, the expectation of SINR for Eve can be obtained by replacing αb, βb, αb,AN,
and βb,AN with αe, βe, αe,AN, and βe,AN in (29) and (30).

3.3. BER Analysis

BER is an important metric for transmission performance. Based on the PDF of SINR
in (19), the BER expression of Bob can be written as [39]

Pe,b =
∫ +∞

0

1
2

erfc(
√

γ)pSINRb(γ)dγ (31)

The closed-form BER expression has been derived in [39] when the parameters αb and
αb,AN are integers. Otherwise, the integration Pe,b cannot be expressed in closed-form. In
this paper, we use GL quadrature sum [43] to approximate the value of Pe,b. GL quadrature
sum approximation can be expressed as

+∞∫
0

e−t f (t)dt ≈
NGL

∑
n=1

wn f (tn) (32)
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where tn and wn are the abscissas and weight factors for the GL integration, which can be
tabulated ([44], eq. (25.4.45)) or can be generated efficiently in software such as MATLAB
R2020b. The accuracy of the GL quadrature sum increases with the number of terms
NGL [44].

Hence, with a change of variable γ = t
βb

, the integration Pe,b can be expressed as

Pe,b =
1

2Γ(αb)
β

αb
b β

αb,AN
b,AN

∫ +∞

0
erfc(

√
γ)γαb−1e−βbγU(αb,AN; αb + αb,AN + 1; βbγ + βb,AN)dγ

=
1

2Γ(αb)
β

αb,AN
b,AN

∫ +∞

0
e−ttαb−1erfc

(√
t

βb

)
U(αb,AN; αb + αb,AN + 1; t + βb,AN)dt

(33)

The integration Pe,b can be approximated by Pe,b,GL, which can be expressed as

Pe,b,GL =
1

2Γ(αb)
β

αb,AN
b,AN

NGL

∑
n=1

wntαb−1
n erfc

(√
tn

βb

)
U(αb,AN; αb + αb,AN + 1; tn + βb,AN). (34)

It is shown in Section 5 that the approximation curves perfectly match numerical results for
NGL = 300.

For the case gAN = 0, the BER expression can be derived using [45], such that

Pe,b =
β

αb
b

2Γ(αb)

∫ +∞

0
γαb−1e−βbγerfc(

√
γ)dγ

=

(
1 +

1
βb

)−αb Γ
(

αb +
1
2

)
2
√

πΓ(αb + 1) 2F1

(
αb,

1
2

; αb + 1;
1

1 + 1
βb

) (35)

where 2F1(a, b; c; x) is the hypergeometric function ([41], Ch. 9.1).

4. Optimal Location-Based Beamforming

A location-based beamformer can be expressed as [22]

w(ψ) =
1√
M

[
1, e−jτcos(ψ), ..., e−j(M−1)τcos(ψ)

]T
(36)

where ψ ∈ [0, π] is the beamforming direction. The optimal beamformers can be denoted
as w∗b = w

(
ψ∗b
)

and w∗AN = w
(
ψ∗AN

)
where ψ∗b and ψ∗AN are the optimal beam directions

for useful signal and AN, respectively.
In this paper, the beamforming scheme is designed based on the QoS of Bob and Eve.

Because ECC has been widely used in wireless communication systems, the redundancy of
code allows the receiver to correct a limited number of error bits. Hence, the receiver can
successfully decode the message when the minimum SINR requirement is satisfied. On the
other hand, AN needs to be strong enough at the eavesdropper side to make the BLER of
the eavesdropper close to 1. When the scale of the antenna array is not sufficiently large at
Alice, it is difficult to differentiate the performance between Bob and Eve nearby. In order
to minimize the area near Bob with eavesdropping risk, it is necessary to increase the AN
at Eve as much as possible without affecting the BLER of Bob. Hence, the beamforming
design formulation ensures a minimum SINR requirement of Bob, denoted as γ̂b, while
minimizing the SINR of Eve. In this case, the BLER of Eve is maximized.

We note that for each (ψb, ψAN) pair, the resulted E[SINRb] monotonically increases
with gb. Hence, when there exists values of (ψb, ψAN, gb) such that the corresponding
E[SINRb] ≥ γ̂b, the values of

(
ψ∗b , ψ∗AN, g∗b

)
can be approached through Algorithm 1.
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Algorithm 1 Algorithm to Determine ψ∗b , ψ∗AN, g∗b for Location-based Beamforming
Require: θb, θe
Ensure: ψ∗b , ψ∗AN, g∗b
1: for 0 ≤ ψb, ψAN ≤ π with step size δψ do
2: calculate wb and wAN using (36).
3: while 0 < gb ≤ 1 with step size δg do
4: calculate E[SINRb] using (29)
5: if E[SINRb] ≥ γ̂b then
6: gb,tmp = gb
7: calculate E[SINRe] using (29) and the parameters of Eve
8: γe,tmp = E[SINRe]
9: break

10: end if
11: end while
12: end for
13: Choose ψ∗b , ψ∗AN that achieve the minimum γe,tmp, g∗b takes the value of the correspond-

ing gb,tmp.

5. Simulation Results

In this section, we first verify the analytical expressions derived above through sim-
ulations. Then, the performance of the proposed beamforming scheme Algorithm 1 is
simulated for different θe and M values. The channel parameters are set as Kb = 10 dB and
Ke = 7 dB and the SNR of the system is SNR = 30 dB for both Bob and Eve.

The SINR expectation expression in (29) is tested at first assuming that θb = 45◦ and
θe = 46◦. Without beamforming optimization, we align the signal beam towards Bob and
the AN beam towards Eve, i.e., wb = w(θb) and wAN = w(θe). The expectation of SINRb
and SINRe is simulated for different M and gAN values and the results are presented
in Figure 1. The theoretical values of the expectation of SINR are also displayed in
lines. It can be seen that the theoretical curves perfectly match the simulation results.
Additionally, due to the close proximity of Bob and Eve, it can be observed that when
the number of antennas is small, i.e., M ≤ 16, the performance of Bob and Eve is almost
the same, regardless of whether AN is used. This is because the beam is wide for these
cases. As the number of antennas increases, the beam becomes more focused, and even
without using AN, the performance of Bob and Eve becomes distinguishable. When
AN is added, the performance of both Bob and Eve decreases, but the performance
of Eve decreases more significantly. The simulation results show that, without beam
optimization, a large number of antennas is required to differentiate the performance of
Bob and Eve.

Moreover, based on the above assumptions, the BER performance of Eve is simulated
for M = 64 and the results are presented in Figure 2 for different gAN values. The approxi-
mate BERs using GL quadrature sum with NGL = 300 are presented as continuous lines,
which exhibit good accuracy compared to the simulation results. Moreover, it can be seen
that as gAN increases, the BER of Eve increases rapidly.

Then, we test the performance of the proposed Algorithm 1 in preventing eavesdrop-
ping with a small scale of antennas. The locations of Bob and Eve remain unchanged. We
set δψ = 1◦, δg = 0.01 and γ̂b = 10 dB. We test the performance of Eve at different locations,
such that θe ∈ [46◦, · · · , 50◦]. Assuming M = 8 and N ∈ {1, 2, 4, 8}, the expectations of
SINRb and SINRe are simulated and the results are presented in Figure 3. We can see that
the performance of Bob remains above the threshold γ̂b = 10 dB, while the performance of
Eve decreases when increasing the distance between Eve and Bob. Moreover, we note that
when the number of antennas of Eve increases, the SINR of Eve actually decreases. This is
because as the number of antennas N increases, the power of the desired signal and AN
received by Eve both increase proportionally, resulting in a decrease in overall SINR. To
clarify this point, the expectation of the power of the desired signal and AN received by
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Eve are displayed in Figure 4. It can be observed that as the number of receiving antennas
doubles, the received power is also doubled. However, since the power of the desired
signal and AN follow different distributions, the expected SINR changes with the number
of receiving antennas.

Figure 1. The expectation of SINRb and SINRe in the function of gAN for M ∈ {8, 16, 32, 64, 100}.

Figure 2. The simulated and approximate BERs of Eve for M = 64.
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Figure 3. The expectation of SINRb and SINRe with optimal beamforming in the function of the
location of Eve θe.

Figure 4. The expectation of the power of the desired signal and AN received by Eve, with different
numbers of receive antennas at Eve.

The corresponding BERs are also simulated and the results are presented in Figure 5.
It is shown that the BER of Bob fluctuates around 10−2 and the BER of Eve increases when
increasing the distance between Eve and Bob. When there is 5◦ difference between Eve
and Bob, the BER of Eve reaches 0.37. Particularly, we note that the BER of the case N = 8
is lower than that of the case N = 1. This is in contrast to the trend exhibited by the
expectation of SINRe in Figure 3. This is because when a MRC receiver is used at Eve, an
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increase in the number of receive antennas reduces the fading of the equivalent channel.
Therefore, even though the average SINR of the case N = 8 is smaller than that of the case
N = 1, its BER is still better than that of the N = 1 case, due to the diversity gain of the
receive antenna array.

Figure 5. The simulated BERs of Eve in the function of the location of Eve θe.

For comparison purposes, the expectation of SINRe without using AN is simulated
in the function of the location of Eve θe, as shown in Figure 6. The shape of the beam can
be observed for different M values. We note that as more antennas are used, the beam
becomes narrower and the sidelobes become smaller.

Figure 6. The expectation of SINRe without using AN in the function of the location of Eve θe.
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The BER performance of Eve without using AN is also simulated and the results are
presented in Figure 7. It can be observed that when the number of antennas is relatively
small, even if Bob and Eve are far apart, the BER of Eve remains at a low level, especially
when Eve is on the peaks of the sidelobes. The results of this figure demonstrate the
necessity of using AN to prevent eavesdropping.

Figure 7. The simulated BERs of Eve without using AN in the function of the location of Eve θe.

Moreover, the strategy for maximizing the ergodic secrecy rate [16] has also been
simulated. The power allocation factors are optimized. The expectations of SINRb and
SINRe are presented in Figure 8 and the BER results are shown in Figure 9. It can be
observed that the difference in SINR between Bob and Eve has increased compared to
Figure 3, but the BER of Eve decreases as the location of Eve becomes farther. This is
because this strategy does not directly degrade the SINR of Eve.

Figure 8. The expectations of SINRb and SINRe when the ergodic secrecy rate is maximized in the
function of the location of Eve θe.
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Figure 9. The simulated BERs when the ergodic secrecy rate is maximized in the function of the
location of Eve θe.

To clarify the impact of the Rician parameter, the case where Kb = 14.8 dB is simulated
to compare with the results of Kb = 10 dB. The expectations of SINRb and SINRe are
presented in Figure 10. We note that a higher Kb value leads to a degradation in the
performance of Eve. However, the trend of the eavesdropper’s SINR decreasing as the
location moves away from the user remains unchanged. Hence, the proposed algorithm
can be applied for LoS channels with different K-factors to degrade the SINR performance
of an eavesdropper. An example of the K-factor for different scenarios can be found in ([46],
Table 7.5–6).

Figure 10. The expectation of SINRb and SINRe for Kb = {10, 14.8} dB in the function of the location
of Eve θe.
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To illustrate the effectiveness of the proposed algorithm for minimizing the QoS of
the eavesdropper, the BLER of Bob and Eve are simulated in Figure 11 using Polar code as
the ECC. Polar code [32] is an emerging channel coding technique for 5th generation (5G)
mobile communication systems [47]. Polar code has been adopted for enhanced mobile
broadband (eMBB) control channels. We set the rate of the code R = 4, ε = 0.15, and the
length of information as 128. It can be seen from Figure 11 that the BLER of Bob remains 0
and the BLER of Eve increases with θe. When M = 8, the BLER of Eve reaches 1 for θe = 50◦,
which means that eavesdroppers beyond 5◦ cannot decode the information. When the
number of antennas reaches 32, eavesdroppers beyond 1◦ also cannot decode the message.

Figure 11. The simulated BLERs of Bob and Eve in the function of the location of Eve θe.

In the case where the location of Eve is unknown to Alice, Alice can design beamform-
ing schemes using the location of Eve that results in a sufficiently low BLER for Eve. In
this way, the chosen location of Eve and more distant areas are protected. For the region
between Bob and the chosen location of Eve, additional surveillance measures can be
employed to prevent eavesdropping.

6. Conclusions

This work investigated the performance of AN-assisted location-based beamforming
in Rician wiretap channels. Assuming that the location information of the legitimate
user and the eavesdropper is available at the base station, AN is used to interfere with
eavesdroppers. The influence of the AN has been considered for both the legitimate
user and the eavesdropper. Closed-form PDF approximations of the SINRs are derived.
Moreover, the expressions of the expectations of the SINRs and the BERs are deduced. A
secure beamforming scheme is proposed to ensure a minimum SINR requirement for the
legitimate user and minimize the SINR of the eavesdropper. Numerical results show that
the proposed beamforming scheme can effectively degrade the performance of nearby
eavesdroppers even with a small number of antennas. When the base station has eight
antennas, the BLER of the eavesdropper reaches 1 when the eavesdropper is located 5◦

away from the legitimate user, while the BLER of the legitimate user remains 0. In the
case where the location of the eavesdropper is unknown to the base station, the proposed
beamforming scheme can still be used to minimize the area near the legitimate user with
eavesdropping risk. When more antennas are used at the base station, the area with
eavesdropping risk can be further reduced.
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