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Abstract: Deep Unfolding Networks (DUNs) serve as a predominant approach for Compressed
Sensing (CS) reconstruction algorithms by harnessing optimization. However, a notable constraint
within the DUN framework is the restriction to single-channel inputs and outputs at each stage
during gradient descent computations. This constraint compels the feature maps of the proximal
mapping module to undergo multi-channel to single-channel dimensionality reduction, resulting in
limited feature characterization capabilities. Furthermore, most prevalent reconstruction networks
rely on single-scale structures, neglecting the extraction of features from different scales, thereby
impeding the overall reconstruction network’s performance. To address these limitations, this paper
introduces a novel CS reconstruction network termed the Multi-channel and Multi-scale Unfolding
Network (MMU-Net). MMU-Net embraces a multi-channel approach, featuring the incorporation
of Adap-SKConv with an attention mechanism to facilitate the exchange of information between
gradient terms and enhance the feature map’s characterization capacity. Moreover, a Multi-scale
Block is introduced to extract multi-scale features, bolstering the network’s ability to characterize and
reconstruct the images. Our study extensively evaluates MMU-Net’s performance across multiple
benchmark datasets, including Urban100, Set11, BSD68, and the UC Merced Land Use Dataset,
encompassing both natural and remote sensing images. The results of our study underscore the
superior performance of MMU-Net in comparison to existing state-of-the-art CS methods.

Keywords: compressed sensing; image reconstruction; deep unfolding network; attention mechanism

1. Introduction

Compressed Sensing (CS) has revolutionized the limitations of the Nyquist sampling
theorem, enabling the efficient reconstruction of signals at significantly lower sampling rates
than the traditional Nyquist rate [1], particularly for signals exhibiting inherent sparsity or
sparsity within specific transform domains [2]. This innovation has profound implications,
substantially reducing the cost of sensor data compression, and mitigating the demands
on transmission bandwidth and storage capacity in data transmission processes. CS has
found wide applications, ranging from single-pixel cameras [3,4] to snapshot compression
imaging [5,6] and even magnetic resonance imaging [7,8].

CS reconstruction methods can be broadly categorized into two main classes: tra-
ditional CS reconstruction methods [9–16] and deep-learning-based CS reconstruction
methods [17–21]. Traditional CS reconstruction methods are designed based on a priori
knowledge of image sparsity, presuming that the signal exhibits sparsity within a particular
transform domain [22,23]. These methods formulate signal reconstruction as an optimiza-
tion problem within a sparse model framework [12]. Solving this problem involves iterative
approaches employing convex optimization methods, greedy algorithms, or Bayesian-like
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techniques to obtain the reconstructed signal. While traditional CS reconstruction meth-
ods provide strong convergence and theoretical guidance, they suffer from drawbacks
such as computational intensity, slow reconstruction speeds, and limited reconstruction
performance [24].

The computational complexity inherent in traditional CS reconstruction methods
presents challenges in achieving real-time image reconstruction. To address this, deep
learning methods, known for their prowess in image processing, have been introduced
into the realm of CS reconstruction. Deep-learning-based CS reconstruction algorithms
can be broadly classified into two primary categories: deep non-unfolding networks
(DNUNs) [18,19,21,25,26] and deep unfolding networks (DUNs) [8,27–33]. DNUN treats the
reconstruction process as a black-box operation, relying on a data-driven approach to build
an end-to-end neural network to address the CS reconstruction problem. In this paradigm,
the Gaussian random measurement matrix used in traditional CS reconstruction methods
is replaced with a learnable measurement network. Subsequently, the reconstruction
network framework is constructed around well-established deep learning models such
as stacked denoising autoencoders [25], convolutional neural networks (CNNs) [18], or
residual networks [26] to learn the mapping from CS measurements to reconstructed
signals. Despite the ability of DNUN to achieve real-time reconstruction, surpassing
traditional CS reconstruction methods, it has limitations such as high data dependency and
poor interpretability, stemming from its entirely data-driven nature and lack of a strong
theoretical foundation.

Conversely, DUN combines traditional optimization methods with deep learning
techniques, utilizing optimization algorithms as theoretical guides. It employs a fixed-depth
neural network to simulate the finite number of iterations of the optimization algorithm,
resulting in reconstructed signals. Many optimization algorithms, such as Approximate
Message Passing (AMP) [34], Iterative Shrinkage Thresholding Algorithm (ISTA) [35], and
the Alternate Direction Multiplier Method (ADMM) [36], have been incorporated into DUN,
leading to superior reconstruction performance compared to DNUN. Due to its foundation
in theoretically guaranteed optimization algorithms, DUN offers strong reconstruction
performance and a degree of interpretability.

Nonetheless, DUN typically operates in a single-channel form in many cases [27–30,37,38],
as feature maps within the deep reconstruction network are transmitted between phases
and updated within each phase. This structural characteristic limits the characterization
ability of the feature maps, ultimately degrading the network’s reconstruction performance.
Moreover, mainstream DUN methods [28–30,33,37,38] often rely on standard CNNs to
build the reconstruction network, with each CNN featuring uniform receptive fields. As
the human visual system is a multi-channel model, a series of receptive fields of different
sizes are generated in the higher-order areas of the human visual system [39–41]. Therefore,
the single receptive field of the standard CNN is inconsistent with the actual observation of
the human visual system, which hampers the characterization ability of the CNN.

To address these limitations, this paper introduces two modules within the Deep Re-
construction Subnet (DRS) of our proposed Multi-channel and Multi-scale Unfolding Net-
work (MMU-Net): the Attention-based Multi-channel Gradient Descent Module (AMGDM)
and the Multi-scale Proximal Mapping Module (MPMM). These modules are designed
to enhance feature characterization and representation in DUN. AMGDM facilitates the
transmission of feature maps in a multi-channel format, both intra-stage and inter-stage.
This design enhances the feature maps’ characterization ability. Moreover, inspired by
SK-Net [42], we introduce Adap-SKConv, an attention convolution kernel with a feature
fusion mechanism. Adap-SKConv is used to obtain fused gradient terms with attention,
further improving the feature representation in AMGDM. To address the limitation of
single-scale CNNs, we introduce MPMM, which employs multi-scale CNN. Inspired by
the fact that the human visual system has different receptive fields in higher-order areas,
in this paper, we utilize the Inception structure [43] and design Multi-scale Block (MB)
with multiple parallel convolutional branches in MPMM to simulate the human visual
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system using different receptive fields to extract features, thus enhancing the network’s
representational capability.

The main contributions of this paper are as follows:

• We introduce a novel end-to-end sampling and reconstruction network, named the
Multi-channel and Multi-scale Unfolding Network (MMU-Net), comprising three
integral components: the Sampling Subnet (SS), Initialize Subnet (IS), and Deep
Reconstruction Subnet (DRS).

• Within the Deep Reconstruction Subnet (DRS), the Attention-based Multi-channel
Gradient Descent Module (AMGDM) is developed. This module introduces a multi-
channel strategy that effectively addresses the challenge of limited feature map char-
acterization associated with the conventional single-channel approach. Additionally,
we design the Adap-SKConv attention convolution kernel with a feature fusion mech-
anism, enhancing the feature characterization of gradient terms. These innovations
collectively contribute to a substantial improvement in the network’s reconstruction
performance.

• In DRS, we introduce the Multi-scale Proximal Mapping Module (MPMM). MPMM in-
corporates a Multi-scale Block (MB) featuring multiple parallel convolutional branches,
facilitating the extraction of features across various receptive fields. This innovation
allows for the acquisition of multi-scale features, significantly enhancing the character-
ization capabilities of the Convolutional Neural Network and thereby leading to an
enhanced reconstruction performance.

• Empirical evidence from a multitude of experiments demonstrates the superior per-
formance of the proposed method in comparison to existing state-of-the-art networks.
This extensive validation underscores the efficacy and rationality of our approach.

The rest of the paper is organized as follows. Section 2 describes the related work of
DNUN and DUN. Section 3 describes the preparatory knowledge for the work of this paper
and Section 4 describes the framework and details of MMU-Net. Section 5 describes the
experimental parameter settings, baseline, comparison with other state-of-the-art methods
and ablation experiments. Section 6 draws the conclusions of the study.

2. Related Work

Deep-learning-based Compressed Sensing (DLCS) reconstruction networks can be
categorized into two primary types: Deep Non-unfolding Networks and Deep Unfold-
ing Networks. This section provides an exploration of the relevant work within each
classification.

2.1. Deep Non-Unfolding Network (DNUN)

DNUN is characterized by its creation of end-to-end networks designed to execute the
CS sampling and reconstruction processes. This approach leverages a data-driven strategy
to acquire the knowledge necessary to map CS measurements into reconstructed signals.
The initial foray into integrating deep learning into CS reconstruction was led by Mousavi
et al. [25]. Their work employed stacked denoising autoencoders and feed-forward deep
neural networks for signal reconstruction.

Subsequently, Kulkarni et al. [18] introduced ReconNet, which capitalized on fully
connected layers and convolutional neural networks to reconstruct images. By substituting
some of the fully connected layers with CNNs, ReconNet achieved superior performance,
particularly in the realm of image processing. Yao et al. [26] presented DR2-Net, which
initiated image reconstruction from CS measurements using fully connected layers. A
residual network was then incorporated to further refine signal reconstruction.

Distinguishing itself from earlier CS reconstruction methods reliant on random Gaus-
sian measurement matrix sampling, Shi et al. proposed CSNet [44]. This innovative
approach harnessed CNNs to not only simulate the sampling process but also concurrently
construct the sampling network, resulting in commendable reconstruction outcomes.
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Building upon the foundation of CSNet, Shi et al. pursued several enhancements,
introducing CSNet+ [45] and SCSNet [46]. These iterations further improved network
reconstruction performance. However, DNUN’s significant drawback lies in its heavy
reliance on data, inhibiting its versatility. Moreover, DNUN’s network structure is a
product of a generic model, lacking theoretical grounding and interpretability due to deep
learning’s inherent black-box nature, which can impede further optimization.

2.2. Deep Unfolding Network (DUN)

DUN represents a fusion of efficient deep learning models and optimization algorithms
to construct deep reconstruction networks with pre-defined stages. Drawing inspiration
from the Iterative Shrinkage Thresholding Algorithm, Zhang et al. introduced ISTA-Net and
ISTA-Net+ [28]. These models unfolded each iteration into a network stage using CNNs,
offering a promising balance between reconstruction performance and interpretability.

Zhang et al. further refined the concept with OPINE-Net+ [30], which replaced the
random Gaussian measurement matrix with a learnable sampling matrix. This matrix
incorporated orthogonal and binary constraints, while CNNs simulated the sampling
and initial reconstruction processes, resulting in an adaptive end-to-end sampling and
reconstruction network that notably improved reconstruction performance.

Building on the foundation of ISTA-Net+, You et al. introduced ISTA-Net++ [37]. This
dynamic unfolding strategy addressed the challenge of CS sampling and reconstruction at
varying sampling rates within a single model. The introduction of a cross-block strategy
mitigated the chunking effect and further bolstered reconstruction performance.

Additionally, Zhang et al. conceived AMP-Net [29] based on the denoising perspec-
tive of the Approximate Message Passing algorithm. This model fashioned a sampling
network through a random Gaussian matrix and crafted an unfolding network for deep
reconstruction employing CNNs. This approach translated into highly efficient image
reconstruction.

Song et al. addressed shortcomings in current DUN models related to short-term
memory mechanisms. Their proposal, MAPUN [47], incorporated two distinct memory
enhancement mechanisms, effectively reducing information loss between phases. This
enhancement significantly improved the network’s expressive capacity and reconstruction
performance.

Summary: DUN surpasses both DNUN and traditional CS reconstruction methods
in terms of reconstruction performance and interpretability. Consequently, it has become
the prevailing approach in the field of CS reconstruction. Nevertheless, DUN is challenged
by the need for multiple multi-channel to single-channel dimensional transformations
during the reconstruction process, which can result in a loss of information and reduced
feature map characterization capabilities. Additionally, the reliance on single-scale CNNs
for reconstruction limits the network’s ability to extract image features from a single scale.

3. Preliminaries

This section provides a foundation for understanding the paper’s key concepts. It
begins with a model of the Compressed Sensing task and subsequently introduces the
Iterative Shrinkage Thresholding Algorithm and the Deep Unfolding Network framework
based on ISTA. In this paper, vectors are represented using lowercase bold letters, matrices
with uppercase bold letters, and parameters with italics. The important mathematical
symbols and descriptions in this paper are shown in Table 1:
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Table 1. Mathematical notation and description.

Notations Descriptions

k Deep reconstruction sub-network stage index
X Origin image, X ∈ RN

Y Measurement, Y ∈ RM

r CS ratio, r = M/N
Φ, Φ> The sampling matrix, transpose of the sampling matrix
FΦ(•), FΦ> (•) Sampling convolutional layer, initialize convolution layer
X(0), X(k) Initialize image, reconstruction image of the kth stage
X̃(k−1), X̂(k−1), X̃(0) The multi-channel versions of X(k−1), Φ>

(
ΦX(k−1)

)
, and Φ>Y

Z(k),Z̃(k) The preliminary instant reconstruction result and the instant reconstruc-
tion result of the kth stage

Fgp,F f c The global average pooling, the two-layered fully connected layer
θ(k) The threshold for the kth stage soft threshold function
ρ(k) The step size of the kth stage
X f inal Final reconstruction image

3.1. Problem Definition

Definition 1 (Compressed sensing problem). The CS task encompasses two core components:
sampling and reconstruction. Mathematically, the process of CS sampling can be expressed as
follows (Equation (1)):

Y = ΦX (1)

Here, X ∈ RN signifies the original signal, Y ∈ RM represents the measurement, Φ ∈ RM×N

is the random measurement matrix, and r = M/N denotes the sampling rate.
The CS reconstruction problem can be viewed as an ill-posed inverse problem. Traditional CS

reconstruction methods approach this by solving Equation (2):

min
X

1
2
‖ΦX− Y‖2

2 + λΨ(X) (2)

Here, 1
2‖ΦX− Y‖2

2 represents a data fidelity term, Ψ(X) serves as a regularization term, en-
suring that the solution adheres to prior information about the image, and λ denotes a regularization
parameter.

3.2. Definitions and Concepts

Definition 2 (ISTA-based DUN framework). ISTA, a class of gradient algorithms, provides a
classical approach for solving linear inverse problems. It accomplishes this by iterating through the
following two main steps:

Z(k) = X(k−1) − ρ(k)
(

Φ>
(

ΦX(k−1)
)
−Φ>Y

)
(3)

X(k) = arg min
X

1
2

∥∥∥X− Z(k)
∥∥∥2

2
− λ‖Ψ(X)‖1 (4)

In Equation (3), ρ(k) denotes the step size, k represents the number of iterations, and
Φ>
(

ΦX(k−1)
)
− Φ>Y is the gradient of the data fidelity term in Equation (2). Equation (3)

demonstrates that X(k−1) is updated in the direction of the negative gradient of the data fidelity term
to produce the instant reconstruction result Z(k). Equation (4) showcases that the reconstruction re-
sult of the kth stage seeks X(k), approximating it to Z(k). Equation (4) can be viewed as a specialized
form of proximal mapping, which can be converted to:

X(k) = arg min
X

1
2

∥∥∥F(X)− F
(

Z(k)
)∥∥∥2

2
+ θ‖F(X)‖1 (5)
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Here, F(•) is a nonlinear sparse transform, and ISTA employs a soft threshold function to
solve Equation (5):

X(k) = F̃
(

so f t
(

F
(

Z(k)
)

, θ(k)
))

(6)

In Equation (6), F̃(•) represents the inverse transformation of F(•), and so f t
(
•, θ(k)

)
denotes

the soft threshold function.
The ISTA-based DUN network, based on Equations (3) and (6), establishes the network

framework. The reconstruction network comprises Np stages, each encompassing a Gradient
Descent Module (GDM) and Proximal Mapping Module (PMM), as depicted in Figure 1. The
GDM corresponds to Equation (3) and simulates ISTA’s iterative step. It accepts the reconstructed
image X(k−1) from the preceding stage as input and generates the instant reconstruction result Z(k)

for the current stage. The GDM involves matrix operations on the feature maps without neural
network participation, resulting in single-channel feature maps.

PMM

ConvConv

GDM

( ) ( ) ( )( )• − • −Φ Φ y
k

ρ ( )•F ( )•F
( )( )θ•,
k

soft

( -1)kX ( )kZ
( -1)kX

1H W  1H W 
1H W 

H W C  1H W 

Figure 1. ISTA-based DUN network framework.

In the PMM, two nonlinear transformations, F(•) and F̃(•), designed based on Equation (6),
typically consist of CNN modules. The input to PMM is a single-channel Z(k), initially con-
verted into a multi-channel feature map through convolution. The multi-channel feature maps are
then sequentially processed by F(•), the soft thresholding function, and F̃(•) to obtain a multi-
channel feature map. Since GDM’s input is single-channel, and it operates solely on feature maps
through matrix operations, feature maps remain single-channel throughout. However, PMM’s
input and output are restricted to single channels. As a result, the module transforms input from
multi-channel to single-channel, which results in information loss and constrains feature map
characterization. Additionally, F(•) and F̃(•) are single-scale CNNs, which limits the network’s
feature extraction capability.

Definition 3 (CS ratio). In this paper, X ∈ RN signifies the original signal, Y ∈ RM represents
the measurement. The CS ratio is denoted by r, with r = M/N.

Definition 4 (Multi-channel Representation Learning). In this paper, “multi-channel” refers
to the presence of multi-channel feature maps, meaning that the output of a network layer consists
of feature maps with more than one channel. In contrast, “single-channel” feature maps have
only one channel. Multi-channel feature maps can capture more diverse information than their
single-channel counterparts.

Definition 5 (Multi-scale CS Network). The term “multi-scale” denotes the structure of a
multi-scale network, which employs various convolutional kernels with different receptive fields,
constructed in parallel to extract image features from different scales. This differs from a “single-
scale” network that relies on a single type of convolutional kernel. Multi-scale networks can extract
richer features.

4. Proposed Method

In this section, we introduce the MMU-Net, which consists of three key sub-networks:
the Sampling Subnet (SS), Initialize Subnet (IS), and Deep Reconstruction Subnet (DRS). The
network’s architectural framework is illustrated in Figure 2, and the complete MMU-Net
sampling and reconstruction process is detailed in Algorithm 1. The roles of these three
sub-networks are as follows:



Entropy 2023, 25, 1579 7 of 23

• Sampling Subnet (SS): The SS emulates the linear sampling of the original image us-
ing convolutional layers. It transforms the input image to simulate the measurements
obtained from a low-resolution sensor.

• Initialize Subnet (IS): The IS operates on the measurements generated by SS. It
enhances the dimension of these measurements to match the size of the original image
and performs an initial reconstruction of the image.

• Deep Reconstruction Subnet (DRS): The DRS unfolds the ISTA and progressively
enhances the quality of image reconstruction over multiple stages. It refines the
reconstruction in a stepwise manner, gradually approaching a higher fidelity output.

Adap-SKConv
Conv

ReLU

Multi-scale 
Block
(MB)

Attention-based Multi-channel Gradient Descent Module (AMGDM) Multi-scale Proximal Mapping Module (MPMM)

Multi-scale 
Block
(MB)

Origin  image Initialize imageMeasurement

Conv Conv
Pixel

shuffle

Conv Conv

Sampling Subnet Initialize Subnet Deep Reconstruction Subnet

Multi-scale 
Proximal Map 

Module
(MPMM)

Multi-channel 
Gradient 

Descent Module
(MGDM)

  
ΦΦ

F F
T

  θ, k

soft

 H W C

 H W C

 H W C

  4H B C
 H W C  H W C  H W C

Stage k

 H W C H W C  H W C H W C H W C H W C H W C  
H W

M
N N

X Y  X
0  X 0  X 1k  X k  X Np X final

 X k

 X 1k

 
X

1ˆ k

 X 0

 Z
k  Z k

Figure 2. Network framework of the proposed MMU-Net.

4.1. Sampling Subnet (SS)

In the Sampling Subnet, our approach assumes that the original image is represented
as X ∈ RH×W . To process the image efficiently, it is divided into L blocks of size

√
N×
√

N,
where

√
N ×
√

N × L = H ×W. This paper employs a layer of convolutional operations
without biases, represented as FΦ(•). Notably, we replace the traditional matrix sampling
process with this convolutional layer. The sampling matrix Φ is treated as a learnable
network parameter and reshaped into M convolutional kernels, each of size

√
N ×
√

N,
with a step size of N. This process yields measurements Y with dimensions H√

N
× W√

N
×W,

and it is mathematically expressed as:

Y =FΦ(X) (7)

4.2. Initialize Subnet (IS)

In the Initialize Subnet, the paper focuses on the initial reconstruction of the mea-
surements Y into an image denoted as X(0). This process is facilitated by an unbiased
convolutional layer FΦ>(•) and a Pixel Shuffle layer. The convolutional layer FΦ>(•)
operates with a step size of 1 and employs N convolutional kernels of size 1× 1× N,
derived from the reshape of Φ>. In IS, the measurements Y first pass through FΦ>(•) to
produce a feature map with dimensions H√

N
× W√

N
× N. Subsequently, the Pixel Shuffle
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layer reorganizes this feature map to generate the initial reconstruction image X(0) with
dimensions H ×W × 1, as represented by the following equation:

X(0) = PixelShuffle(FΦ>(Y)) (8)

Algorithm 1: Algorithm for constructing MMU-Net
Input: Origin image X
Output: reconstruction image X f inal

1 The original image X is sampled using the sampling convolutional layer FΦ(•) to
obtain the measurement Y

Y =FΦ(X)

/* Sampling Subnet */
2 The initial reconstruction of the measurements Y is performed using the initialized

convolutional layer F. The resulting image block is then pixelshuffled to obtain
the initial reconstructed image x

X(0) = PixelShuffle(FΦ>(Y))

/* Initialize Subnet */
3 Conversion of a single-channel into a multi-channel feature map of size

X̃(0) = Conv(3×3)

(
X(0)

)
/* Deep Reconstruction Subnet */

4 for k = 1 : Np do
5 Generate instant reconstruction results Z̃(k) based on X̃(k−1) via AMGDM

X̂(k−1) = FΦ>

(
FΦ

(
X̃(k−1)

))
Z(k) = ReLU

(
Conv

(
Concat

(
Adap− SKCov

(
X̃(0), X̂(k−1)

)
, X̃(k−1)

)))
Z̃(k) = Z(k) + X̃(k−1)

6 The reconstructed feature map X̃(k) for the kth stage is generated by MPMM
based on Z̃(k)

X̃(k) = MB
(

so f t
(

MB
(

Z̃(k)
)

, θk
))

7 end
8 Generate the final reconstructed image X f inal based on the reconstructed feature

map X̃(Np) of the Npth stage

X f inal = Conv(3×3)

(
X̃(Np)

)
Return: X f inal

4.3. Deep Reconstruction Subnet (DRS)

The Deep Reconstruction Subnet in this paper employs Np stages by unfolding the
ISTA. The DRS takes the initial image X(0) of size H ×W × 1 as its input. Initially, a 3 × 3
convolutional layer is used to transform the single-channel X(0) into a multi-channel feature
map X̃(0) with dimensions H×W × C. Subsequently, based on the iterative updating steps
of ISTA, the network is organized into Np stages, and each stage comprises two modules,
namely, AMGDM and MPMM, corresponding to Equations (3) and (4). Finally, the multi-
channel feature map X̃(Np) from the final stage is reduced to a single-channel image using
a 3 × 3 convolutional layer, resulting in the final reconstructed image X f inal .
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To address the challenge of limited feature map characterization caused by the single-
channel approach within DRS, a multi-channel strategy is incorporated into the AMGDM
module. To ensure the rational allocation of weights among different channels, an Adap-
SKConv approach with an attention mechanism is introduced to enhance the feature
characterization of gradient terms in AMGDM. Additionally, to overcome the limitations of
a single-scaled neural network with a restricted receptive field, the MPMM module employs
multiple parallel convolutional branching structures (MB) to extract features across various
receptive fields. This enables the capture of multi-scale features and enhances the network’s
characterization capabilities.

4.3.1. Attention-Based Multi-Channel Gradient Descent Module (AMGDM)

The structure of the AMGDM is designed based on Equation (3) in the iterative step of
ISTA, and its position in the network framework is shown in Figure 2. AMGDM makes use
of multi-channel versions X̃(k−1), X̂(k−1), and X̃(0) of X(k−1), Φ>

(
ΦX(k−1)

)
, and Φ>Y in

Equation (3) to generate an instant reconstruction result Z(k). Notably, X̂(k−1) is derived by
applying FΦ>(FΦ(•)) channel-by-channel to X̃(k−1). The network framework is visually
represented in Figure 2.

Specifically, the two gradient terms, X̂(k−1) and X̃(0), are initially processed by the
Adap-SKConv module to obtain a fused gradient feature map. Subsequently, this feature
map is combined with X̃(k−1), X̂(k−1), and X̃(0) to produce a feature map with dimensions
H ×W × 4C. This feature map is then downscaled using a 3 × 3 convolutional layer
followed by a ReLU activation function to yield an initial instant reconstruction result Z(k)

of size H ×W × C. Finally, X̃(k−1) is added to this result to obtain Z̃(k). The AMGDM
operation can be represented as shown in Equation (9):

X̂(k−1) = FΦ>

(
FΦ

(
X̃(k−1)

))
Z(k) = ReLU

(
Conv

(
Concat

(
Adap− SKCov

(
X̃(0), X̂(k−1)

)
, X̃(k−1)

)))
Z̃(k) = Z(k) + X̃(k−1)

(9)

In AMGDM, drawing inspiration from SKConv with multiple branches in SK-Net [42],
Adap-SKConv incorporates an attention mechanism to fuse two feature inputs. The two
gradient terms, X̂(k−1) and X̃(0), are processed by Adap-SKConv to enhance the interaction
between their information. This fusion enhances the feature characterization of gradient
terms. The network structure of Adap-SKConv is visually depicted in Figure 3. Adap-
SKConv accepts two inputs, X1 and X2. Initially, these inputs are fused, and global average
pooling is performed to obtain global information on each channel, represented as the oper-
ation Fgp. This operation yields a vector s for each channel. Subsequently, a two-layered
fully connected layer F f c is employed to obtain compact feature vectors z. Afterward, z
undergoes softmax and segmentation to derive attentional weights a and b, corresponding
to X1 and X2, respectively. Finally, X1 and X2 are multiplied and summed with a and b,
respectively, to yield fused features Xout.

softmax

X
1

X
2

X
out

F
gp F

fc

s z

a

b

Figure 3. The network structure of Adap-SKConv.
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4.3.2. Multi-Scale Proximal Mapping Module (MPMM)

The Multi-scale Proximal Mapping Module corresponds to Equation (6) and is re-
sponsible for solving proximal mapping through a soft threshold function and a nonlinear
transformation. Its structure is depicted in Figure 2, and the operation can be expressed as
shown in Equation (10):

X̃(k) = MB
(

so f t
(

MB
(

Z̃(k)
)

, θ(k)
))

(10)

In this paper, the Multi-scale Block is employed to perform nonlinear transformations
F(•) and F̃(•). MB leverages multiple parallel convolutional branching structures, inspired
by Inception [43], to extract multi-scale features and enhance the characterization capa-
bilities of the network. Notably, unlike classical ISTA-based Deep Unrolling Networks,
the inputs and outputs of the Proximal Mapping Module in this paper are multi-channel
feature maps rather than single-channel feature maps. Therefore, there is no need for a
pre-F(•) dimensional increase operation or a post-F̃(•) dimensional reduction operation in
MPMM to avoid information loss.

The Multi-scale Block in MPMM adopts a parallel convolutional multi-branching struc-
ture inspired by Inception [43] to extract multi-scale features and enhance the network’s
characterization abilities. The network structure of MB is visually presented in Figure 4,
and the operation can be expressed as shown in Equation (11):

Xout = Conv(3×3)

(
Concat

(
Xb1 , Xb2 , Xb3 , Xb4

))

with :


Xb1 = AvgPool

(
Conv(1×1)

(
Xin))

Xb2 = Conv(1×1)
(
Xin)

Xb3 = Conv(1×1)

((
Conv(3×3)

(
Xin)))

Xb4 = Conv(1×1)

(
Conv(3×3)

((
Conv(3×3)

(
Xin))))

(11)

1×
1 
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Figure 4. The network structure of Multi-scale Block.

The MB module is designed with four convolutional branches operating at different
scales. The first branch includes a global average pooling layer and a convolutional layer
with a kernel size of 1× 1 and a ReLU activation function. The second branch consists of a
convolutional layer with a kernel size of 1× 1. The third branch comprises a convolutional
layer with a kernel size of 1 × 1 and a convolutional layer with a kernel size of 3 × 3.
The fourth branch consists of one convolution layer with a kernel size of 1× 1 and two
convolution layers with a kernel size of 3× 3. The use of two 3× 3 convolution kernels
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instead of 5× 5 convolution kernels reduces the number of parameters while maintaining
the same effective field and enhancing nonlinear representation. After feature extraction
by these four branches from input features of size H ×W × C, the resulting feature maps
from the four different scales are concatenated. Finally, a convolutional layer group with a
3× 3 kernel size is used for dimensionality reduction to yield an output feature map of size
H ×W × C. This results in multi-scale feature extraction and fusion.

4.4. Loss Function

The MMU-Net proposed in this paper comprises three sub-networks SS, IS, and DRS.
During training, the network utilizes a dataset denoted as {Xi}

Nb
i=1, consisting of Nb images,

each with a size of
√

N ×
√

N. The entire MMU-Net is designed to optimize the following
end-to-end loss function:

Ltotal = Ldiscrepancy + γLorth

with :

 Ldiscrepancy = 1
NNb

∑Nb
i=1

∥∥∥Xi − X f inal
i

∥∥∥2

2
Lorth = 1

M2

∥∥ΦΦ> − I
∥∥2

2

(12)

Here, Ldiscrepancy quantifies the mean square error between the original image Xi and
the final reconstructed image X f inal . On the other hand, Lorth enforces an orthogonality
constraint on the sampling matrix. This constraint ensures that the rows of the sampling
matrix exhibit minimal correlation, thereby reducing redundancy between observations.
In the equation, I represents the identity matrix. The training procedure is outlined in
Algorithm 2, with the hyperparameter γ in Equation (12) set to 0.01.

Algorithm 2: Training process of the proposed MMU-Net

Input: initialize image X(0)

1 Initialization: weights W , learning rate lr = 0.0001
2 for e = 1 : E(E = epoch) do
3 for t = 1 : T(T = Nb/batchsize) do
4 Calculate the overall loss: Ltotal = Ldiscrepancy + γLorth

5 Compute the backpropagation error: ∂L(t)
∂X(t)

6 Updata the parameter:
7

W(t + 1) = W(t)− lr
∂Ltotal(t)

∂W(t)

8 end
9 end

5. Experimental Results and Analysis

This section provides a comprehensive examination of the performance of our pro-
posed MMU-Net. We begin by outlining our experimental settings, detailing the evaluation
metrics used, and introducing the baseline methods. Subsequently, we delve into discus-
sions that include an extended investigation, aiming to illustrate the efficacy of our method
by addressing the following research questions:

RQ1: How does the performance of our proposed MMU-Net compare in accuracy to
state-of-the-art CS reconstruction methods?

RQ2: What is the influence of the key components of the proposed AMGDM (including
the multi-scale strategy and Adap-SKConv) in MMU-Net?

RQ3: What is the effect of the essential components (MB) of MPMM proposed in
MMU-Net?
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5.1. Experimental Parameter Settings

In our experiments, we employ a dataset comprising 91 images, consistent with
previous work [30]. These images are utilized for training, with the luminance components
of 88,912 randomly extracted image blocks, each of size 33× 33, forming the training set.
Our testing set encompasses three natural image datasets and a remote sensing image
dataset. The nature image dataset consists of three widely recognized benchmark nature
image datasets: Set11 [18], BSD100 [48], and Urban100 [49], and the remote sensing image
dataset consists of eight images from the UC Merced Land Use Dataset [50].

For MMU-Net’s configuration, we set Np = 13, use a batch size of 32, establish a
learning rate of 1× 10−4, and run the training process for 300 epochs. During training, the
network is optimized using an Adam optimizer [51] with a momentum of 0.9 and a weight
decay of 0.999.

Our experiments are conducted using the Pytorch 1.11, and the hardware setup
comprises an Intel Core i7-12700F processor and an RTX 3070 GPU. To evaluate the recon-
struction quality, we utilize the Peak Signal to Noise Ratio (PSNR) and Structural Similarity
Index Measure (SSIM) [52], focusing on the luminance components. In the results tables,
the highest-performing method is indicated in bold, and the second-best is underlined.

5.2. Evaluation Metrics
5.2.1. Peak Signal to Noise Ratio (PSNR)

PSNR is a widely-used metric for evaluating image quality at the pixel level. It
measures the quality of a reconstructed image in decibels (dB), with higher values indicating
superior image quality. For images X and Y, both of size m× n, the PSNR is computed as
shown in Equation (13):

PSNR = 10 · log10(
MAX2

X
MSE

) (13)

Here, MAX2
X is the maximum possible pixel value of image X, and MSE denotes the

mean square error between images X and Y.

5.2.2. Structural Similarity Index Measure (SSIM)

SSIM is a metric that assesses image quality by quantifying structural similarity
between two images. It provides insights into brightness, contrast, and structure, with
SSIM values ranging from 0 to 1, where larger values indicate greater similarity between
images. The SSIM between images X and Y is calculated according to Equation (14):

SSIM(X, Y) =
(2µXµY + c1)(2σXY + c2)

(µ2
X + µ2

Y + c1)(σ
2
X + σ2

Y + c2)
(14)

Here, µX and µY represent the mean values of images X and Y, while σ2
X and σ2

Y
represent their variances. The covariance between X and Y is denoted as σXY. Additionally,
c1 and c2 are constant terms.

5.3. Baselines

To gauge the effectiveness of MMU-Net, we conducted comparative evaluations by
contrasting it with five well-established baseline methods. In this section, we provide an
overview of these baseline techniques and their specific characteristics:

AdapReconNet [18]: AdapReconNet adopts a matrix sampling approach for chunked
image sampling. It utilizes a fully connected layer for initial image reconstruction, while
employing a variant of the ReconNet for deep reconstruction. Notably, the sampling matrix
remains unaltered during the training phase, and the initial reconstruction subnetwork and
deep reconstruction subnetwork are jointly trained.

CSNet+ [45]: CSNet+ employs a convolutional neural network to accomplish chunked
uniform sampling and chunked initial image reconstruction. Furthermore, it integrates a
deep reconstruction sub-network. During the training phase, the sampling sub-network,
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initial reconstruction sub-network, and deep reconstruction sub-network are collectively
trained.

ISTA-Net+ [28]: ISTA-Net+ utilizes a fixed random Gaussian matrix for chunked
image sampling and initial reconstruction. Deep image reconstruction is performed using
an ISTA-based deep unfolding network. Similar to AdapReconNet, ISTA-Net+ maintains
the sampling matrix constant throughout training and jointly trains the initial reconstruction
and deep reconstruction sub-networks.

OPINE-Net+ [30]: OPINE-Net+ integrates a CNN for chunked uniform sampling and
chunked initial image reconstruction. It employs an ISTA-based deep unfolding network
for the final image reconstruction. OPINE-Net+ extends the architecture of ISTA-Net+ by
jointly training the look-alike network, the initial reconstruction sub-network, and the deep
reconstruction sub-network.

AMP-Net [29]: AMP-Net initiates image reconstruction with a sampling matrix, ini-
tially set as a random Gaussian matrix. It performs chunked image sampling and initial
reconstruction using this matrix. For the deep reconstruction phase, AMP-Net follows
a denoising perspective, where a deep unfolding network is constructed based on the
Approximate Message Passing algorithm. The sampling network, initial reconstruction
sub-network, and deep reconstruction sub-network are collectively trained during the
training phase.

5.4. Comparison with State-of-the-Art Methods (RQ1)
5.4.1. Comparison in Natural Images

In this section, we compare MMU-Net with five state-of-the-art deep-learning-based
CS reconstruction methods using four CS ratios: 0.04, 0.1, 0.25, and 0.3, under natural
image datasets. The compared methods include AdapReconNet, CSNet+, ISTA-Net+,
AMP-Net, and OPINE-Net+. AdapReconNet and CSNet+ belong to DNUNs, ISTA-Net+
and OPINE-Net+ are ISTA-based DUNs, and AMP-Net is an AMP-based DUN.

Table 2 presents the average PSNR and SSIM results of the five CS reconstruction
methods on three datasets: Set11, BSDS68, and Urban100. The table illustrates that, across
all four sampling rates, MMU-Net consistently outperforms the existing state-of-the-art CS
reconstruction methods on Set11, BSDS68, and Urban100. This result confirms the efficacy
of MMU-Net’s network structure. Notably, the DUN-based CS reconstruction methods
demonstrate significantly better average PSNR and SSIM results compared to DNUN-based
methods, suggesting the superiority of the DUN framework in enhancing reconstruction
performance.

Table 2. Average PSNR and SSIM of reconstructed images for the six CS reconstruction methods
across three datasets: Set11, BSDS68, and Urban100, and four sampling rates: 0.04, 0.1, 0.25, and
0.3. Bold indicates the best reconstruction performance, while underline represents the second-best
reconstruction performance.

Dataset Methods
CS Ratio

0.04 0.1 0.25 0.3

Set11

AdapReconNet [18] 23.87/0.7279 27.39/0.8521 31.75/0.9257 33.16/0.9379
CSNet+ [45] 24.83/0.7480 28.34/0.8580 33.34/0.9387 34.30/0.9490

ISTA-Net+ [28] 21.32/0.6037 26.64/0.8087 32.59/0.9254 33.74/0.9386
AMP-Net [29] 24.64/0.7527 28.84/0.8765 34.42/0.9513 36.03/0.9586

OPINE-Net+ [30] 25.65/0.7911 29.79/0.8905 34.81/0.9503 36.04/0.9600
ours 25.91/0.8008 30.17/0.8961 35.38/0.9555 36.62/0.9635

BSDS68

AdapReconNet [18] 24.30/0.6491 26.72/0.7821 30.10/0.8901 30.54/0.9044
CSNet+ [45] 25.43/0.6706 27.91/0.7938 31.12/0.9060 31.66/0.9152

ISTA-Net+ [28] 22.17/0.5486 25.32/0.7022 29.36/0.8525 30.20/0.8771
AMP-Net [29] 25.40/0.6534 27.79/0.7853 31.46/0.9053 32.84/0.9240

OPINE-Net+ [30] 25.20/0.6818 27.72/0.8014 31.56/0.9121 32.50/0.9236
ours 25.29/0.6915 27.98/0.8097 31.76/0.9102 32.69/0.9259
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Table 2. Cont.

Dataset Methods
CS Ratio

0.04 0.1 0.25 0.3

Urban100

AdapReconNet [18] 21.92/0.6390 24.55/0.7801 28.21/0.8841 29.71/0.9043
CSNet+ [45] 21.96/0.6430 24.76/0.7899 28.13/0.8827 29.90/0.9162

ISTA-Net+ [28] 19.83/0.5377 24.04/0.7378 29.78/0.8954 30.15/0.9070
AMP-Net [29] 22.80/0.6814 26.04/0.8283 30.89/0.9202 32.19/0.9365

OPINE-Net+ [30] 22.97/0.7018 26.51/0.8362 31.36/0.9216 32.58/0.9414
ours 23.35/0.7189 27.06/0.8474 31.96/0.9335 32.95/0.9442

Figure 5 displays the original images of lena256 and Parrots from the Set11 dataset,
along with the images reconstructed by the seven CS reconstruction methods at a sampling
rate of 0.1. The zoomed-in details of the reconstructed images are provided. The visual
comparison reveals that the images reconstructed by MMU-Net exhibit minimal block
artifacts and superior visual quality. A closer examination of the magnified image details
of lena256 and Parrots underscores the richness of details and textures in the MMU-Net’s
reconstructed images. In summary, MMU-Net outperforms the five state-of-the-art CS
reconstruction methods in terms of average PSNR and SSIM while delivering superior
visual quality.

CSNet+ AMP-Net ISTA-Net+ OPINE-Net+ Ours

CSNet+ AMP-Net ISTA-Net+ OPINE-Net+ Ours

Ground Truth

Ground Truth AdapReconNet

AdapReconNet

Figure 5. Reconstructed images generated by lena256 and Parrots in Set11 using six reconstruction
methods at a sampling rate of 0.1, along with original images. Zoomed-in details are provided below
each image.
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5.4.2. Comparison in Remote Sensing Images

In this section, we assess the performance of MMU-Net using the UC Merced Land
Use Dataset, a remote sensing image dataset. Based on our earlier findings favoring DUNs
over DNUNs, we benchmark MMU-Net against three state-of-the-art DUNs: ISTA-Net+,
AMP-Net, and OPINE-Net+. We evaluate the reconstruction quality at four different
sampling rates: 0.04, 0.1, 0.25, and 0.3, with results visualized in Figure 6 and presented in
Table 3.

Table 3. Average PSNR and SSIM of the reconstructed images for the four CS reconstruction methods
applied to the remote sensing image dataset at sampling rates of 0.04, 0.1, 0.25, and 0.3. Bold indicates
the best reconstruction performance, while underline represents the second-best reconstruction
performance.

Image Methods
CS Ratio

0.04 0.1 0.25 0.3

airplane

ISTA-Net+ [28] 22.88/0.6401 28.83/0.8383 33.73/0.9029 35.04/0.9193
AMP-Net [29] 26.69/0.8146 32.68/0.9258 39.08/0.9786 40.66/0.9852

OPINE-Net+ [30] 27.18/0.8179 32.74/0.9220 38.87/0.9754 40.43/0.9819
ours 27.49/0.8289 32.89/0.9263 39.45/0.9776 40.84/0.9836

buildings

ISTA-Net+ [28] 18.49/0.5271 24.13/0.7977 32.25/0.9459 33.89/0.9594
AMP-Net [29] 23.03/0.7782 28.94/0.9213 36.06/0.9812 37.93/0.9873

OPINE-Net+ [30] 23.19/0.7689 29.19/0.9206 35.87/0.9783 37.69/0.9846
ours 23.44/0.7797 29.37/0.9242 36.89/0.9816 38.42/0.9862

dense residential

ISTA-Net+ [28] 19.43/0.5557 24.69/0.7896 31.82/0.9434 33.47/0.9599
AMP-Net [29] 23.40/0.7487 28.49/0.9132 35.63/0.9800 37.56/0.9867

OPINE-Net+ [30] 23.88/0.7667 29.11/0.9182 35.80/0.9793 37.62/0.9855
ours 24.15/0.7793 29.71/0.9276 36.69/0.9822 38.38/0.9874

freeway

ISTA-Net+ [28] 21.29/0.5380 27.05/0.8132 33.21/0.9401 34.49/0.9533
AMP-Net [29] 24.48/0.7296 29.54/0.9018 36.07/0.9757 37.67/0.9832

OPINE-Net+ [30] 25.46/0.7640 30.64/0.9148 36.37/0.9742 37.86/0.9814
ours 25.89/0.7827 30.91/0.9177 36.99/0.9767 38.31/0.9824

intersection

ISTA-Net+ [28] 20.50/0.5483 26.40/0.7763 33.12/0.9211 34.49/0.9381
AMP-Net [29] 24.82/0.7433 29.84/0.8904 36.67/0.9706 38.42/0.9801

OPINE-Net+ [30] 25.06/0.7496 30.43/0.8906 36.61/0.9671 38.29/0.9766
ours 25.20/0.7539 30.58/0.8919 37.42/0.9703 38.94/0.9788

mobile home park

ISTA-Net+ [28] 17.37/0.4904 22.33/0.7338 29.75/0.9269 31.68/0.9480
AMP-Net [29] 21.10/0.6985 25.94/0.8808 32.40/0.9683 34.11/0.9772

OPINE-Net+ [30] 21.54/0.7213 26.53/0.8896 32.86/0.9674 34.40/0.9750
ours 21.94/0.7439 26.81/0.8954 33.66/0.9712 34.99/0.9777

overpass

ISTA-Net+ [28] 22.87/0.5520 27.11/0.7481 34.19/0.9326 36.14/0.9550
AMP-Net [29] 25.34/0.7140 29.69/0.8590 36.54/0.9695 38.36/0.9789

OPINE-Net+ [30] 25.57/0.7182 30.69/0.8860 37.82/0.9739 39.09/0.9796
ours 26.07/0.7182 31.53/0.9069 38.54/0.9772 39.92/0.9826

tennis court

ISTA-Net+ [28] 20.80/0.4438 23.71/0.6024 28.63/0.8407 30.29/0.8806
AMP-Net [29] 23.68/0.5943 25.98/0.7494 29.22/0.8891 30.32/0.9124

OPINE-Net+ [30] 23.71/0.5956 26.54/0.7763 30.83/0.9075 31.93/0.9243
ours 23.84/0.6075 27.19/0.8079 31.61/0.9176 32.43/0.9293

The table showcases the average PSNR and SSIM values of reconstructed images for
the four CS reconstruction methods across eight different remote sensing images. The
results presented in Table 3 indicate that the PSNR of MMU-Net’s reconstructed images
surpasses the second-best result by an average of 0.48 dB. Moreover, MMU-Net exhibits sig-
nificantly better performance compared to the other three state-of-the-art CS reconstruction
methods, underscoring the effectiveness of the MMU-Net’s network structure.
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Figure 6. Eight different remote sensing images from the UC Merced Land Use Dataset are compared
using the four methods at a sampling rate of 0.1. A zoomed-in view of the details is provided in the
lower left corner of each image.

In Figure 6, we visually compare the reconstructed images and their corresponding
originals at a sampling rate of 0.1 for various land-use classes. The lower-left corner of
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each image provides a magnified view of the selected area in the red box. As depicted in
Figure 6, MMU-Net generates reconstructed images with clear contours and rich texture
information. Importantly, it maintains the fidelity of small foreground targets even at
lower sampling rates, ensuring that the target positions and shapes remain undistorted.
In summary, the proposed MMU-Net excels in terms of both the average PSNR, SSIM,
and visual quality, making it well-suited for demanding tasks such as target recognition in
remote sensing images.

5.5. Study of Computational Time

In the context of CS reconstruction, the model’s reconstruction time and the number
of parameters are crucial performance metrics. Typically, more complex network structures
entail higher time complexity and a higher number of network parameters. In this section,
two experiments are designed to validate the network performance of MMU-Net. The
first compares the average GPU running time and the number of network parameters of
MMU-Net with five other CS reconstruction algorithms. Comparison data are obtained
by testing the same dataset in the same environment using the source code provided by
the authors.The second explores the average GPU running time of MMU-Net on images of
different sizes and the trend of the running time as the image size increases.

Table 4 provides the average GPU running times required by six CS reconstruction
methods to reconstruct a 512 × 512 image at a sampling rate of 0.25. From the table, it is evi-
dent that the DNUN models, AdapReconNet and CSNet+, with relatively straightforward
network architectures, exhibit shorter average running times in comparison to the DUN
methods. In contrast, MMU-Net, the method proposed in this paper, has more expensive
computation and preservation costs due to its multi-scale network structure and higher
network complexity compared to other DUN methods. However, it still falls within the
same order of magnitude as the other methods. Importantly, MMU-Net’s reconstruction
performance surpasses that of the other methods.

Table 4. Average GPU runtime of six CS reconstruction algorithms for reconstructing 512 × 512
images at a sampling rate of 0.25.

Methods AdapReconNet CSNet+ ISTA-Net+ AMP-Net OPINE-Net+ Ours

Time 0.0027 s 0.0007 s 0.0143 s 0.1270 s 0.0101 s 0.1950 s
#Para 1.15 M 1.17 M 0.34 M 0.58 M 1.10 M 2.23 M

Figure 7 and Table 5 give the average GPU running time of MMU-Net, reconstructing
images of sizes 64 × 64, 128 × 128, 256 × 256, 512 × 512 and 1024 × 1024, respectively. From
the right panel of Figure 7, it can be seen that there is a near linear correlation between the
average GPU running time of MMU-Net and the image size. When the input image size is
large, the average GPU runtime of MMU-Net does not surge.

Table 5. Average GPU runtime required to reconstruct images of 5 different sizes on MMU-Net.

Size 64 × 64 128 × 128 256 × 256 512 × 512 1024 ×1024
Time 0.0278 s 0.0350 s 0.0761 s 0.1950 s 0.7250 s
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Figure 7. Visualization results of the average GPU runtime required to reconstruct the image on
MMU-Net for five different sizes. (a) shows a building image in Urban100 of size 1024 × 1024, which
is downsampled to obtain a series of images of 512 × 512, 256 × 256, 128 × 128 and 64 × 64. (b) shows
a scatter plot of the average GPU runtime obtained by reconstructing the five image sizes on MMU-Net.

5.6. Ablation Studies and Discussions

In this section, we conduct ablation experiments to validate the effectiveness of the
multi-channel strategy, Adap-SKConv, and the multi-scale strategy (MB).

5.6.1. Effectiveness of AMGDM (RQ2)

To assess the effectiveness of the multi-channel strategy and Adap-SKConv within the
AMGDM module, we utilize four network modules: GDM-(a), GDM-(b), GDM-(c), and
GDM-(d), which replace the gradient descent modules at the locations shown in Figure 1.
These modules allow us to compare network performance in different scenarios.

GDM-(a) represents a single-channel module without an attention mechanism, sim-
ilar to the GDM used in most ISTA-based DUNs. GDM-(b) is a multi-channel module
without an attention mechanism. GDM-(c) incorporates a multi-channel module with the
CBAM (Convolutional Block Attention Module) attention mechanism, which replaces the
Adap-SKConv proposed in this paper. GDM-(d) is a multi-channel module with Adap-
SKConv, i.e., the AMGDM proposed in this paper. The network structure of each module is
illustrated in Figure 8.

GDM-(b), GDM-(c), and GDM-(d) all adopt multi-channel structures, thereby eliminat-
ing the need for subsequent PMMs to perform single-channel and multi-channel transfor-
mations, which reduces information loss. GDM-(c) and GDM-(d) utilize different attention
mechanisms. Table 6 presents the average PSNR of these three methods on Set11 and the
UC Merced Land Use Dataset at three different sampling rates.

From Table 6, we observe that the PSNR of the reconstructed images by GDM-(b)
is, on average, 0.19 dB higher than that of GDM-(a) for the three sampling rates. This
demonstrates that the multi-channel strategy proposed in this paper enhances the fea-
ture map characterization capability by mitigating the information loss resulting from
dimensionality reduction, ultimately improving network performance. Additionally, when
comparing GDM-(b) and GDM-(d), it is evident that the Adap-SKConv proposed in this
paper contributes to an average gain of 0.17 dB in network performance. This confirms
that Adap-SKConv effectively enhances the information exchange between gradient terms,
thereby improving the quality of reconstruction through a well-designed attention mecha-
nism. Lastly, when comparing GDM-(c) and GDM-(d) between Adap-SKConv proposed in
this paper and the state-of-the-art CBAM attention mechanism, we find that the two-input
structure of Adap-SKConv outperforms the single-input structure of CBAM in facilitating
information exchange between the gradient terms. This enhances feature map characteriza-
tion and, consequently, improves network reconstruction results.
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Figure 8. Network framework of GDM-(a), GDM-(b), GDM-(c) and GDM-(d).

Table 6. Average PSNR and SSIM of the reconstructed images of the four CS reconstruction methods
under the remote sensing image dataset with four sampling rates of 0.04, 0.1, 0.25, and 0.3. Bold indi-
cates the best reconstruction performance, while underline represents the second-best reconstruction
performance.

Dataset Methods Multi-Channel Attention 0.1 0.25 0.3

Set11
GDM-(a) × × 29.79 34.81 36.04
GDM-(b) X × 29.90 35.01 36.17
GDM-(c) X X 29.95 35.06 36.26

GDM-(d)(ours) X X 30.05 35.16 36.41

UC Merced
Land Use
Dataset

GDM-(a) × × 29.48 35.62 37.16
GDM-(b) X × 29.60 35.90 37.30
GDM-(c) X X 29.67 35.97 37.40

GDM-(d)(ours) X X 29.76 36.11 37.56

5.6.2. Effectiveness of MB (RQ3)

In this section, we conduct ablation experiments on the Multi-scale Blocks to assess
the effectiveness of the multi-scale strategy, and the experimental results are included in
Table 7.

We design and examine single-scale module Block-(1) and multi-scale modules Block-(2),
Block-(3), and Block-(4), which comprise two, three, and four branches, respectively. Each
of these modules is integrated into the network structure illustrated in Figure 1, replacing
sections with F(•) and F̃(•). Among these modules, Block-(4) represents the MB designed
in this paper. The structures of these four Blocks are visualized in Figure 9.
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Table 7. Average PSNR of reconstructed images for four network branching structures at three
sampling rates (0.1, 0.25, and 0.3) on Set11 and the UC Merced Land Use Dataset, demonstrating the
effectiveness of the multi-scale strategy. Bold indicates the best reconstruction performance, while
underline represents the second-best reconstruction performance.

Dataset Methods 0.1 0.25 0.3 0.25 0.3

Set11
Block-(1) 29.79 34.81 36.04 34.81 36.04
Block-(2) 29.86 34.89 36.14 35.01 36.17
Block-(3) 29.92 34.98 36.25 35.06 36.26
Block-(4) 29.98 35.10 36.35 35.16 36.41

UC Merced Land Use Dataset
Block-(1) 29.48 35.62 37.16 35.62 37.16
Block-(2) 29.56 35.72 37.15 35.90 37.30
Block-(3) 29.62 35.84 37.27 35.97 37.40
Block-(4) 29.70 35.86 37.36 36.11 37.56

As shown in Table 7, the average Peak Signal-to-Noise Ratio of the reconstructed im-
ages increases with the number of branches. This observation confirms that the multi-scale
strategy enhances network performance by increasing the network’s representation capabil-
ity. However, as the number of branches increases, network complexity also rises, leading
to longer training and reconstruction times. To strike a balance between performance
and network complexity, this paper selects Block-(4) with four branches as the network
structure for the proposed MB.
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Figure 9. Network structure of Block-(1), Block-(2), Block-(3) and Block-(4).

6. Conclusions

In this paper, we introduced a novel approach for Compressed Sensing image recon-
struction. Our proposed MMU-Net leverages innovative strategies to enhance feature map
characterization and gradient term representation, ultimately improving reconstruction
performance. Specifically, MMU-Net incorporates a multi-channel strategy, bolstering the
network’s ability to characterize feature maps effectively. In addition, the introduction of
Adap-SKConv within the attention mechanism in Gradient Descent Modules facilitates
the exchange of information between gradient terms, leading to improved representation
capabilities. Furthermore, we introduced the Multi-scale Block, which enhances network
characterization by introducing a multi-scale structure capable of extracting features at
different scales. Our extensive experimental results demonstrate the superior performance
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of MMU-Net compared to state-of-the-art reconstruction algorithms. We have achieved a
harmonious balance between algorithmic complexity and reconstruction quality, especially
in the context of CS for natural and remote sensing images. The MMU-Net framework, as
proposed in this paper, not only offers an effective solution for CS reconstruction in these
domains but also opens up possibilities for enhancing a broad spectrum of applications,
including image processing and computer vision. However, the MMU-Net proposed in this
paper also has some limitations. First, due to the use of multi-channel and multi-scale strat-
egy to build the network, resulting in more parameters in the model, the model requires
further compression. Second, the method proposed in this paper adopts the block sampling
strategy to improve sampling efficiency, and cannot realize the global pixel interaction,
which limits the overall performance, and the feasibility of whole-map sampling needs to
be further studied. For future research, we can direct our efforts toward further enhancing
the performance of MMU-Net and exploring its applicability in diverse fields, promising
continued advancements in image reconstruction techniques and their broader utility.
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DNUN Deep Non-unfolding Network
DUN Deep Unfolding Network
CNN convolutional neural network
AMP Approximate Message Passing
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