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Abstract: This paper focuses on a neural adaptive H∞ sliding-mode control scheme for a class
of uncertain nonlinear systems subject to external disturbances by the aid of adaptive dynamic
programming (ADP). First, by combining the neural network (NN) approximation method with
a nonlinear disturbance observer, an enhanced observer framework is developed for estimating
the system uncertainties and observing the external disturbances simultaneously. Then, based on
the reliable estimations provided by the enhanced observer, an adaptive sliding-mode controller
is meticulously designed, which can effectively counteract the effects of the system uncertainties
and the separated matched disturbances, even in the absence of prior knowledge regarding their
upper bounds. While the remaining unmatched disturbances are attenuated by means of H∞ control
performance on the sliding surface. Moreover, a single critic network-based ADP algorithm is
employed to learn the cost function related to the Hamilton–Jacobi–Isaacs equation, and thus, the
H∞ optimal control is obtained. An updated law for the critic NN is proposed not only to make the
Nash equilibrium achieved, but also to stabilize the sliding-mode dynamics without the need for
an initial stabilizing control. In addition, we analyze the uniform ultimate boundedness stability of
the resultant closed-loop system via Lyapunov’s method. Finally, the effectiveness of the proposed
scheme is verified through simulations of a single-link robot arm and a power system.

Keywords: adaptive dynamic programming; disturbance observer; neural networks; optimal control;
sliding-mode control

1. Introduction

Within the last few decades, multifarious robust control design theories and methods
have been proposed for uncertain nonlinear systems [1]. As one of the most efficient
and widely used control methods, sliding-mode control (SMC) has garnered significant
attention by reason of its simplicity, order reduction and inherent robustness against the
matched uncertainties [2]. The classical SMC approach is to exert a discontinuous control
to drive the system states onto a prescribed sliding manifold or surface [3]. As long as the
sliding surface is reached, the system will become immune from the matched uncertainties
and input disturbances. To remove the reaching phase, an integral SMC was developed by
using the integral sliding manifold, including an integral term, which can enable the system
states to reach and remain on the sliding manifold from the beginning [4–6]. Although
towards a wide variety of actual systems, the relevant uncertainties and disturbances can
be assumed to be matched in the design of control systems, there are also many physical
systems, such as permanent magnet synchronous motors [7], underactuated aerial vehicles
and robotic systems [8] directly affected by unmatched disturbances. Lately, several new
approaches involving the integral SMC have been proposed to stabilize various systems
with unmatched disturbances [9–13]. Among these methods, it is worth noticing that
in [12,13], the impact of the separated unmatched disturbances would not be amplified
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after choosing a suitable projection matrix in a sliding manifold and were attenuated by
the combination of the integral SMC with H∞ control theories. This provides a feasible and
effective way to handle the unmatched disturbances and helps explore the relationships
between integral SMC and H∞ control in nonlinear system control design.

In many instances, we expect the control policy not just to make the closed-loop
system stable, but to possess certain optimality by minimizing the user-defined cost. For
nonlinear systems, the settlement of associated optimal control problems requires solving
the Hamilton–Jacobi–Bellman (HJB) equation. While considering H∞ optimal control,
based on the dissipativity theory, it can be formulated as an L2-gain control problem, which
involves solving the Hamilton–Jacobi–Isaacs (HJI) equation [14]. However, the analytical
solutions of both HJB and HJI equations are very hard or even impossible to obtain directly
because of their inherent nonlinearities [15]. In recent years, a class of neural network
(NN) and reinforcement learning (RL)-based intelligent optimization and control methods,
referred to as adaptive dynamic programming (ADP), is becoming more and more striking
and shows great application potential in solving various optimization problems, and
effectively conquers the “curse of dimensionality” [15,16]. By now, many researchers
have employed ADP to tackle a variety of optimal control problems for both discrete-time
(DT) [17–22] and continuous-time (CT) systems [23–28]. Moreover, how to combine ADP
with other robust methods to achieve better performance and stronger robustness for
uncertain nonlinear systems is becoming a new research focus [29,30].

Recently, Modares et al. [31] proposed an online integral RL algorithm that incorpo-
rates a non-quadratic discounted cost function to address the constrained-input optimal
tracking problem. Luo et al. [32] described an NN-based off-policy learning algorithm
within the actor-critic framework to deal with the associated HJI equation, and this algo-
rithm was later extended to find the near-optimal H∞ tracking control solution in [33].
Nevertheless, the influences of potential system or modeling uncertainties were not taken
into account in the design. Wang et al. [34] introduced a robust neuro-optimal control
approach for input-affine nonlinear systems with both matched and state-depended un-
certainties. They achieved this by redesigning the cost function and selecting a suitable
feedback gain, whereas the upper bound function of uncertainties is needed for redesigning
the cost function to suppress these uncertainties. Mitra et al. [35] presented an optimal
SMC scheme for the single-input cascade nonlinear systems with matched bounded distur-
bances. Fan et al. [36] investigated an adaptive actor–critic-based integral SMC strategy
for CT nonlinear systems with unknown terms and input disturbances, where the initial
stabilizing control requirement in the learning was quite stringent and limiting in prac-
tical applications. Qu et al. [37] developed an adaptive H∞ optimal SMC method in the
presence of actuator faults and unmatched disturbances using the ADP algorithm, and
further explored the optimal guaranteed cost SMC for constrained-input uncertain systems
by formulating an auxiliary system and redefining the utility function [38]. Based on [37],
combined with event-triggered mechanisms, Yang et al. [39] provided an event-triggered
integral SMC design for nonlinear control-affine systems by leveraging the ADP technique.
Note that these methods mentioned above rely on the availability of upper bounds for
matched or unmatched disturbances, which may cause over-design and thus leads to
an over-conservative control scheme. Additionally, in real-world scenarios, determining
precise upper bounds of external disturbances is often a challenging task.

Inspired by the works mentioned earlier, we propose an adaptive neural H∞ SMC
scheme for uncertain nonlinear systems subject to external disturbances using the ADP
algorithm. Based on the enhanced observer system composed of the NN identifier and
nonlinear disturbance observer (DO), an integral SMC is developed to counteract the
impacts of the system uncertainties and the separated matched disturbances, as well as
unknown approximation errors, without requiring prior knowledge of their upper bounds.
While on the sliding manifold, the remaining unmatched disturbances are attenuated by
H∞ optimal control solved by the single-network ADP algorithm. Moreover, the uniform
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ultimate boundedness stability of the resultant closed-loop system are guaranteed via the
Lyapunov approach.

The principal contributions of this study can be enumerated as follows. First, unlike
other existing schemes [34–39], based on the enhanced observer system, the proposed
approach makes the designed sliding-mode controller independent from the relevant upper
bounds of uncertainties and disturbances, which renders the implementation much easier
and more practical and removes the assumption that the upper bounds need to be known
in advance. Second, compared with the algorithms presented in [36,37], our approach can
deal with both unknown nonlinear terms and unmatched external disturbances, where the
single-network ADP is utilized to approximate an H∞ optimal control. Unlike typical actor–
critic–disturbance network architectures, the single critic network structure may bring a
simpler implementation, lower calculation amount, and avoid the numerical approximate
errors arising from actor and disturbance networks. Third, we introduce an updated law
for the critic NN, which not only achieves the Nash equilibrium, but also ensures the
stability of the sliding-mode dynamics without the need for an initial stabilizing control in
the learning.

The remainder of this paper is arranged as follows. Section 2 outlines the problem
formulation and provides some necessary preliminaries. Section 3 describes the design of
an integral SMC based on the enhanced observer system. Section 4 presents the application
of the single-network ADP to obtain H∞ optimal control for the sliding-mode dynamics,
along with stability analysis. Simulations of the robotic arm and a power system are given
in Section 5, followed by a summary of this study in Section 6.

2. Problem Formulation

Consider the following uncertain perturbed nonlinear system as

ẋ = f (x) + ∆ f (x) +
(

g(x) + ∆g(x)
)
u + d, (1)

where the state vector x ∈ Rn is measurable, u ∈ Rm is the control input, f (x) ∈ Rn and
g(x) ∈ Rn×m are the known system drift and input dynamics, respectively; ∆ f (x) and
∆g(x) denote uncertain nonlinear terms that refer to either the inherent characteristics
of the system or modeling uncertainties, while d ∈ Rn represents the unknown external
disturbances. Moreover, it is assumed that the system uncertainties ∆ f (x) and ∆g(x) satisfy
the matched condition, i.e., ∆ f (x) + ∆g(x)u = g(x)w(x, u), then the system (1) is rewritten
in the form of

ẋ = f (x) + g(x)u + g(x)w(x, u) + d (2)

with w(x, u) being the bounded lumped uncertain term. Let Ω ⊆ Rn be a compact set,
and suppose that f (x) + g(x)u is Lipschitz continuous over Ω with f (0) = 0. Besides,
d ∈ L2[0, ∞] and its derivative ḋ is bounded such that ||ḋ|| ≤ dM with dM > 0. To avoid any
confusion, ‖ · ‖ denotes the 2-norm of a vector or the Frobenius norm of a matrix hereafter,
unless otherwise specified.

Assumption 1. The input matrix g(x) has a full column rank and is norm bounded with gM > 0,
that is, ||g(x)|| ≤ gM for any x. Moreover, the resulting left pseudoinverse g+(x) ∈ Rm×n is
given by g+(x) = (gT(x)g(x))−1gT(x), which is bounded by ||g+(x)|| ≤ bM, where bM, gM are
known positive constants.

Based on Assumption 1, d is then decomposed into the matched and unmatched
components through the projection of d onto the input matrix g(x) as

d = g(x)g+(x)d + (I − g(x)g+(x))d, (3)

where I denotes an identity matrix of appropriate dimensions, and g+(x) is the left pseu-
doinverse of g(x). It should be noted that Assumption 1 is somewhat restrictive, which may
lessen the applicability scope of the proposed approach to some extent. However, many
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real-world physical systems, such as the satellite dynamics, the hypersonic flight vehicle
and overhead crane systems, have such a property to make this assumption valid [15,20].

To deal with the uncertain nonlinear system (1) with external disturbances, an en-
hanced observer system is first constructed for estimating the uncertain terms and observing
the unknown disturbances simultaneously. Then, based on the reliable estimations, an
integral SMC is developed to counteract the impacts of the system uncertainties and the
separated matched disturbances, as well as unknown approximation errors, without re-
quiring prior knowledge of their upper bounds. Meanwhile, the remaining unmatched
disturbances are attenuated by H∞ optimal control on the sliding surface. Moreover,
the single-network ADP algorithm is employed to learn the cost function related to the
Hamilton–Jacobi–Isaacs equation, and then, the H∞ optimal control is obtained. What
is more, a weight updating law is formulated to ensure both the achievement of Nash
equilibrium and the stabilization of sliding-mode dynamics during the learning process.

3. Integral SMC Design Based on the Enhanced Observer System

Recalling the NN universal approximation property, the uncertain term w(x, u) can be
represented by a three-layered NN as

w(x, u) = WT
o σ(VT

o x̄) + εo(x), (4)

where Wo ∈ Rlo×m and Vo ∈ R(n+m)×lo denote unknown ideal weight matrices between the
output and hidden, and hidden and input layers, respectively; x̄ = [xT, uT]T ∈ Rn+m is the
NN input, σ(·) ∈ Rlo represents the activation function with lo hidden layer neurons, and
εo(x) ∈ Rm stands for the NN reconstruction error. To simplify the learning process, only
the weights of Wo are adapted online, while Vo is an initialized set with random values and
then remains unchanged during the weight updating process [16].

The NN identifier is designed by

˙̂x = Ax̂ + f (x)− Ax + g(x)u + g(x)ŴT
o σ(z) + d, (5)

where A is a Hurwitz matrix, x̂ is the identifier state, Ŵo is the estimate of Wo, and the
activation function σ(z) = σ(VT

o x̄) with z = VT
o x̄. Since the unknown disturbance term

d is needed in (5), inspired by [11], a nonlinear DO is introduced for obtaining d̂, namely,
the estimated value of d.

Then, combining the NN identifier with a nonlinear DO, an enhanced observer system
is constructed as

˙̂x = Ax̂ + f (x)− Ax + g(x)u + g(x)ŴT
o σ(z) + d̂

ḋ0 =− l(x)
(

f (x) + g(x)u + g(x)ŴT
o σ(z) + d0 + p(x)

)
,

(6)

with d̂ = d0 + p(x), where d0 is an auxiliary variable, and p(x) is a designed state-
dependent function and brings out the gain function l(x) such that l(x) = (∂p(x)/∂x)T.
Following (6), we have

˙̂d = − l(x)d̂ + l(x)d + l(x)g(x)W̃T
o σ(z) + l(x)g(x)εo(x), (7)

where W̃o = Wo − Ŵo represents the NN weight estimation error. Let x̃ = x − x̂ and
d̃ = d − d̂ be the state and disturbance estimation errors, respectively. Subtracting (5)
from (2) and combining with (7), we obtain the coupled error dynamics of (6) as follows:

˙̃x = Ax̃ + g(x)W̃T
o σ(z) + d̃ + g(x)εo(x),

˙̃d = −l(x)d̃− l(x)g(x)W̃T
o σ(z) + ḋ− l(x)g(x)εo(x).

(8)

Before proceeding, we introduce a common assumption for stability analysis [15,16].
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Assumption 2. For the identifier NN, there are known positive constants σM, εM, WM and VM in
the sense that ||σ(z)|| ≤ σM, ||εo(x)|| ≤ εM, ||Wo|| ≤WM and ||Vo|| ≤ VM, respectively.

Lemma 1. Considering the system (2) and the coupled error dynamics (8), let the identifier NN
weight Ŵo be updated by

˙̂Wo = −η1σ(z)x̃TA−1g(x)− η2(||x̃||+ 1)Ŵo, (9)

where η1, η2 are the positive updating ratios. Moreover, we select parameter matrices A, P and gain
function l(x) to satisfy

PTP− l(x)− lT(x) + l(x)g(x)gT(x)lT(x) ≤ −ρI (10)

with ρ > 0. Then all the estimation errors x̃, d̃, and W̃0 are uniformly ultimately bounded (UUB).

Proof. Consider the Lyapunov function candidate given by

L1 =
1
2

x̃TPx̃ +
1
2

d̃Td̃ +
1
2

tr{W̃T
o W̃o}, (11)

where L11 = x̃TPx̃/2 + d̃Td̃/2, L12 = tr{W̃T
o W̃o}/2, and P = PT is positive definite, which

together with some matrix Λ > 0 satisfies ATP + PA = −Λ for the Hurwitz matrix A.
By taking the time derivative of L11 and substituting the coupled error dynamics (8), we
can obtain

L̇11 =
1
2

x̃T(ATP + PA)x̃ + x̃TPd̃ + x̃TPg(x)εo(x) + x̃TPg(x)W̃T
o σ(z)− d̃Tl(x)

× g(x)W̃T
o σ(z)− 1

2
d̃T
(
l(x) + lT(x)

)
d̃− d̃Tl(x)g(x)εo(x) + d̃Tḋ.

(12)

Based on Assumption 2, together with Young’s inequality, it follows:

L̇11 ≤−
1
2

x̃TΛx̃ +
1
2

x̃T x̃ +
1
2

d̃T
(

PTP− l(x)− lT(x) + l(x)g(x)gT(x)lT(x)
)
d̃

+ d̃Tḋ + x̃TPg(x)W̃T
o σ(z) + x̃TPg(x)εo(x) + σ2

M‖W̃o‖2 + ε2
M.

(13)

Considering (10), (13) is rewritten as

L̇11 ≤−
1
2

τx̃T x̃− 1
2

ρd̃Td̃ + x̃TPg(x)W̃T
o σ(z) + x̃TPg(x)εo(x)

+ d̃Tḋ + σ2
M||W̃o||2 + ε2

M,
(14)

where τ = λmin(Λ)− 1 > 0 ensured by properly selecting positive definite matrix Λ and
its minimum eigenvalue λmin(Λ).

Combining with (9), L̇12 is derived as

L̇12 = tr
{

η1W̃T
o σ(z)x̃TA−1g(x) + η2W̃T

o ||x̃||Ŵo + η2W̃T
o Ŵo

}
. (15)

With the inequality tr
{

W̃T
o Ŵo

}
≤ ||Wo||2/2− ||W̃o||2/2, (15) becomes

L̇12 ≤ tr
{

η1W̃T
o σ(z)x̃TA−1g(x)

}
+ tr

{
η2W̃T

o ‖x̃‖Ŵo
}
+

η2

2
‖Wo‖2 − η2

2
‖W̃o‖2.

Note that the relationship tr{ATB} = BTA for all A ∈ Rn, B ∈ Rn and the inequality
tr{W̃T

o (Wo − W̃o)} ≤WM‖W̃o‖ − ‖W̃o‖2, we can have
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L̇12 ≤η1σMgM‖x̃‖‖A−1‖‖W̃o‖+ η2WM‖x̃‖‖W̃o‖ − η2‖x̃‖‖W̃o‖2 +
η2

2
‖Wo‖2

− η2

2
‖W̃o‖2.

(16)

By combining (14) and (16) and taking their norms, one can derive an upper bound for
L̇1(t) as

L̇1 ≤−
1
2

τ‖x̃‖2 +
(

gMεM‖P‖+
(

gMσM‖P‖+ η1gMσM‖A−1‖+ η2WM
)
‖W̃o‖ − η2

× ‖W̃o‖2
)
‖x̃‖ − 1

2
ρ‖d̃‖2 + dM‖d̃‖+

η2

2
‖Wo‖2 −

η2 − 2σ2
M

2
‖W̃o‖2 + ε2

M.
(17)

Select η2 ≥ 2σ2
M and complete the square with respect to ‖W̃o‖, then (17) becomes

L̇1 ≤−
1
2

τ‖x̃‖2 − 1
2

ρ‖d̃‖2 +
(

gMεM‖P‖ − η2
(
‖W̃o‖ −Θ1

)2
+ η2‖Θ1‖2

)
‖x̃‖

+ dM‖d̃(t)‖+ Θ2,
(18)

where

Θ1 =
gMσM‖P‖+ η1gMσM‖A−1‖+ η2WM

2η2
, Θ2 =

η2‖Wo‖2 + 2ε2
M

2
.

Define

exd =

[
x̃
d̃

]
, Eo =

1
2

[
τ I 0
0 ρI

]
and Bo =

[
gMεM‖P‖+ η2‖Θ1‖2, dM

]
, we can further derive

L̇1 ≤ −λmin(Eo)||exd||2 + ||Bo||||exd||+ Θ2. (19)

Therefore, we can conclude that L̇1 < 0 only if ‖exd(t)‖ satisfies

||exd|| >
||Bo||

2λmin(Eo)
+

√
||Bo||2

4λ2
min(Eo)

+
Θ2

λmin(Eo)
.

Furthermore, according to the Lyapunov extension theorem [16], when the inequality (10)
holds by selecting proper matrices, we can infer that all the estimation errors x̃, d̃, and W̃o
are UUB.

Remark 1. The gain function matrix l(x) is an important design parameter that can be chosen as
linear or nonlinear functions. When the form of system function g(x) is simple, it can be easy to find
the function l(x) that satisfies the inequality (10) by substituting appropriate functions into (10).
However, if the form of system function g(x) is complex, the trial and error method is employed
to select appropriate function l(x) that meets the inequality (10). Although there is no universal
design procedure for designing l(x), experience has shown that it is not difficult to find a suitable
l(x) for specific applications [36,37].

To effectively handle both system uncertainties and external disturbances, we propose
a compound H∞ optimal SMC scheme that combines the integral SMC with H∞ control
theories. This compound controller is formulated as

u = ud + uc, (20)

where ud represents the discontinuous control designed to steer the system trajectories
towards and maintain them on the sliding surface, thereby eliminating the effects of
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matched uncertainties and disturbances. uc denotes the continuous control derived to
guarantee the system stability and achieve near-optimal performance under the remaining
unmatched disturbances on sliding surfaces.

Accordingly, we define the integral sliding surface as follows:

s(x) = S0(x)− S0(x0)−
∫ t

0
G(x)

(
f (x) + g(x)uc

)
dv, (21)

where x0 denotes the initial state, S0(x) ∈ Rm and G(x) = ∂S0(x)/∂x ∈ Rm×n. Moreover, it
follows from Assumption 1 that a suitable matrix G(x) can be found such that the product
G(x)g(x) is invertible.

Taking the time derivative of s(x) as

ṡ(x) = G(x)
(

g(x)ud + g(x)w(x, u) + d
)
. (22)

By incorporating the valid estimators d̂ and Ŵo, ud is devised as

ud =− (G(x)g(x))−1
(

G(x)d̂ + G(x)g(x)ŴT
o σ(z) + µsgn(s) +

G(x)GT(x)s
||sTG(x)||

ζ

)
, (23)

where µ > 0, sgn(s) ∈ Rm is the sign function, and ζ ∈ R is generated by

ζ̇ = κ||sTG(x)|| (24)

with κ > 0. In particular, it is noted that ζ is designed to tackle the unknown bounds of the
approximation errors arisen from the estimated terms d̂ and Ŵo.

Considering the specific implementation of d̂ and Ŵo in (23), we define ζe = d̃ +
g(x)W̃oσ(z) + g(x)εo(x) to represent the approximation errors. Based on the previous
analysis and the boundedness of g(x), ζe is bounded as ||ζe|| ≤ ζM for an unknown
positive constant ζM. To estimate ζM, we design ζ as defined in (24), and the estimation
error is calculated as ζ̃ = ζM − ζ.

Theorem 1. Considering system (2) with the sliding surface (21), the discontinuous control ud
is devised by (23) with the adaptive law (24), then it can guarantee the convergence of the sliding
surface s to zero from the beginning.

Proof. Choose the positive definite Lyapunov function candidate as

Ls =
1
2

sTs +
1
2

κ−1ζ̃2.

Along with the system (2), L̇s(t) is derived as

L̇s = sT ṡ− κ−1ζ̃ ζ̇

= sTG(x)
(

g(x)ud + g(x)w(x, u) + d
)
− κ−1ζ̃ ζ̇.

(25)

Substituting (23) and (24) into (25), we can have

L̇s = sTG(x)
(
d̃ + g(x)W̃T

o σ(z) + g(x)εo(x)
)
− µsTsgn(s)− ‖sTG(x)‖ζ − ζ̃‖sTG(x)‖

= sTG(x)ζe − µsTsgn(s)− ‖sTG(x)‖ζ − ζ̃‖sTG(x)‖.

Using ‖ζe‖ ≤ ζM and the estimation error ζ̃ = ζM − ζ yields

L̇s ≤ ‖sTG(x)‖ζM − ‖sTG(x)‖ζ − ζ̃‖sTG(x)‖ − µsTsgn(s)

≤ −µsTsgn(s).
(26)
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Thus, it is shown from (26) that L̇s ≤ −µ‖s‖1 < 0 for any s 6= 0, where ‖s‖1 denotes the
vector 1-norm. This means the asymptotic stability and convergence of sliding mode motion
s(x) = 0 can be guaranteed. Moreover, according to (21), the sliding surface s(x0) = 0
when t = 0, which implies that the system states start on the sliding surface, thus avoiding
the need for a separate reaching phase.

From Theorem 1, it is clear that the stable sliding motion s(x) = 0 exists from the
initial time; that is, for all t ≥ 0, s(x) = 0 and ṡ(x) = 0. Moreover, the equivalent control
method is utilized to obtain the sliding-mode dynamics. Combining ṡ(x) = 0 with (3)
and (22), the equivalent control can be derived as

udeq = −(G(x)g(x))−1G(x)
(

I − g(x)g+(x)
)
d− g+(x)d− w(x, u). (27)

Then, substitute udeq into (2), the sliding-mode dynamics without matched uncertain term
and disturbance component is

ẋ = f (x) + g(x)uc + Γ(x)du, (28)

where Γ(x) = I − g(x)(G(x)g(x))−1G(x), du = (I − g(x)g+(x))d is the unmatched com-
ponent of the external disturbance in (3). In order to reduce the influence of multiplier
matrix Γ(x) and minimize the unmatched disturbance Γ(x)du, an optimal projection matrix
G∗(x) within Γ(x) is provided in the following Lemma.

Lemma 2. Considering nonlinear system (2) with Assumption 1, the optimal projection matrix
G∗(x) is selected as G∗(x) = g+(x), which not only minimizes the norm ‖Γ(x)du‖, but also
makes the relation Γ(x)du = du hold.

Proof. The proof can refer to Theorem 1 in [12].

As a result, with the relation Γ(x)du = du, we can express (28) as

ẋ = f (x) + g(x)uc + du, (29)

which means that the discontinuous control ud in (23) can fully counteract the impacts of
the matched uncertainties and disturbances.

Notice that in (20), uc aims not only to suppress the remaining unmatched distur-
bances on sliding surface, but also to achieve a near-optimal performance for sliding-mode
dynamics (29). This formulation can be seen as a nonlinear H∞ optimal control problem,
which is known to be challenging to solve directly. In the following, we will demonstrate
how to find an approximate H∞ optimal control solution by using the single-network
ADP algorithm.

4. H∞ Control Design for Sliding-Mode Dynamics

Considering (3) and (29), the sliding-mode dynamics is represented as

ẋ = f (x) + g(x)uc + k(x)d, (30)

with k(x) = I − g(x)g+(x). Since g(x) and g+(x) are bounded, it follows that the function
k(x) is also bounded by ‖k(x)‖ ≤ kM with kM > 0.

For attenuating the remaining unmatched disturbances k(x)d, the corresponding H∞
control problem of sliding-mode dynamics is established, which aims to seek a feedback
control uc to stabilize the system and achieve L2-gain no larger than γ, that is,∫ ∞

0

(
xTQx + uT

c Ruc
)
dv ≤ γ2

∫ ∞

0
dTd dv, (31)
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where Q and R are positive definite matrices with appropriate dimensions, and γ > 0 refers
to the level of the disturbance attenuation. Based on [32,33], by treating the disturbance d
as the other system input, we can reframe the H∞ optimal control problem for system (30)
as a two-player zero-sum game with the following infinite-horizon cost function:

V(x) =
∫ ∞

t

(
xTQx + uT

c Ruc − γ2dTd
)
dv. (32)

Assuming that V(x) ∈ C1, the Hamiltonian function with the associated admissible control
pair (uc, d) is defined as

H(x,∇V, uc, d) = xTQx + uT
c Ruc − γ2dTd + (∇V)T

(
f (x) + g(x)uc + k(x)d

)
(33)

with ∇V = ∂V(x)/∂x. From Bellman’s optimality principle, it follows that the optimal
cost function V∗(x) satisfies the HJI equation

0 = min
uc

max
d

H(x,∇V∗, uc, d) (34)

with ∇V∗ = ∂V∗(x)/∂x. Moreover, according to the zero-sum game theory [16], we have
the following Nash condition

min
uc

max
d

H(x,∇V∗, uc, d) = max
d

min
uc

H(x,∇V∗, uc, d), (35)

which ensures the existence of saddle point (u∗c , d∗) of the HJI Equation (34). Then, applying
the stationary condition, one can derive the optimal control u∗c and worst disturbance d∗ as

u∗c = −1
2

R−1gT(x)∇V∗, (36)

d∗ =
1

2γ2 kT(x)∇V∗. (37)

By substituting (36) and (37) into (33), the HJI equation associated with ∇V∗ becomes

0 =xTQx + (∇V∗)T f (x)− 1
4
(∇V∗)Tg(x)R−1gT(x)∇V∗

+
1

4γ2 (∇V∗)TkT(x)k(x)∇V∗.
(38)

Due to the highly nonlinear nature of the relevant HJI equation, obtaining its analytical
solution is extremely difficult, if not impossible. To overcome this challenge, we propose
an online optimal algorithm that learns the solution of the HJI equation and achieves H∞
optimal control. This is accomplished through the use of single-network ADP, where only
one critic network, implemented by NN, is adopted to approximate the cost function V∗

related to (38). Therefore, by using the critic NN with lc neurons, V∗ is represented over a
set Ω as follows:

V∗(x) = WT
c σc(x) + εc(x) (39)

with the ideal weight vector Wc ∈ Rlc being unknown, the vector of activation functions
σc(x) ∈ Rlc and the reconstruction error εc(x). Meanwhile, we have the gradient vector

∇V∗ = (∇σc)
TWc +∇εc (40)

with ∇σc = ∂σc(x)/∂x and ∇εc = ∂εc(x)/∂x.
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By combining (36), (37) and (40), it is easy to get

u∗c = −1
2

R−1gT(x)
(
(∇σc)

TWc +∇εc
)
, (41)

d∗ =
1

2γ2 kT(x)
(
(∇σc)

TWc +∇εc
)
. (42)

Substituting (41) and (42) into (33), the HJI equation becomes

0 =H(x,∇V∗, u∗c , d∗)

=xTQx + WT
c ∇σc f (x)− 1

4
WT

c ∇σcD(∇σc)
TWc − εHJI,

(43)

where D = g(x)R−1gT(x)− k(x)kT(x)/γ2, and the approximate error εHJI is defined as
εHJI = −(∇εc)T f (x) + WT

c ∇σcD∇εc/2 + (∇εc)TD∇εc/4 due to the NN reconstruction
error. Furthermore, taking into account ‖k(x)‖ ≤ kM and ||g(x)|| ≤ gM, we can infer that
there exists a positive constant DM in the sense that ‖ D‖ ≤ DM.

Because Wc in (39) is unknown, the critic NN with the estimated weights approximates
the cost function in the form of

V̂(x) = ŴT
c σc(x), (44)

where Ŵc denotes the estimated values of Wc. In addition, we can obtain

∇V̂ = (∇σc)
TŴc. (45)

By using (36), (37) and (45), the approximate forms of (41) and (42) are derived as

ûc = −
1
2

R−1gT(x)(∇σc)
TŴc, (46)

d̂w =
1

2γ2 kT(x)(∇σc)
TŴc. (47)

Then, incorporating (46) and (47) into (43), we have the approximate Hamiltonian as
follows:

H(x, Ŵc, ûc, d̂w) = xTQx + ŴT
c ∇σc f (x)− 1

4
ŴT

c ∇σcD(∇σc)
TŴc. (48)

Subtracting (43) from (48), the corresponding Hamiltonian error is defined as

ec = H(x, Ŵc, ûc, d̂w)− H(x,∇V∗, u∗c , d∗) = H(x, Ŵc, ûc, d̂w).

To effectively approximate the cost function, one needs to adjust the critic NN weight
Ŵc in a manner that minimizes the Hamiltonian error ec. To this end, it is common practice
to train the critic NN by minimizing the squared residual error Ec, where Ec = eTc ec/2.
The traditional weight updating laws of critic NN based on gradient descent method can
only minimize the squared error, but cannot provide any guarantee for the stability of the
resulting system during the learning phase.

However, in practice, the stability is one fundamental requirement of system, and a
prerequisite for achieving other higher performance. Thus, not just for minimizing the
residual error, but also to guarantee the system stability and eliminate the need for an initial
stabilizing control, a weight updating law is developed for the critic NN as follows:

˙̂Wc =− α
φ

(φTφ + 1)2 ec +
α

4
∇σcD(∇σc)

TŴc
φT

1
φs

Ŵc − α(F2 − F1φT
1 )Ŵc

+
β

2
Σ(x, ûc, d̂w)∇σcD∇Ja,

(49)
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where α and β are the positive updating ratios, φ = ∇σc( f (x) − D(∇σc)TŴc/2), φ1 =
φ/(φTφ + 1), φs = φTφ + 1, F1 and F2 represent design parameter matrices with suitable
dimensions, Ja(x) is a Lyapunov function candidate provided in Assumption 4, and the
index operator Σ(x, ûc, d̂w) is given by

Σ(x, ûc, d̂w) =

{
0, if J̇a(x) = (∇Ja)T

(
f (x) + g(x)ûc + k(x)d̂w

)
< 0

1, otherwise
(50)

with ∇Ja = ∂Ja(x)/∂x.

Remark 2. Note that in (49), the first term is designed by the normalized gradient descent method
for minimizing the residual error. The second term has a well-designed form for ensuring the
system’s stability, which is derived from the Lyapunov stability analysis. The last term is an
additional adjustment term that works or not depends on the index operator Σ(x, ûc, d̂w), which is
selected based on the derivative of Ja(x) along the sliding-mode dynamics (30), namely, J̇a(x) =
(∇Ja)T

(
f (x) + g(x)ûc + k(x)d̂w). Once the system dynamics may become unstable, this results

in J̇a(x) ≥ 0, then Σ(x, ûc, d̂w) = 1 and the last term in (49) is activated. Moreover, based on
the negative gradient direction of J̇a(x), i.e., −∂

(
(∇Ja)T( f (x)− D∇σT

c Ŵc/2)
)
/∂Ŵc, the last

term is designed to reinforce the training process of the critic NN until the system dynamics become
stable. This also eliminates the need for an initial stabilizing control, compared with [35–37,39],
where the stabilizing control is required for initialization; however, in practical applications, finding
an initial stabilizing control is quite challenging.

Remark 3. Based on [14–16], it is necessary to satisfy the persistence of excitation (PE) requirement
for updating the weights of critic NN, which enhances its ability to explore the state space and
is indispensable for the weights to converge to their desired ones. To fulfill the PE requirement,
a probing noise is injected into the control input [15], which may cause the instability problem
during the online learning. As a result, it is important to design the last term in (49) for stabilizing
the resulting system, especially when the probing signal is injected.

The schematic structure of the proposed H∞ SMC scheme is illustrated in Figure 1.
As shown in Figure 1, this structure consists of two main modules: the H∞ optimal
learning module and the enhanced observer module. It should be noted that, based
on the deduced sliding-mode dynamics, the learning module can operate independently.
However, the original system and the observer module rely on the compound control
input u, which includes the approximate H∞ optimal control ûc obtained from the learning
module. Consequently, it is necessary to first run the learning module to obtain the
approximate optimal control ûc during the implementation process.

Considering (43), together with W̃c = Wc − Ŵc, (48) is represented as

ec = −W̃T
c ∇σc

(
f (x)− 1

2
D(∇σc)

TŴc

)
+

1
4

W̃T
c ∇σcD(∇σc)

TW̃c + εHJI. (51)

By means of the relation ˙̃Wc = − ˙̂Wc and incorporating (51) into (49), we obtain

˙̃Wc =− α
φ1

φs

(
W̃T

c φ− 1
4

W̃T
c ∇σcD(∇σc)

TW̃c − εHJI

)
− α

4
∇σcD(∇σc)

TŴc
φT

1
φs

Ŵc

+ α(F2 − F1φT
1 )Ŵc −

β

2
Π(x, ûc, d̂w)∇σcD∇Ja.

(52)

Next, the main stability theorem is presented, but before that, one basic common
assumption for the critic NN is introduced [16], and the other assumption for the sliding-
mode dynamics is also needed, which has been used in [34,38].
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Figure 1. The schematic of the adaptive H∞ SMC scheme.

Assumption 3. For the critic NN, there exist known positive constants σcM, σdM, εcM, εdM
and WcM such that ‖σc(x)‖ ≤ σcM, ‖∇σc‖ ≤ σdM, ‖εc(x)‖ ≤ εcM, ‖∇εc‖ ≤ εdM and
‖Wc‖ ≤WcM, respectively. Moreover, the approximation error εHJI is bounded above by εH > 0,
namely, ‖εHJI‖ ≤ εH.

Assumption 4. Considering the sliding-mode dynamics (30) with the optimal control pair (u∗c , d∗)
in (36) and (37), let Ja(x) be a smooth, radially unbounded and positive definite Lyapunov candidate
that satisfies J̇a(x) = (∇Ja)T( f (x) + g(x)u∗c + k(x)d∗) < 0. Moreover, it is assumed that a
positive definite matrix Ψ(x) makes (∇J∗)TΨ(x)∇Ja = xTQx + u∗Tc Ru∗c − γ2d∗Td∗ hold. Then,
one can derive

(∇Ja)
T( f (x) + g(x)u∗c + k(x)d∗) = −(∇Ja)

TΨ(x)∇Ja. (53)

Remark 4. Note that the plausibility of Assumption 4 depends on the boundedness of optimal
sliding-mode dynamics, which is usually assumed to be bounded by a function of system state x.
For more details, refer to [34,38]. Furthermore, it is impossible to solve (53) directly for getting
the form of Ja(x). Based on [34], one can obtain Ja(x) by selecting an appropriate form, such as a
quadratic polynomial.

Theorem 2. Considering the sliding-mode dynamics (30) and its associated cost function (32), the
control input and disturbance policy are designed by (46) and (47), respectively, along with the
critic weight updating law as given by (49). Then, both the sliding-mode state x and the weight



Entropy 2023, 25, 1570 13 of 23

estimation error W̃c are ensured to be UUB. Furthermore, the obtained control input ûc can be
proven to converge to a neighborhood of the optimum control u∗c with a small adjustable bound.

Proof. Consider the following Lyapunov function candidate

L =
1
2

W̃T
c α−1W̃c + β1 Ja(x),

where β1 = β/α > 0. By calculating the time derivative of L along the sliding-mode
dynamics (30), we have

L̇ = W̃T
c

˙̃Wc + β1(∇Ja)
T( f (x) + g(x)ûc + k(x)d̂w

)
. (54)

Substituting (52) into (54) and making some adjustments, one can get

L̇ =− W̃T
c φ1φT

1 W̃c + β1(∇Ja)
T( f (x) + g(x)ûc + k(x)d̂w

)
+

1
4

W̃T
c ∇σcD(∇σc)

TWc
φT

1
φs

W̃c

− 1
4

W̃T
c ∇σcD(∇σc)

TWc
φT

1
φs

Wc −
1
4

W̃T
c ∇σcD(∇σc)

TW̃c
φT

1
φs

Wc

+ W̃T
c

φT
1

φs
εHJI −

β

2
Σ(x, ûc, d̂w)W̃T

c ∇σcD∇Ja

+ W̃T
c F2Ŵc − W̃T

c F1φT
1 Ŵc.

(55)

Using Ŵc = Wc − W̃c, the last two terms in (55) become

W̃T
c F2Ŵc − W̃T

c F1φT
1 Ŵc = W̃T

c F2Wc − W̃T
c F2W̃c − W̃T

c F1φT
1 Wc + W̃T

c F1φT
1 W̃c. (56)

Defining Υ = [W̃T
c φ1, W̃T

c ]T, and substituting (55) into (56), it can be rewritten as

L̇ =− ΥTMΥ + ΥTδ + β1(∇Ja)
T( f (x) + g(x)ûc + k(x)d̂w

)
− β

2
Σ(x, ûc, d̂w)W̃T

c ∇σcD∇Ja,
(57)

where

M =

 I −∇σcD(∇σc)TWc

4φs
− F1

2

−∇σcD(∇σc)TWc

4φs
− F1

2
F2

,

δ =


1
φs

εHJI

−∇σcD(∇σc)TWc

4φs
+ F2Wc − F1φT

1 Wc

.

With Assumption 3 in mind, and recalling the boundedness of φ1 and D, in particular
‖φ1‖ < 1 and ‖D‖ ≤ DM, we can infer that there exists a positive constant δM in the sense
that ‖δ‖ ≤ δM. For guaranteeing M > 0, the appropriate parameters F1 and F2 need to be
selected in design. Then, one can upper bound L̇ as follows:

L̇ ≤− λmin(M)‖Υ‖2 + δM‖Υ‖+ β1(∇Ja)
T( f (x) + g(x)ûc + k(x)d̂w

)
− β1

2
Σ(x, ûc, d̂w)W̃T

c ∇σcD∇Ja
(58)

with λmin(M) being the minimum eigenvalue of M.
According to (50), there are two cases to consider: Σ(x, ûc, d̂w) = 0 and Σ(x, ûc, d̂w) = 1

for (58) in the following analysis.
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Case 1 : For Σ(x, ûc, d̂w) = 0, it follows from (50) that J̇a(x) < 0, i.e., (∇Ja)T ẋ < 0,
which, together with the PE condition, can ensure that there exists a positive constant $
such that ‖Ż‖ > $. This implies that (∇Ja)T ẋ < −$‖∇Ja‖ < 0. Then, (58) becomes

L̇ ≤ β1(∇Ja)
T ẋ− λmin(M)‖Υ‖2 + δM‖Υ‖

< −β1$‖∇Ja‖ − λmin(M)

(
‖Υ‖ − δM

2λmin(M)

)2

+
δ2

M
4λmin(M)

.
(59)

Focus on (59), only if the following inequalities:

‖∇Ja‖ >
δ2

M
4λmin(M)$

, A1

or

‖Υ‖ >
δ2

M
λmin(M)

hold, then L̇ < 0. Moreover, based on the relation ‖Υ‖ ≤
√
‖φ1‖2 + 1‖W̃c‖ with ‖φ1‖ < 1,

we can derive

‖W̃c‖ >
δ2

M√
2λmin(M)

, B1.

Case 2: For Σ(x, ûc, d̂w) = 1, in light of (41) and (42), by adding and subtracting
β1(∇Ja)TD∇εc/2 into (58), we can derive

L̇ ≤− λmin(M)

(
‖Υ‖ − δM

2λmin(M)

)2

+
δ2

M
4λmin(M)

+ β1(∇Ja)
T( f (x) + g(x)u∗c

+ k(x)d∗
)
+

β1

2
(∇Ja)

TD∇εc.

(60)

Then, using (53) in Assumption 4, and recalling the boundedness of D and ∇εc, (60) is
upper bounded as

L̇ ≤ −λmin(M)

(
‖Υ‖ − δM

2λmin(M)

)2

− β1

2
λmin(Ψ)‖∇Ja‖2 + Φ, (61)

where Φ = δ2
M/(4λmin(M)) + β1D2

Mε2
dM/(8λmin(Ψ)), λmin(Ψ) denotes the minimum

eigenvalue of Ψ(x). Hence, provided the following inequalities:

‖∇Ja‖ >
√

2Φ
β1λmin(Ψ)

, A2

or

‖Υ‖ >
√

Φ
λmin(M)

+
δM

2λmin(M)

hold, one has L̇ < 0. Further, by the relation ‖Υ‖ ≤
√

2‖W̃c‖, we have

‖W̃c‖ >
√

Φ
2λmin(M)

+
δM

2
√

2λmin(M)
, B2.

To sum up, for both Case 1 and Case 2, with proper parameters F1 and F2 satisfying
M > 0, the inequality ‖∇Ja‖ ≥ max{A1,A2} = Ā or ‖W̃c‖ ≥ max{B1,B2} = B̄ holds,
then, we have L̇ < 0. From the Lyapunov extension theorem [16], it is found that ‖∇Ja‖
and ‖W̃c‖ are bounded by Ā and B̄, respectively. Based on Assumption 4, the Lyapunov
candidate Ja(x) is radially unbounded, which implies that the boundedness of ‖∇Ja‖
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leads to the boundedness of the system state ‖x‖. In particular, ‖x‖ is bounded by Āx =
max{A1x,A2x}, where A1x and A2x are determined by A1 and A2, respectively. So far, we
can conclude that both x and W̃c are guaranteed to be UUB.

Next, we will prove ûc converges to a small neighborhood of u∗c with an adjustable
bound, i.e., ‖ûc − u∗c ‖ ≤ εu. Considering (41) and (46), we have

ûc − u∗c = −1
2

R−1gT(x)
(
(∇σc)

TW̃c +∇εc
)
.

Noticing that W̃c is UUB together with the associated bound B̄ = max{B1,B2}, and
invoking ‖g(x)‖ ≤ gM, ‖∇σc‖ ≤ σdM, ‖∇εc‖ ≤ εdM and boundedness of R, it follows that

‖ûc − u∗c ‖ ≤
1
2

λmax(R−1)gM(σdMB̄ + εdM) , εu. (62)

Remark 5. From the expression of B1 and B2, it is seen that B̄ can be kept small with λmin(M)
being larger enough. In view of (57), we can enlarge the value of λmin(M) by adjusting the
corresponding design parameters F1 and F2. Moreover, we can make the approximate error εc and
its upper bound εdM sufficiently small when the neuron number lc is large enough. Therefore, we
can make the convergence errors εu in (62) as small as possible in the design.

5. Simulation Results

To validate the effectiveness of the proposed H∞ optimal SMC scheme, two simulation
examples are provided. The first example focuses on a single-link robot arm, while the
second example deals with a power system.

5.1. Single-Link Robot Arm

Considering a nonlinear single-link robot arm [23] and its dynamics given by

Jθ̈ = −MgL sin(θ)− Dθ̇ + u + w, (63)

where θ is the joint rotation angle of robot arm in radians, u refers to the control torque
applied to the joint in Nm, and w denotes the lumped uncertain term. Select the system
parameters as follows: the arm length L = 0.5 m, the payload mass M = 1 kg, the local
gravity acceleration g = 9.81 m/s2. the rotational inertia J = 1 kg ·m2 and the viscous
friction D = 2 Nm · s/rad. With the system states defined as x1 = θ and x2 = θ̇, and
considering the presence of exogenous disturbances, then the dynamics (63) in state-space
form can be represented as[

ẋ1
ẋ2

]
=

[
x2

−4.905 sin(x1)− 2x2

]
+

[
0
1

]
(u + w) + d, (64)

where d represents the unknown disturbances. Moreover, it is assumed that the initial state
is set as x0 = [1,−0.5]T, the lumped uncertainty term is w(x, u) = x2 sin(x1) + 0.1 sin(x1)u,
and the disturbance term is chosen as d = [0.5e−t sin(t), 0.5 sin(t)]T in the simulation.

The enhanced observer system, consisting of an NN identifier and a nonlinear DO,
can be designed as shown in (6), where the identifier NN is selected as a three-layered feed-
forward NN with one hidden layer containing six neurons, and the hyperbolic activation
function tanh(·) is utilized. The updating ratios are set as η1 = 30 and η2 = 2.5, while the
weights Ŵo and V̂o are initialized with random values chosen from the interval [−0.1, 0.1].
The initial observer state is set as x̂0 = [0.5, 0]T. Moreover, based on Lemma 1, select the
Hurwitz matrix A = [−15, 0; 0,−15], p(x) = [10x1; 10x2] and l(x) = [10, 0; 0, 10] to ensure
that the inequality (10) holds. The integral sliding surface function is determined by (21),
together with G(x) = g+(x) = [0, 1] and S0(x) = x2. Accordingly, the discontinuous SMC
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ud is given by (23) and (24). For the propose of eliminating the chattering phenomenon, an
arctangent function atan(s/ε) with a small positive scalar ε = 0.005 is employed to replace
the sign function sgn(s) in (23).

By considering the SMC law ud, the sliding-mode dynamics can be obtained as

ẋ = f (x) + g(x)uc + k(x)d, (65)

where k(x) = I − g(x)g+(x) = [1, 0; 0, 0]. We choose the associated cost function as
the form of (32), together with Q = diag(1, 1), R = 1 and γ = 1.5. For the critic NN,
the activation function is chosen as σc(x) = [x2

1, x1x2, x2
2, x3

1x2, x2
1x2

2, x1x3
2]
T, which results in

Ŵc = [Ŵc1, Ŵc2, . . . , Ŵc6]
T. Select the updating ratios α = 1, β = 0.5, the design parameters

F1 = F2 = 10I, lc = 6 and Ja(x) as a quadratic polynomial. Furthermore, the weight vector
Ŵc is initialized to zero, which leads to the initial control input of zero. Noticing that
the zero initial control cannot make the system (65) stable, it is thus clear that no initial
stabilizing control strategy is necessary when implementing the proposed algorithm.

During the learning process, a damped decreasing probing noise is injected into the
control input for satisfying PE condition. This noise comprises sinusoids of diverse frequen-
cies and is applied for the first 450 s. Figure 2 shows the trajectories of the critic weights,
which eventually converge to Ŵc = [1.0420, 0.0856,−0.0603,−0.2174, 0.2948,−0.0358]T.
Figure 3 describes the trajectories of system states in the learning. From Figure 3, one can
see that without an initial stabilizing control, the system states stay at or near zero after the
probing noise is removed, which indicates that ûc generated by the learning module can
effectively stabilize the system. With the converged weights, the approximate H∞ optimal
control ûc can be calculated by (46).
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Figure 2. Trajectories of the critic NN weights.

Next, we substitute ûc into (21) to obtain an available sliding surface. Subsequently,
integrating with the enhanced observer system, the SMC law ud is implemented by us-
ing (23) and (24) with the reliable estimations of uncertainties and disturbances. Figure 4
depicts the estimates of disturbances d1 = 0.5e−t sin(t) and d2 = 0.5 sin(t), along with
small estimation errors. Figure 5 presents the identifications of system states using the
identifier NN. It can be observed that the identified states rapidly track the real states, illus-
trating the effectiveness and efficiency of the identifier NN. Note that the valid estimations
d̂ and Ŵo are used to design the SMC law ud, which helps to reduce the sliding-mode gain
and alleviate the chattering phenomenon. Figure 6 displays the state trajectories of the
robot arm under the compound H∞ sliding-mode control u = ud + ûc. Figure 7 depicts the
compound control u, while the H∞ control ûc and the SMC law ud are given in Figure 8.
These results presented in Figures 6–8 confirm that the compound control u successfully
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renders the robot arm system stable and exhibits satisfactory performance against both
system uncertainties and external disturbances.
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Figure 3. Trajectories of system states in the learning.
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Figure 4. (a) Real disturbance d1 and its estimation d̂1, (b) Real disturbance d2 and its estimation d̂2.
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Figure 5. (a) Real state x1 and identified state x̂1, (b) Real state x2 and identified state x̂2.
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Figure 6. State trajectories of the robotic arm.
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Figure 7. The compound control u.

0 5 10 15
Time (s)

-0.1

0

0.1

0.2

0.3
(a)

0 5 10 15
Time (s)

-1

0

1

2
(b)

Figure 8. (a) The H∞ optimal control ûc. (b) The SMC law ud.
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5.2. Power Plant System

To further validate the effectivity of the proposed scheme, we consider an electric
power system comprised of a gas turbine generator, a system load, and an automatic
generation control [34]. To model this system, the incremental frequency deviation ∆ fG, the
generator output power variation ∆Pm, and the valve position change of the governor ∆v
are taken into consideration. The control input is represented by the speed change ∆Pc in
position deviation. By defining the state vector x = [∆v, ∆Pm, ∆ fG]

T ∈ R3, we can express
the reduced power system model in state-space form as

ẋ =


− 1

Tg
0

1
RgTg

Kt

Tt
− 1

Tt
0

0
Kp

Tp
− 1

Tp

x +


1
Tg
0
0

(u + ϑ) + d (66)

where g(x) = [1/Tg, 0, 0]T, ϑ represents the modeling uncertainty, and d stands for the
exterior disturbances. Assume that the uncertain term is ϑ = x2 sin(x1), and the distur-
bance term is defined as d(t) = [sin(2πt)e−t, 0, 0.2 sin2(t)e−t]T in the simulation. Let the
regulation constant Rg = 2.5 Hz/MW, the turbine gain constant Kt = 1 s and the generator
gain constant Kp = 120 Hz/MW. Moreover, the corresponding time constants are set as
Tg = 0.08 s, Tt = 0.1 s and Tp = 20 s, respectively.

For estimating the unknown uncertainty and disturbance terms, the enhanced ob-
server system is constructed as (6) with a three-layered feedforward NN containing eight
hidden neurons and the Hurwitz matrix A = [−12, 0, 0; 0,−12, 0; 0, 0,−12]. The activa-
tion function, the initial weights, and the updating ratios are the same as in Section 5.1.
Let p(x) = [10x1, 0, 10x3]

T, l(x) = [10, 0, 0; 0, 0, 0; 0, 0, 10], G(x) = g+(x) = [0.08, 0, 0] and
S0(x) = 0.08x1. Similarly, an arctangent function atan(s/ε) is used for designing the SMC
law ud instead of the sign function sgn(s).

Without the matched uncertainties and disturbances, we can derive the sliding-
mode dynamics from (66), wherein k(x) = [0, 0, 0; 0, 1, 0; 0, 0, 1], and the initial state
x0 = [0.2,−0.2, 0.1]T. Let the associated cost function be of the form (32) along with Q =
diag(1, 1, 1), R = 1 and γ = 3. The critic NN is designed as (44) and its corresponding
parameters are α = 15, β = 0.5, σ(x) = [x2

1, x1x2, x1x3, x2
2, x2x3, x2

3, x2
1x2x3, x1x2

2x3, x1x2x2
3]
T

and Ŵc = [Ŵc1, Ŵc2, . . . , Ŵc9]
T. Similar to Section 5.1, Ja(x) = xTx/2, the initial weight

vector is set to zero, and a similar probing noise is injected into the control input before 550 s.
The evolving trajectories of the critic weights are shown in Figure 9, while the trajectories
of system states in the learning are depicted in Figure 10. After 550 s, the critic weights
converge to Ŵc = [0.0830, 0.1245, 0.2284, 0.1616, 0.4883, 0.5488, 0.1154, 0.0563, 0.0564]T, then
we can derive ûc using (46) with the converged weights.

Then, we substitute ûc into the integral sliding surface (21), and we design the SMC
law ud by (23) and (24). Consequently, the compound control is constructed as u = ud + ûc.
After simulation, Figure 11 shows the trajectories of the power system states under this com-
pound control for 15 s. Figure 12 presents the compound control u. From Figures 11 and 12,
we can conclude that the compound control effectively stabilizes the system states to the
equilibrium point, even in the presence of modeling uncertainties and exterior disturbances.
These results undeniably demonstrate the viability and efficiency of the proposed approach.
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Figure 9. Trajectories of the critic NN weights.
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Figure 10. Trajectories of system states in the learning.
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Figure 11. Trajectories of the electric power system.
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Figure 12. The compound optimal control.

6. Conclusions

In this paper, we develop a neural adaptive H∞ sliding-mode control scheme for
uncertain nonlinear systems subject to external disturbances. Based on the enhanced
observer system composed of the NN identifier and nonlinear DO, an integral SMC is
designed for suppressing the influences of the uncertain term and the matched disturbance
component, as well as unknown approximation errors, with no prior knowledge of their
upper bounds. Meanwhile, on the sliding surface, the remaining unmatched disturbances
are attenuated using the H∞ optimal control solved by the single critic network-based ADP
algorithm. Furthermore, uniform ultimate boundedness stability of the resultant closed-
loop system can be proven by Lyapunov’s method. In addition to the theoretical analysis,
two simulation examples are provided to further validate the proposed approach. Recently,
the growing interest in saving communication resources or reducing the calculation amount
of networked control systems makes the event-triggering mechanism gain more and more
attention and undergo rapid development. Hence, how to combine the optimal SMC
strategy with the event-triggering mechanism for more complex physical systems, not just
for control-affine systems, will be our future research topic.
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