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Abstract: In this paper, we study a three-layer wiretap network including the source node in the top
layer, N nodes in the middle layer and L sink nodes in the bottom layer. Each sink node recovers the
message generated from the source node correctly via the middle layer nodes that it has access to.
Furthermore, it is required that an eavesdropper eavesdropping a subset of the channels between
the top layer and the middle layer learns absolutely nothing about the message. For each pair of
decoding and eavesdropping patterns, we are interested in finding the capacity region consisting of
(N + 1)-tuples, with the first element being the size of the message successfully transmitted and the
remaining elements being the capacity of the N channels from the source node to the middle layer
nodes. This problem can be seen as a generalization of the secret sharing problem. We show that when
the number of middle layer nodes is no larger than four, the capacity region is fully characterized
as a polyhedral cone. When such a number is 5, we find the capacity regions for 74,222 decoding
and eavesdropping patterns. For the remaining 274 cases, linear capacity regions are found. The
proving steps are: (1) Characterizing the Shannon region, an outer bound of the capacity region;
(2) Characterizing the common information region, an outer bound of the linear capacity region;
(3) Finding linear schemes that achieve the Shannon region or the common information region.

Keywords: wiretap network; secret sharing; Shannon-type inequality; common information;
generator matrix

1. Introduction

The general concept of network coding was proposed by Ahlswede et al. [1] in 2000.
They investigate the single-source multicast network coding problem where the message
generated by the source node is required to be sent to multiple sink nodes through a
noiseless network. In addition to routing, the nodes in the network can process the received
information to utilize the full capacity of the network. In 2003, Li et al. [2] demonstrated
through a vector space approach that linear network coding over a finite alphabet is
sufficient for an optimal multicast. Independently, Koetter and Médard [3] developed an
algebraic characterization of linear network coding via a matrix approach. A deterministic
polynomial time algorithm for constructing a linear network code was later presented by
Jaggi et al. [4]. For more background on network coding, a useful source is [5].

Cai and Yeung [6] proposed a wiretap network which incorporates information se-
curity with network coding [7–12]. In the wiretap network, a message is sent to possibly
more than one legal user and needs to be protected from eavesdroppers, who may tap a set
of channels in the network. More specifically, in the wiretap network, it is required that
(i) all sink nodes can obtain the message correctly and (ii) the eavesdropper, who can access
any one but not more than one eavesdropping set of communication channels, obtains
nothing about the message. One solution of the wiretap network is that we send both the
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message and the random key via a linear scheme. In this way, an eavesdropper can only
observe some linear combinations of the message and the random key, which is statistically
independent of the message. On the other hand, every legal user can recover the message
by canceling the effect of the random key.

The performance of a wiretap network scheme can be measured by the size of the
message and the size of the random key. In [6], when the eavesdropper may choose to
access any subset of channels of a fixed size, tight bounds were obtained. Some general
bounds under arbitrary eavesdropping sets were obtained in [13], but may not be tight in
general. Focusing on a simple network topology, Cheng [14] conducted a numerical study
and showed the importance of characterizing the entropic region of six linear vector spaces.
When focusing on the alphabet size for the existence of secure network codes, Guang and
Yeung [15] developed a graph theoretic approach to improve the existing bound. Some
variants of the wiretap network include universal secure multiplex network coding [16],
secure network code for adaptive and active attacks [17], secure index coding [18], multiple
linear combination security network coding [19], a secure network coding for multiple
unicast traffic [20] and so on.

In this paper, we focus on a three-layer wiretap network where the source node in
the top layer generates the random message and N nodes in the middle layer relay the
information sent from the source node to the sink nodes in the bottom layer. The system
constraint is that each sink node can recover the message correctly via the middle layer
nodes it has access to. Furthermore, the eavesdropper, who can access any one but not
more than one eavesdropping set of communication channels between the source and
middle layer nodes, obtains nothing about the message. Such a three-layer wiretap network
was initially formulated by Cai and Yeung [6] to show that the wiretap network contains
secret sharing as a special case. When the eavesdropper may choose to access any subset of
channels of a fixed size, they had obtained the optimal scheme. But when the eavesdropping
pattern is an arbitrary one, the corresponding optimal scheme is unknown. Hence, the aim
of our work is to explore arbitrary decoding and eavesdropping patterns and find the
corresponding optimal schemes.

The fact that the three-layer wiretap network is a generalization of the secret sharing
problem [21,22] can be seen as follows. A secret sharing scheme is a method to share a
secret, with the help of random key, among a set of N participants such that the qualified
sets of participants can recover the secret, while the forbidden sets of participants can know
nothing about the secret. If any subset that is not a qualified set is a forbidden set, then
we have the complete access structure scenario. The performance of a secret sharing scheme
is the (average) information ratio between the size of the share and the size of the secret
given an access structure. Since the number of different access structures is finite for a
fixed number of participants N, following a case-by-case analysis, the optimal (average)
information ratio can be found when N ≤ 4 [23] for complete access structures. In the
converse part, every secret sharing scheme is treated as a discrete probability distribution,
thus Shannon-type inequalities, concluded from the non-negativeness of (conditional)
entropy and (conditional) mutual information of any probability distribution, are used to
provide a lower bound. In terms of achievability, linear schemes, where every codeword
corresponds to a distribution of N shares, are sufficient to achieve the converse results.

For the complete access structure, when the number of participants is five, Jackson
and Martin [24] had already handled most access structures. Recently, the work was moved
further by introducing a new converse for linear schemes [25]. The technique behind this
discovery is called the direct use of common information [26]. Nevertheless, the general
results in the converse are far from tight, as discussed in [27].

Guided by the existing understanding of secret sharing, we let the number of middle
layer nodes N be less than or equal to five. Unlike secret sharing, we should consider
incomplete access structures for the three-layer wiretap network. That is, for some subsets of
channels, whether it can obtain some information about the message, is not specified, which
may be the circumstance when the eavesdropper has limited eavesdropping resources. In



Entropy 2023, 25, 1566 3 of 21

particular, when N = 5, there are a total of 74,496 different decoding and eavesdropping
pattern pairs that need to be investigated.

Note that the secret sharing problem focuses on the optimal (average) information
ratio, which is a scalar. To characterize the optimal (average) information ratio, one bound
and one explicit scheme are needed. In the three-layer wiretap network, we consider the
scenario that the channels between the top layer and the middle layer are heterogeneous,
that is, the capacity of each channel may be different. For a given channel capacity vector,
we are interested in the maximum amount of a message that can be securely and correctly
transmitted to the sink nodes in the presence of the eavesdropper. To achieve this goal, we
need to fully characterize the relationship between the size of the message and channel
capacities. Such a relationship in fact formulates the capacity region, whose inner and outer
bounds involve several linear schemes and inequalities.

The main contributions of this paper are the numerical results of the capacity region
or linear capacity region of the three-layer wiretap network and the techniques we use to
find them when the number of middle-layer nodes is no larger than five. We discuss them
in detail as follows:

By exhaustive numerical experiments, we draw the conclusion that when the number
of middle layer nodes is no larger than four, the capacity region is fully characterized
as a polyhedral cone. However, when such a number is 5, there exist 274 decoding and
eavesdropping patterns where we only find the linear capacity regions. On the other hand,
the capacity regions for the other 74,222 cases are obtained.

The tools and techniques used in obtaining these results are as follows:

(1) Combine an existing bound for secret sharing or a wiretap network, which says that
the size of the secret is upper bounded by the sum of the sizes of non-colluding shares,
and Benson’s algorithm, which is an existing projection algorithm, to obtain the
Shannon region, which is the projection of the polyhedral cone formed by Shannon-
type inequalities under the system constraints and, therefore, an outer bound of the
capacity region;

(2) Modify Benson’s algorithm to obtain the common information region, which adds
common information for the linear achievability schemes and, therefore, is an outer
bound of the linear capacity region;

(3) To obtain good linear schemes of the three-layer wiretap network, we propose the
incremental kernel method (IKM), which is based on the existing Marten’s method
for linear secret sharing schemes but is more memory saving and efficient. However,
the essence of the IKM algorithm is still a brute-force search, which fails in two cases.
Then, we propose a manual method that uses Gaussian elimination to obtain optimal
linear schemes for these two cases.

2. System Model
2.1. Problem Description

We study the model of a three-layer wiretap network, an example of which is shown
in Figure 1.

Consider a directed acyclic multigraph with three layers of nodes: the top layer,
the middle layer, and the bottom layer. The top layer consists of only one node, the source
node, denoted as s. It generates a random message, M, which is uniformly distributed on
the message set,M.

The middle layer consists of N nodes, denoted as u1, u2, · · · , uN , and the source node
connects to node un by an edge en = (s, un) with capacity rn, n ∈ [1 : N]. On Channel en,
an index taken from an alphabet Brn can be transmitted and is noiselessly received.

We assume that the bottom layer consists of L nodes, denoted as t1, · · · , tL, and
Dl ⊆ [1 : N] denotes the indices of the nodes in the middle layer to which node tl is con-
nected. The channels between the middle layer nodes and the bottom layer nodes are of in-
finite capacity. All nodes in the bottom layer are considered sink nodes, i.e., they want to de-
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code the message M, generated by the source node, without error. Let A = {D1, · · · ,DL},
which we call the decoding pattern.

s

u2 u3 u4

t1 t2 t3

e1
e2

e3

u1 u5

e4 e5

Figure 1. An example of the system model.

There is also an eavesdropper who can access one of a collection of subsets of channels
from the source node to the middle-layer nodes. More specifically, we assume that the
eavesdropping pattern is F = {E1, · · · , EJ}, and the eavesdropper may access the channels
between the source node and the middle layer nodes in Ej for some j ∈ [1:J]. It is required
that the eavesdropper knows absolutely nothing about the message M.

For a given r := (r1, r2, . . . , rN), we are interested in the maximum value of H(M),
i.e., the maximum amount of information that can be securely and correctly transmitted to
the sink nodes in the presence of the eavesdropper.

2.2. Arbitrary Scheme and Capacity Region

A scheme for the above three-layer wiretap network consists of a set of random local
encoding mapping of the source node, φn(·): M → Brn , which maps the value of the
message into an index transmitted on the channel en. Note that in order to securely transmit
message M in the presence of the eavesdropper, this mapping is random. We denote
Yn = φn(M). We note here that encoding at the middle-layer nodes are not needed, as the
output channel is of infinite capacity and, furthermore, not susceptible to eavesdropping.
In other words, it is sufficient for the middle-layer node un to simply forward Yn onto
its output channels, n ∈ [1:N]. The scheme {φn(·): n = 1, · · · , N} must satisfy the
following constraints:

1. Transmission constraint: for any n ∈ [1:N], the entropy of Yn is bounded by the
capacity of the channel from the source node to un, i.e.,

H(Yn) ≤ rn, ∀n ∈ [1 : N]. (1)

2. Security constraint: for Ej in the eavesdropping pattern F , denote {Yn, en ∈ Ej} by
YEj , and given the symbols YEj accessed by the eavesdropper eavesdropping Ej, we
have Pr(M = m|YEj = y) = Pr(M = m), ∀m ∈ M, i.e., the eavesdropper can know
absolutely nothing about the message M. In other words,

H(M|YEj) = H(M), ∀j ∈ [1 : J], (2)

must be satisfied.
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3. Decodability constraint: for the bottom layer node tl , who has access to YDl , message
M must be decoded without error, i.e.,

H(M|YDl ) = 0, ∀l ∈ [1 : L]. (3)

Since the maximum amount of information that can be correctly and securely trans-
mitted from the source node to the destination nodes, i.e., H(M), depends on the values
of the channel capacities rn, n ∈ [1:N], we define the capacity region, denoted as CA,F ,
of the three-layer wiretap network as the closure of the set of any (N + 1) dimension vec-
tor (H(M), H(Y1), . . . , H(YN)) corresponding to a scheme that satisfies the transmission,
security and decodability constraints.

2.3. Linear Scheme and Linear Capacity Region

We are also interested in linear schemes for the three-layer wiretap network. In defin-
ing a linear scheme, we let the alphabet B be a finite field GF(q), where q is a prime power.
In other words, for the edge en with capacity rn, rn symbols in GF(q) can be transmitted
correctly over en.

A linear scheme (r, k, V1, · · · , VN) consists of the following: (1) for some fixed pos-
itive integer r, the message setM is taken to be GFr(q), i.e., message M can be written
as r symbols in GF(q), i.e., M = (M1, · · · , Mr); (2) for some fixed positive integer k,
the randomness introduced by the source node to enable the secure delivery of the mes-
sage to the destination nodes is denoted as K, which takes values in a uniform fashion
in its alphabet K, which is GFk(q). This means that the randomness K can be written
as k symbols in GF(q) as K = (K1, · · · , Kk); (3) the source node performs linear coding,
i.e., for each channel en, the linear coding coefficient is denoted by the matrix Vn of size
(r + k)× rn, where each element is in GF(q). Hence, the vector transmitted on channel
en is Yn =

[
M1 · · · Mr K1 · · · Kk

]
Vn, which consists of rn elements and, therefore,

does not exceed the capacity of the edge en. Thus, the transmission constraint, i.e., (1), is
satisfied. The linear scheme must also satisfy the security constraint and the decodability
constraint. Under the assumption of linear schemes, the security constraint (2) becomes

rank
([

VM VEj

])
= rank(VM) + rank

(
VEj

)
, ∀j ∈ [1 : J],

where rank (·) denotes the rank of a matrix, VM is the matrix whose column vectors are

associated with the message, i.e., VM =

[
Ir

0k×r

]
, and VEj is the juxtaposition of Vn, n ∈ Ej.

Under the assumption of linear schemes, the decodability constraint (3) becomes

rank
([

VM VDl

])
= rank

(
VDl

)
, ∀l ∈ [1 : L],

where VDl is the juxtaposition of Vn, n ∈ Dl .
We define the linear capacity region, denoted as C l

A,F , of the three-layer wiretap network
as the closure of the set of any (N + 1) dimension vector (r, r1, . . . , rN) corresponding to a
linear scheme that satisfies the transmission, security and decodability constraints.

3. Preliminaries

In order to characterize the capacity region (linear capacity region) for the three-layer
wiretap network, we need to find its inner and outer bounds. For the capacity region,
the outer bound we use is found via Shannon-type inequalities, and we call this outer
bound the Shannon region. For the linear capacity region, the outer bound we use is found
via common information, and we call this outer bound the common information region.
The inner bound is found by explicit linear schemes. To make the paper self-contained, we
first present some preliminaries on the Shannon region and the common information region.
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3.1. The Shannon Region

The N + 1 random variables of interest for any scheme for the three-layer wiretap
network is (M, Y1, · · · , YN). Note that for any probability distribution with N + 1 discrete
random variables, we can extract 2N+1 − 1 entropies, corresponding to 2N+1 − 1 different
non-empty combinations of these random variables, and arrange them into a vector h.
DenoteHN+1 as a (2N+1 − 1) dimension Euclidean space whose coordinates are labeled
by ha, ∅ 6= a ⊆ O := {M, Y1, . . . , YN}. The set of all such vectors h ∈ HN+1 corresponding
to a distribution is called the entropic region [28], denoted as Γ∗, and its closure is a
convex cone [29]. In the three-layer wiretap network, the security constraint (2) and the
decodability constraint (3) can be handled as homogeneous linear equations involving the
coordinates fromHN+1 only. More specifically, they can be expressed as

C1 ={h ∈ HN+1 : hM,YEj
− hYEj

− hM = 0, ∀j ∈ [1 : J]}, (4)

C2 ={h ∈ HN+1 : hM,YDl
− hYDl

= 0, ∀l ∈ [1 : L]}, (5)

respectively.
It is known that the closure of the entropic region is not a polyhedral cone when

the number of random variables is greater than or equal to four [30]. Hence, an easy-
to-calculate outer bound is considered, i.e., Γ|O|. Γ|O| is a polyhedral cone represented
by the intersection of two categories of closed half-spaces, named also as Shannon-type
inequalities [31]:

1. Non-decreasing: If a ⊆ b ⊆ O, then ha ≤ hb;
2. Submodular: ∀a, b ⊆ O, ha∪b + ha∩b ≤ ha + hb.

where h∅ is taken to be 0.
Recall the definition of the capacity region, where N + 1 quantities are of interest,

i.e., (H(M), H(Y1), . . . , H(YN)). As for the polyhedral cone Γ|O| ∩ C1 ∩ C2, we likewise care
about the set of N + 1 coordinates, i.e., hO := (hM, hY1 , . . . , hYN ). To gain a more exact
characterization, a suitable concept is illustrated as follows: a projection of a region P in
Rn = Rn1 ×Rn−n1 onto its subspace of the first n1 coordinates is

proj[1:n1]
(P) = {x1 ∈ Rn1 : ∃x2 ∈ Rn−n1 , (xT

1 , xT
2 ) ∈ P}. (6)

After the above preparation, we introduce the concept of the Shannon region.

Definition 1 (Shannon Region). Given the decoding and eavesdropping pattern pair (A,F ),
the Shannon regionRs

A,F of this three-layer wiretap network is the projection of the polyhedral cone
Γ|O| formed by Shannon-type inequalities under the security constraint C1 and the decodability
constraint C2 onto the set of coordinates hO , i.e., projhO (Γ|O| ∩ C1 ∩ C2).

Any scheme for the three-layer wiretap network will give rise to the corresponding
N + 1 random variables (M, Y1, · · · , YN), which must satisfy Shannon-type inequalities,
the security constraint C1 and the decodability constraint C2. Hence, the Shannon region
Rs
A,F is an outer bound on the capacity region CA,F .

3.2. The Common Information Region

The N + 1 matrices of interest for any linear scheme for the three-layer wiretap network
is (VM, V1, · · · , VN). In a linear scheme, both security and decodability constraints are
related to the ranks of certain matrices. To find the rules that the ranks must obey, we firstly
build a framework like for the entropic region, i.e., we extract 2N+1− 1 ranks corresponding
to 2N+1 − 1 different non-empty combinations of these N + 1 matrices and arrange them
into a vector h ∈ HN+1. Then, the set of all such vectors corresponding to N + 1 matrices
is bounded by the so-called linear rank inequalities [32].
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We note here that each matrix of (VM, V1, · · · , VN) can be viewed as a subset of a
finite-dimension vector space over a finite field, or a set of basis vectors (column-wise)
of a vector subspace. In fact, Shannon-type inequalities constrain not only the entropies
of discrete random variables but also the ranks of subsets of a vector space. The non-
decreasing property holds since one subset is contained within another subset. Further-
more, the submodular property follows by the dimension formula ([33], Appendix A.2),
i.e., ∀a, b ⊆ O, dim(Va) + dim(Vb)− dim(Va∪b) = dim(Va ∩ Vb), which is greater than or
equal to dim(Va∩b). Here, we use the convention that the vector subspace Va is spanned by
the column vectors of the matrix Va and dim (·) denotes the dimension of a vector subspace.

However, when the number of matrices is greater than or equal to four, there exist other
linear rank inequalities, e.g., an Ingleton inequality [34] for the four-matrix case, twenty-
four new inequalities for five matrices [32], and the ongoing work for six matrices [35,36].
To the best of our understanding, all of the above new linear rank inequalities can be
derived from the tool named as common information, whose definition is given below.

Definition 2 (Common Information). A random variable Z conveys the common information of
the random variables X and Y if H(Z|X) = H(Z|Y) = 0 and H(Z) = I(X; Y). We refer to these
three equations as the common information constraint.

In other words, the random variable Z encapsulates the mutual information of random
variables X and Y. Unfortunately, given two random variables, it is not always possible to
find a third one meeting the common information constraint. Nevertheless, in the context
of vector spaces (or the random variables coming from them), common information does
exist. More specifically, if X and Y are subspaces of a vector space, let Z be the intersection
of X and Y, and Z will have the above three properties with the entropy term replaced
by the dimension term. Finally, from the definition of a linear scheme in the three-layer
wiretap network, where each random variable a ∈ O comes from the vector subspace Va,
we may conclude that common information exists.

In order to obtain new linear rank inequalities besides Shannon-type inequalities for
|O| vector subspaces, we can firstly introduce a new subspace VZ, which is the intersection
of vector subspaces VX, X ⊆ O and VY, Y ⊆ O. Secondly, in the Euclidean space H|O|+1,
we build an intersection of three hyperplanes as follows:

CZ = {h ∈ H|O|+1 :hZ,X − hX = hZ,Y − hY =

hZ − hX − hY + hX∪Y = 0}, (7)

which corresponds to the common information constraint. Finally, some inequalities
constraining the polyhedral cone proj[1:2|O|−1](Γ|O|+1 ∩ CZ), whose 2|O| − 1 coordinates do
not involve the letter Z, may be the desired new linear rank inequalities.

Using the above trick to obtain new linear rank inequalities and thus bound the
linear capacity region of the three-layer wiretap network better, we introduce an auxiliary
random variable Z that is the common information of random variables X ⊆ O and Y ⊆ O
and the corresponding intersection of three hyperplanes CZ. As for the polyhedral cone
Γ|O|+1 ∩ C1,2 ∩ CZ, where the hyperplanes in C1,2 := C1 ∩ C2 are extended in the Euclidean
space H|O|+1, we care about the set of N + 1 coordinates hO , similar to the case of the
Shannon region. Still using the concept of projection, it follows that the polyhedral cone
projhO (Γ|O|+1 ∩ C1,2 ∩ CZ) is an outer bound of the linear capacity region.

In obtaining the twenty-four new linear rank inequalities for five vector subspaces, it
has been shown that different choices of common information lead to different inequali-
ties [32]. Therefore, the polyhedral cone projhO (Γ|O|+1 ∩ C1,2 ∩ CZ) using a single choice of
common information involves only part of the complete list of new linear rank inequalities,
and thus may still not be tight for the linear capacity region. To obtain a tighter outer
bound, a trivial idea is to build multiple projections corresponding to different choices of
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common information. Finally, the common information region is defined as the intersection
of these projections, which is still an outer bound for the linear capacity region.

Before giving the formal definition of the common information region, some preparation
is needed. Recall that O is the set of random variables essential to the three-layer wiretap
network. Let an auxiliary random variable Z be the common information of random variables
X ⊆ O and Y ⊆ O. We require that X and Y are disjointed, i.e., X ∩ Y = ∅. In this way,
we denote the number of different choices of common information for a fixed number of
random variables |O| by n|O|. In particular, n6 = 301. Then, we introduce the auxiliary
random variable Zi as the i-th common information of a choice of random variables X ⊆ O
and Y ⊆ O and the corresponding intersection of three hyperplanes is denoted by CZi ,
i ∈ [1 : n|O|]. Finally, the definition of the common information region is given below.

Definition 3 (The Common Information Region). Given the decoding and eavesdropping
pattern pair (A,F ), the common information region of this three-layer wiretap network is

Rc
A,F := ∩i∈[1:n|O| ]projhO (Γ|O|+1 ∩ C1,2 ∩ CZi ),

where each projection hO
(Γ|O|+1 ∩C1,2 ∩CZi ) is the projection of the polyhedral cone Γ|O|+1 formed

by Shannon-type inequalities under the security constraint C1, the decodability constraint C2 and
the common information constraint CZi onto the set of coordinates hO .

From our numerical experiments when the number of middle layer nodes is five,
i.e., |O| = 6, the equivalence between the common information regionRc

A,F , formed by single
common information only, and the linear capacity region C l

A,F holds, and this is established
by finding explicit linear schemes corresponding to all extreme directions ofRc

A,F .

4. Main Result

The main result of this paper is the characterization of the capacity region or the linear
capacity region when the number of nodes in the middle layer is no larger than 5. It is
summarized in the following:

(1) When the number of middle layer nodes N ≤ 4 for any decoding and eavesdropping
pattern pair (A,F ), the capacity region of the three-layer wiretap network is found.
Furthermore, the capacity region is achievable via linear schemes.

(2) When N = 5, out of a total of 74,496 different decoding and eavesdropping pattern
pairs (A,F ), the capacity region of 74,222 of them is found and achievable via linear
schemes. For the remaining 274 (A,F ) pairs, the linear capacity region is found.

(3) The detailed description of the capacity region and the corresponding achievable
schemes are provided on GitHub and named SS-WN.

Note that the number of different decoding and eavesdropping pattern pairs is counted
after the refinement by permutation, e.g., two pairs (A = {{1, 2}},F = {{1}}) and (A =
{{1, 2}},F = {{2}}) are treated as the same one.

Remark 1. From the converse point of view, we designed the projection algorithms to obtain the
Shannon region and the common information region. From the achievability point of view, we
proposed an efficient algorithm and a manual method to construct 7087 linear schemes in total. The
reason why the number of linear schemes is less than the number of decoding and eavesdropping
pattern pairs is because two different pairs may have the subset relationship, and thus a linear
scheme for the pair with more restrictions also applies to the other pair.

Remark 2. Out of the 274 decoding and eavesdropping pattern pairs in which we only find the
linear capacity regions, 17 (A,F ) pairs are complete. Similarly, in the secret sharing problem,
when the number of participants is five, optimal schemes that only restricted to the linear sense
are proposed for eight complete access structures [25]. Such 8 access structures are included in the
17 (A,F ) pairs.
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Proving the main result consists of the following steps:

1. Characterizing the Shannon region.
2. Characterizing the common information region.
3. Finding linear schemes that achieve the Shannon region or the common information region.

The methodology of the above three steps are given in Sections 5.1, 5.2 and 6, respec-
tively. In Section 5.1, we combine the existing bounds for secret sharing or the wiretap
network, i.e., Set Difference Bound [13,37], and existing projection algorithm, i.e., Benson’s
algorithm [38], to obtain the Shannon region. In Section 5.2, we modify Benson’s algorithm
to obtain the intersection of some polyhedral cones, which leads to the construction of
the common information region. In Section 6.1, we propose the IKM algorithm to obtain
the linear schemes for the three-layer wiretap network, which is more memory saving
and efficient than the existing construction of secret sharing schemes [39]. Meanwhile, we
design a manual method in Section 6.2 to tackle two cases that the IKM algorithm fails
to solve.

5. Obtaining Explicit Forms of the Shannon Region and the Common
Information Region
5.1. The Shannon Region

Recall that Γ|O| is a finitely constrained polyhedral cone since the number of Shannon-
type inequalities is finite for a fixed number, i.e., |O|, of random variables. According to
the Minkowski–Weyl Theorem for Cones ([40], Theorem 2.10), every finitely constrained
polyhedral cone has two representations: a H-representation and a V-representation. The
H-representation means that a polyhedral cone P can be represented by a system of m
linear inequalities in n variables, e.g.,

P = {x ∈ Rn : Ax ≥ 0}, (8)

where A ∈ Rm×n, which is called an inequality matrix in this paper. Meanwhile, such
a polyhedral cone can also be represented by the non-negative linear combinations of t
extreme directions, which can be treated as special vectors on the boundary of the cone, e.g.,

P = {x ∈ Rn : x = Rλ, λ ≥ 0}, (9)

where R ∈ Rn×t.
Then, we denote the projection of the polyhedral cone P onto the first n1 coordinates

by Q. To tackle the projection Q of the original polyhedral cone P in the H-representation
onto a small number of coordinates, one idea is to work directly in the projection space and
the projection is incrementally built by successive refinement of an initial approximationQ′0.
The difference in the relationship between the initial approximation and the true projection
leads to two different projection algorithms, the Convex Hull Method [41–43] and Benson’s
algorithm [38,44]. We give an outline of Benson’s algorithm in the following.

Benson’s algorithm starts with an initial approximation that contains the true projec-
tion. For example, we can let some inequalities constraining the true projection constrain
the initial approximation. Then, Benson’s algorithm gradually adds new inequalities that
constrain the true projection to the approximation. The essence of the iteration is to test
whether an extreme direction of the approximation also belongs to the true projection,
where the negative answer leads to an inequality that will be treated as a new inequal-
ity constraining the approximation. Meanwhile, the corresponding V-representation is
updated since there are new inequalities. Again, since the dimension of the projection
space is small, the conversion from H-representation to V-representation can be carried in
practice [45].

Benson’s algorithm has already included the method to construct the initial approxima-
tion by linear programming (LP). In our three-layer wiretap network, we can actually use
some understandings of this problem to build an initial approximation that may be closer to
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the true projection, thus the number of iterations carried by any of the two algorithms may
be smaller. We discuss this special trick according to the converse result in the following.

From the converse point of view, we can build the initial approximation for Ben-
son’s algorithm. When considering arbitrary wiretap sets in a general wiretap network,
Cheng ([13], Corollary 1) proposed a type of inequality which works in the projection space
and conveys the physical meaning that the size of the message is upper bounded by the
sum of capacities of non-eavesdropped channels. We call this inequality the Set Difference
Bound and illustrate it formally in the following.

Lemma 1 (Set Difference Bound). Given the decoding and eavesdropping pattern pair (A,F ),
for any decoding set A ∈ A and eavesdropping set F ∈ F ,

H(M) ≤ ∑
i∈A−F

H(Yi). (10)

Remark 3. Recall that the Shannon region is defined as the projection of the polyhedral cone formed
by Shannon-type inequalities under the security constraint and the decodability constraint onto
the set of coordinates hO . Moreover, the proof of the Set Difference Bound is also derived from
Shannon-type inequalities, the security constraint and the decodability constraint in the same
Euclidean spaceHN+1. Finally, it follows that the Set Difference Bound forms an outer bound of
the Shannon region and can be used to initialize Benson’s algorithm.

Remark 4. In the secret sharing problem ([37], Proposition 2.2.4), the Set Difference Bound conveys
the physical meaning that the size of the secret is upper bounded by the sum of sizes of non-colluding
shares. In particular, for any complete access structure, the cardinality of the difference between a
decoding set A and an eavesdropping set F can be one, so the Set Difference Bound is utilized to
prove that the information ratio must be greater than or equal to one.

In our numerical experiments, we adopt the Set Difference Bound to initialize Benson’s
algorithm to obtain the explicit forms of the Shannon region. When the number of nodes
in the middle layer is less than or equal to five, it turns out that the initial approximation
equals the true projection in 64,238 cases, which is nearly 86% of the total number of
different decoding and eavesdropping pattern pairs.

The original Benson’s algorithm is designed for multi-objective linear programming
(MOLP) [38]. Meanwhile, the polyhedral projection problem is equivalent to MOLP, as
stated in [46]. The reason is that the projection offers the full information of the sub-system
related to the objectives of MOLP. For completeness, we rewrite Benson’s algorithm for the
polyhedral projection problem in Algorithm 1.

The initial approximation Q′0 is defined by the Set Difference Bound in the non-
negative orthant and the corresponding V-representation is obtained. Since the Set Differ-
ence Bound is an outer bound of the Shannon region, we have that Q′0 contains the true
projection Q. We note here that the conversion from H-representation to V-representation
can be carried by an existing Python package called pycddlib [45], due to the small size of
the corresponding inequality matrix. Furthermore, the LP in Step 2 is solved by an existing
commercial solver called Gurobi [47].

Basically, Benson’s algorithm gradually contracts Q′0 by adding new inequalities that
constrain the true projection, which are explored in Step 2. In the LP of Step 2, Algorithm 1,
the non-negative variable y can be used to derive an inequality that constrains the original
polyhedral P in the form of yTAx ≥ 0. Furthermore, any feasible non-negative solution y′

of the system of linear Equation (12) can be utilized to form an inequality that constrains
the true projection Q. More specifically, for any vector x1 ∈ Q, according to the definition
of projection (6), there exists a vector x2 ∈ Rn−n1 such that

y′A(xT
1 , xT

2 )
T = y

′TA[:,1:n1]
x1 ≥ 0. (11)
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Therefore, when the optimal value is less than 0, the inequality y
′TA[:,1:n1]

x1 ≥ 0 constrain-
ing the true projection can be added to make the intermediate approximation Q′i strictly
smaller, i.e., Q′i+1 ( Q′i. In a polyhedral cone, the optimal value of a linear objective
function may be infinitely small, so constraint (14) helps to obtain a bounded solution.

Algorithm 1 Benson’s algorithm

Input: An initial approximation Q′0 and the original polyhedral cone P .
Output: The projection Q.

1. Let index i = 0.
2. Let the temporary set S = ∅. For every extreme direction d of Q′i, the following LP is

solved:

min
y

yTA[:,1:n1]
d

s.t. yTA[:,n1+1:n] = 0 (12)

y ≥ 0 (13)

1Ty = 1 (14)

If the optimal value is less than 0, the vector y?TA[:,1:n1]
is added to S , where y? is the

corresponding optimal solution.
3. If S = ∅, the true projection Q = Q′i and the algorithm terminates. Otherwise, a new

polyhedral cone Q′i+1 is formed, whose H-representation is the union of vectors in S
and the whole inequality matrix of Q′i. Meanwhile, the V-representation of Q′i+1 is
calculated. Then, let i = i + 1 and go back to Step 2.

The condition for determining the termination of Benson’s algorithm is whether the
approximation equals the true projection, where the equivalence means that each extreme
direction of the approximation belongs to the true projection. Still based on the definition
of projection (6), an extreme direction d of the approximation Q′i is in the true projection if
there exists a vector x2 ∈ Rn−n1 such that

A[:,n1+1:n]x2 ≥ −A[:,1:n1]
d. (15)

By Gale’s Theorem [40] (Theorem 2.1), the existence of such x2 means that for any vector
y ∈ Rm such that y ≥ 0 and yTA[:,n1+1:n] = 0, the value −yTA[:,1:n1]

d must be less than or
equal to zero. Coupled with the LP in Step 2, when the optimal value is greater than or
equal to zero, we can see that the tested extreme direction d belongs to the true projection
and the temporary set S is not updated.

Therefore, in Step 3, if the optimal value of every LP in Step 2 is greater than or
equal to zero, Benson’s algorithm terminates and outputs the true projection. Otherwise,
the intermediate approximation Q′i+1 may still be strictly bigger than the true projection
and thus further refinement is inevitable.

The main cost of Benson’s algorithm is the LP in Step 2 and the representation conver-
sion in Step 3. In practice, we run Benson’s algorithm on a personal computer with an Intel
Core i9-12900K Processor and 128 gigabytes of RAM. A total of 74,880 Shannon regions are
obtained within an hour.

5.2. The Common Information Region

Recall that the common information region is defined as the intersection of many
polyhedral cones, each of which is the projection of the corresponding original polyhedral
cone. Meanwhile, in obtaining the explicit forms of the Shannon region, we have already
utilized the existing Benson’s algorithm to obtain the projection of the original polyhedral
cone. Thus, a straightforward procedure to obtain the explicit forms of the common
information region is to run Benson’s algorithm with the initialization being the Shannon
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region multiple times to obtain each projection and finally combine all projections to build
the intersection.

Such a procedure constructs the common information region in a parallel fashion since
the multiple times of running Benson’s algorithm are independent. However, we propose
an algorithm that builds the common information region by running Benson’s algorithm
multiple times in a serial fashion where they are correlated. According to our numerical
results, this algorithm is more efficient and is based on the following observation.

Lemma 2. Let Q be the projection of the polyhedral cone P . Benson’s algorithm takes the initial
approximation Q′0 and the original polyhedral cone P as an input and then actually outputs the
intersection of the initial approximation Q′0 and the true projection Q, i.e., Q′0 ∩Q.

Proof. Recall that in Benson’s algorithm, new inequalities are gradually added to the
approximation. We denote the intermediate approximation in the i-th iteration of Benson’s
algorithm by Q′i, and it follows that Q′0 ) Q′1 ) · · · ) Q′k, where k is the number
of iterations performed until termination. The proof of Q′k = Q′0 ∩ Q is conducted by
showing that the left-hand side (LHS) is inside the right-hand side (RHS) and vice versa.

The reason why the LHS is inside the RHS is that upon the termination of Benson’s
algorithm, every extreme direction of the polyhedral cone Q′k is inside the true projection
Q, according to the discussion of (15). Meanwhile, we know that Q′k ( Q

′
0, as mentioned

above, that is, each extreme direction of Q′k also belongs to Q′0. Hence, we have that
Q′k ⊆ Q

′
0 ∩Q.

The reason why the RHS is inside the LHS is that in the whole procedure of Benson’s
algorithm, only inequalities that constrain the true projection Q are added to the initial
approximation Q′0, according to the discussion of (11). In other words, the inequality
matrix of the output Q′k consists of the inequalities constraining Q′0 and some inequalities
constraining Q, then we have that Q′0 ∩Q ⊆ Q′k.

Remark 5. Benson’s algorithm requires that the initial approximation Q′0 contains the true projec-
tion Q, i.e., Q ⊆ Q′0. From the above lemma we can see that since the output of Benson’s algorithm
is the intersection of the initial approximation and the true projection, the equivalence between the
output and the true projection holds.

Remark 6. In fact, the initial approximation Q′0 can be any finitely constrained polyhedral cone,
that is, Q′0 may not contain the true projection Q. In this case, if the rest of Benson’s algorithm
remains unchanged and when it terminates, the intersection of the initial approximation Q′0 and the
true projection Q is the output, i.e., Q′0 ∩Q.

Since the common information region is defined as the intersection of many polyhedral
cones, each of which is the projection of the corresponding original polyhedral cone, we can
still adopt Benson’s algorithm to obtain the common information region based on Lemma 2
in a serial fashion, that is, the output of the previous run of Benson’s algorithm will be used
as the input for the next run of Benson’s algorithm. In the following, we use the shorthand
BA to denote Benson’s algorithm. Then, the formula Q′ = BA(Q′0,P) means that Benson’s
algorithm takes the initial approximation Q′0 and the original polyhedral cone P as an
input, then the output is assigned to Q′, which equals Q′0 ∩Q where Q is the projection of
P . We name our algorithm BA-CI, that is, Benson’s Algorithm integrated with Common
Information, which is illustrated as follows (Algorithm 2):

In the setup, when given the decoding and eavesdropping pattern pair (A,F ), n|O|,

original polyhedral cones (P (1), . . . ,P (n|O|)) are prepared, each of which is formed by
Shannon-type inequalities and the intersection of hyperplanes C1,2 ∩ CZi where CZi is
determined by the i-th common information, i ∈ [1:n|O|].
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Algorithm 2 BA-CI

Input: The Shannon regionRs
A,F and n|O| original polyhedral cones (P (1), . . . ,P (n|O|)).

Output: The common information regionRc
A,F .

1. Let the intermediate polyhedral cone T (0) = Rs
A,F and i = 1.

2. T (i) = BA(T (i−1),P (i)).
3. If i = n|O|, we have thatRc

A,F = T (i) and the BA-CI algorithm terminates. Otherwise,
let i = i + 1 and go back to Step 2.

Then, we run Benson’s algorithm in series instead of the parallel implementation.
More specifically, in the i-th iteration of the BA-CI algorithm, the information of the existing
intersection of projections Rs

A,F ∩ Q(1) ∩ · · · Q(i−1) is actually utilized to accelerate the
next run of Benson’s algorithm, where Q(j) is the projection of P (j). The reason is that
the initial approximation T (i−1) is a subset of the Shannon region which is used in the
straightforward procedure, and thus more extreme directions of T (i−1) may already belong
to the true projection Q(i), which may lead to fewer iterations.

In the BA-CI algorithm, we have to implement Benson’s algorithm in series to utilize
the intermediate result, which seems inferior compared to the straightforward procedure.
However, since LP is one of the main costs of Benson’s algorithm, one trick is to implement
different LPs in Step 2 of Benson’s algorithm on different CPU threads concurrently, which
also takes the full advantage of the CPU performance.

In practice, it takes us nearly 73 h to obtain the common information region for
74,496 different decoding and eavesdropping pattern pairs (A,F ) when the number of
middle layer nodes is five. On the other hand, the time taken by the straightforward
procedure is nearly 116 h.

In the pursuit of the entropic region, Csirmaz [44] uses the notion of Copy Lemma [28]
instead of common information and implements the straightforward procedure to obtain
non-Shannon-type inequalities. In this way, different choices of copy strings can be analyzed
since each projection is determined exactly. However, we focused on the final result
only, i.e., the intersection of many projections, which leads to the discovery of the BA-
CI algorithm.

6. Linear Achievable Schemes

Recall that the common information region, a polyhedral cone in the Euclidean space,
is an outer bound of the linear capacity region for the three-layer wiretap network. If
each extreme direction of the common information region has its corresponding linear
scheme (r, k, V1, · · · , VN), we claim that the linear capacity region is the same as the
common information region. The reason is that the definition of the V-representation of
the common information region is consistent with the definition of the linear capacity
region. Furthermore, when the Shannon region is identical to the linear capacity region,
the capacity region is also obtained since the outer bound and the inner bound meet.

In obtaining the linear scheme for secret sharing, Marten had already proposed a
method [39] that can be carried by a computer. Like secret sharing, the three-layer wiretap
network also involves the security constraint and the decodability constraint. So, it turns
out that Marten’s method can also be used to obtain the linear scheme for the three-layer
wiretap network. Moreover, we propose the IKM algorithm which shares the same core
idea of Marten’s method but is more memory saving and efficient. However, two cases
remain stuck due to the large complexity that the IKM algorithm cannot handle. To tackle
these two cases, we employ a manual method that is based on Gaussian elimination. In the
following, we will discuss these two methods, i.e., the IKM algorithm and the manual
method, in detail.
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6.1. The IKM Algorithm

Note that a linear scheme (r, k, V1, · · · , VN) can also be treated as a linear code with
generator matrix V, where

V =
[
VM V1 · · · VN

]
. (16)

That is, every codeword corresponds to a distribution of the vectors transmitted on the chan-
nels between the source node and the middle layer nodes. More specifically, a codeword

(M1, · · · , Mr, Y1,1, · · · , Y1,r1 , · · · , YN,rN ) ∈ GF(q)r+∑i=N
i=1 ri

corresponds to a distribution of N vectors where the message is (M1, · · · , Mr) ∈ GF(q)r,
the vector transmitted on channel e1 is (Y1,1, · · · , Y1,r1) ∈ GF(q)r1 and so on.

Thus, in a linear scheme, both security and decodability constraints are related to the
ranks of submatrices of the generator matrix V. Using the generator matrix formulation,
Marten’s method is based on the following observations:

(1) Recall that r is the size of the message and J is the cardinality of the eavesdropping
pattern. Then, for any eavesdropping set Ej, j ∈ [1:J], consider r special codewords such
that the components corresponding to YEj are all-zero and the components corresponding
to the message are non-zero. In this way, no matter what linear combinations are adopted,
the eavesdropper cannot recover the message. More specifically, we arrange these rJ code-
words row-wise into a matrix G and illustrate it via an example. Assume that the eaves-
dropping pattern F = {{1}, {2}, {3}} and an extreme direction (r, r1, r2, r3) = (2, 1, 1, 1) is
considered, we have that

G =



1 0 0 x1 x2
0 1 0 x3 x4
1 0 x5 0 x6
0 1 x7 0 x8
1 0 x9 x10 0
0 1 x11 x12 0

. (17)

In addition to the constant part, G also consists of the variable part that needs to be
determined later. It follows that the matrix G has already satisfied the security constraint if
we analyze the corresponding rank terms.

(2) The decodability constraint asks that each column vector of the matrix VM cor-
responding to the message is a linear combination of the column vectors from the ma-
trix VDl where V is the generator matrix, Dl is the l-th decoding set of the decoding
pattern and l ∈ [1:L]. The linear combination coefficients are arranged into a matrix
H ∈ GF(q)rL×(r+∑i∈[1:N] ri) such that VHT = 0. Note that in H, for any decoding set Dl ,
the components corresponding to Y[1:N]−Dl

are all-zero and the components corresponding
to the message are non-zero. In this way, any sink node in the bottom layer can recover the
message successfully via the linear combination. More specifically, we illustrate the matrix
H via an example. Assume that the decoding pattern A = {{1, 2}, {2, 3}} and the extreme
direction is (r, r1, r2, r3) = (2, 1, 1, 1), we have that

H =


1 0 y1 y2 0
0 1 y3 y4 0
1 0 0 y5 y6
0 1 0 y7 y8

. (18)

In addition to the constant part, H also consists of the variable part that needs to be
determined later.
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(3) Finally, we build a system of bilinear equations GHT = 0, where a feasible solution
over GF(q) means that the matrix G also satisfies the decodability constraint. So, it turns
out that the matrix G in its row echelon form can be treated as a generator matrix.

To discuss the above observations more rigorously, we introduce an index set
I0 := {(i, j):i ∈ [1:J], j ∈ [1:r]}, where r is the size of the message and J is the cardinal-
ity of the eavesdropping pattern. Furthermore, let ei be the i-th unit vector in GF(q)r where
the j-th coordinate equals 1 if j = i and 0 if j 6= i. Recall that Ei is the i-th eavesdropping
set of the eavesdropping pattern F . Then, the security constraint leads to rJ codewords
(ej, ci,j), (i, j) ∈ I0 such that

ci,j
Ei
= 0, ∀(i, j) ∈ I0, (19)

where ci,j
Ei

is the juxtaposition of ci,j
k , k ∈ Ei. On the contrary, every component of each

ci,j
[1:N]−Ei

is a variable. Actually, there is an equivalent relationship between the security
constraint for a generator matrix and the existence of these rJ codewords. For more details,
see ([39], Theorem 4.2).

Similarly, let an index set I1 := {(i, j):i ∈ [1:L], j ∈ [1:r]} where L is the cardinality
of the decoding pattern. Recall that Di is the i-th decoding set of the decoding pattern A.
Then, the decodability constraint leads to a special matrix H formalized by rL row vectors
(ej, ci,j), (i, j) ∈ I1 such that

ci,j
[1:N]−Di

= 0, ∀(i, j) ∈ I1. (20)

On the contrary, every component of each ci,j
Di

is a variable. Actually, there is an equivalent
relationship between the decodability constraint for a generator matrix and the existence of
these rL row vectors. For more details, see ([39], Theorem 4.3).

Finally, a feasible solution of the system of bilinear equations GHT = 0 leads to a
generator matrix that satisfies both the security and decodability constraints, which is
summarized formally in ([39], Theorem 6.7).

Note that after finding a feasible solution, some row vectors in G may be linearly
dependent due to exploiting the security constraint in this expanding form. Therefore, we
can perform a row-wise Gaussian elimination to obtain a minimal set of basis row vectors
of the generator matrix.

Based on Marten’s method, if we assign values to the variables of the matrix G, then
G has already satisfied the security constraint. After that, GHT = 0 can be treated as rL
systems of linear equations GHT

[i,:], i ∈ [1:rL], which plays the role of checking whether the
matrix G satisfies the decodability constraint. More specifically, if each system of linear
equations has a feasible solution, the decodability constraint of G holds. Otherwise, another
choice of the variables in G needs to be considered.

In a finite field GF(q), the number of choices of the variables in G is finite for a fixed
prime power q. For example, the matrix G in (17) has 12 different variables in total, which
corresponds to q12 different choices of the variables. To prepare every choice, we can
build the database row by row. That is, a list E = {E1, . . . , ErJ} is introduced such that
the i-th element Ei is the set of all choices of the variables in the i-th row vector of G.
For example, the first row vector of G in (17) has two variables, then E1 has q2 different
two-dimensional arrays where each component is chosen from GF(q). Moreover, let an
index array J = {j1, . . . , jrJ} indicate the position in the database E, i.e., ji indicates the ji-th
array of the set Ei. Note that ji is not greater than |Ei|, which is the cardinality of Ei. So, it
turns out that the database E and the index array J can also be used to traverse all possible
choices of the variables in G, which is more memory saving compared to the tree storing
all choices in [39].

Since the above preparation of the choices is row-wise, the procedure to test a choice
for the decodability constraint is also carried row by row to avoid some unnecessary cases.
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Similar to the database E for the matrix G, a database D0 = {D0
1, . . . , D0

rL} for the matrix
H is introduced, where each element D0

i stores all possible arrays corresponding to the
variables in the i-th row vector of H. Basically, the initial few steps are as follows:

(1) The first row vector G[1,:] is fixed by the first array of the set E1. Then, solve each
linear equation G[1,:]HT

[i,:] by exhausting the set D0
i of the database D0. Finally, the cor-

responding rL solution sets are saved in a new list D1;
(2) The second-row vector G[2,:] is fixed by the first array of the set E2. To solve each

new system of linear equations G[1:2,:]HT
[i,:], we can actually solve the linear equation

G[2,:]HT
[i,:] based on the previous solution set D1

i . Finally, the corresponding rL solution

sets are saved in a new list D2;
(3) If each set in the list D2 is not empty, i.e., each new system of linear equations

G[1:2,:]HT
[i,:] is solvable, the procedure continues to the third-row vector of the matrix G;

(4) Otherwise, we assign the second array of the set E2 to G[2,:] and solve the correspond-
ing rL linear equations again. Note that any choice of G consisting of the first array of
the set E1 and the first array of the set E2 is ignored in the procedure. In this sense, we
claim that this procedure can avoid some unnecessary cases.

We name the above procedure as the incremental kernel method, or IKM for short,
where the word incremental means that we tackle the system of bilinear equations GHT = 0
incrementally and the word kernel means that we actually solve the system of linear
equations. The detail of the IKM algorithm is as follows.

In the IKM algorithm, Step 7 means that the choice of the variables in the first i rows
of G is feasible and we will move on to the next row.

If the current choice is not feasible, we need to consider the next choice as in Step 9,
which leads to two circumstances depending on the database for the current row vector
of G. In the first circumstance, where ji ≤ |Ei|, i.e., the set Ei has not been fully explored,
we continue to solve rL linear equations for the current row vector. However, in another
circumstance, where ji > |Ei|, i.e., the set Ei has already been exhausted, we need to give up
the i-th row vector temporarily. More specifically, in Step 12 we restore the index indicating
the array for the i-th row vector to the initial position. Furthermore, in Step 13 we move to
the previous row vector, for which the next choice is prepared as indicated in Step 14.

Finally, if the IKM algorithm (Algorithm 3) reaches Step 17, it means that the size of the
finite field q needs to be larger or tighter converse results need to be found. Otherwise, there
is a feasible solution for the matrix G and thus a linear scheme is constructed successfully.

Remark 7. Our proposed IKM algorithm is essentially the same as the search algorithm proposed
by Marten in [39] (Section 5) in terms of the core idea, since both these algorithms traverse the
choices row by row. But, in terms of data structure, these two algorithm are different. That is,
the search algorithm walks in the tree storing all possible choices of the matrix G, while the IKM
algorithm traverses the choices based on the database and the index array, which is more memory
saving for a computer.

Moreover, we propose two improvements as follows:

(1) Parallel computing can be integrated, e,g., split the database set E1 into m parts and
run on m threads of a CPU concurrently. In this way, more choices are explored per
unit of time.

(2) We randomize the order of the arrays in each database set. In this way, we will obtain
an average performance since we do not know which order is better beforehand.

The time complexity of the IKM algorithm depends on the number of choices of
both G and H. Furthermore, the IKM algorithm is useful in finding the optimal linear
achievable scheme in almost all cases of the decoding and eavesdropping pattern pair
(A,F ). However, the IKM algorithm is stuck for weeks for two extreme directions due to
the large size of G and the nature of the brute force search of this algorithm. The first case is
A = {A1, A2, A3},F = {F1, F2, F3, F4, F5} with the extreme direction dO = (7, 3, 5, 5, 5, 5),
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where A1 = {1, 2, 3}, A2 = {1, 4, 5}, A3 = {2, 3, 4, 5}, F1 = {1}, F2 = {2, 4}, F3 = {3, 4},
F4 = {2, 5} and F5 = {3, 5}. The second case is A = {A1, A2, A3, A4},F = {F1, F2, F3, F4,
F5, F6} with the extreme direction (5, 6, 6, 6, 2, 5), where A1 = {1, 2}, A2 = {1, 3},
A3 = {2, 3, 4}, A4 = {1, 4, 5}, F1 = {1, 4}, F2 = {2, 4}, F3 = {3, 4}, F4 = {2, 5}, F5 = {3, 5}
and F6 = {4, 5}.

Algorithm 3 Incremental Kernel Method (IKM)

Input: Two matrices G and H consisting of the constant part and the variable part, two
corresponding databases E and D0 and an index array J for E.

Output: The matrix G full of constants or a warning.
1. Let each component of the index array J be 1 and i=1.
2. while 1 ≤ i ≤ rJ do
3. if ji ≤ |Ei| then
4. Assign the ji-th array of the set Ei to the variables of G[i,:].
5. Obtain Di from Di−1.
6. if ∀k ∈ Di, k 6= ∅ then
7. i = i + 1.
8. else
9. ji = ji + 1.

10. end if
11. else
12. ji = 1.
13. i = i− 1.
14. ji = ji + 1.
15. end if
16. end while
17. if i = 0 then
18. Raise a warning.
19. else
20. Output the matrix G.
21. end if

For these two cases, we resort to the manual method described below.

6.2. A Manual Method

Recall that a linear scheme (r, k, V1, · · · , VN) can be treated as a linear code with
generator matrix V :=

[
VM V1 · · · VN

]
, whose special codewords are utilized in

Marten’s method. Since Marten’s method fails in the two cases mentioned above, we turn
our attention to the original generator matrix V. To build a generator matrix that satisfies
the security and decodability constraints, two difficulties arise at first glance.

(1) How to choose an appropriate number of randomness, i.e., k;
(2) When k is fixed, the size of the generator matrix is also fixed, i.e., (r + k) × (r +

∑i∈[1:N] ri). Then, how to determine each component?

For the first difficulty, we can seek help from the converse part. Take the first case as an
example, whose corresponding Shannon region is the same as the common information re-
gion. Recall that the Shannon region is the projection of the polyhedral cone Γ|O| formed by
Shannon-type inequalities under security constraint C1 and the decodability constraint C2
onto the set of coordinates hO . Then, in the polyhedral cone Γ|O| ∩C1 ∩C2, we extract the in-
tegral extreme direction containing the sub-vector dO and it turns out to be unique, denoted
by d = [7, 3, 10, 5, 12, 8, 13, 5, 12, 8, 13, 10, 13, 13, 13, 5, 12, 8, 13, 9, 16, 12, 16, 9, 16, 12, 16, 13, 16,
16, 16, 5, 12, 8, 13, 9, 16, 12, 16, 9, 16, 12, 16, 13, 16, 16, 16, 10, 13, 13, 13, 13, 16, 16, 16, 13, 16, 16, 16,
16, 16, 16, 16], in the usual binary order of dM, dY1 , dM,Y1 , dY2 , . . . , dO . So the number of ran-
domness can be set to dO − dM, which is 9 in the first case.
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In fact, finding a generator matrix, an arrangement of N + 1 matrices VM, V1, . . . , VN,
whose 2N+1 − 1 rank terms correspond to the vector d is a representable polymatroid problem
[32] (Section 5). Since the security and decodability constraints are related to the rank terms
only, they are both already satisfied in the vector d. Finally, to tackle the second difficulty, we
construct the generator matrix corresponding to d based on the following two ideas:

(1) The N + 1 matrices are constructed one by one. That is, when constructing the i-th matrix,
i ≥ 2, the actual representations constructed for the i− 1 matrices are utilized to fulfill the
rank terms of d[2i−1 :2i−1] simultaneously. More specifically, 2i−1 values calculated from d
are needed, which are dYi−1 , dM,Yi−1 − dM, dY1,Yi−1 − dY1 , . . . , dM,Y1,...,Yi−1 − dM,Y1,...,Yi−2 ,
and we use the shorthand dYi−1 , dYi−1|M, dYi−1|Y1

, . . . , dYi−1|M,Y1,...,Yi−2
. Note that for any

A ⊆ {M, Y1, . . . , Yi−2}, the value dYi−1|A means that the space spanned by the column
vectors of the matrix corresponding to A ∪ {Yi−1} has dYi−1|A more basis vectors than
the space spanned by the column vectors of the matrix corresponding to A.

(2) Gaussian elimination is exhaustively used to divide the matrix under construction
into the constant part and the variable part. The final variable part is handled by
human experience or a computer carrying the brute force search.

In Gaussian elimination, there are three types of elementary row operations on a matrix
that does not alter its rank: swapping two rows, multiplying a row by a nonzero number
and adding a multiple of one row to another row. It is similar for elementary column
operations. For a generator matrix V of the three-layer wiretap network, we give the
following trivial observation:

Lemma 3. For any generator matrix V consisting of N + 1 matrices VM, V1, . . . , VN , there are
two operations such that the corresponding 2N+1 − 1 rank terms of the changed form V′ are the
same as that of the original V:

1. Elementary row operations on the whole matrix V.
2. Elementary column operations on any matrix Vi, i ∈ {M, 1, . . . , N}.

The proof is simple and directly follows from the fact that Gaussian elimination does
not alter the rank of the matrix.

Remark 8. It is known that when using elementary row (column) operations, a matrix can always be
transformed into the reduced row (column) echelon form, which is unique and consists of some fixed
constants. We use these two operations in Lemma 3 to set some components of the generator matrix to be
constants, which makes the later construction easier since we can rely on the existing actual representation.

Take the first case as an example, we illustrate our construction procedure. Due to
space limitation, we only show the first four matrices, which are in (21):

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0 x1 x2
0 0 0 x3 x4
0 0 0 x5 x6
0 0 0 x7 x8
0 0 0 x9 x10
0 0 0 x11 x12
0 0 0 x13 x14
0 0 0 y1 y2
0 0 0 y3 y4
0 0 0 y5 y6
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

z1 z2 z3 z4 z5
z6 z7 z8 z9 z10
z11 z12 z13 z14 z15
z16 z17 z18 z19 z20
z21 z22 z23 z24 z25
z26 z27 z28 z29 z30
z31 z32 z33 z34 z35
a1 a2 a3 b1 b2
a4 a5 a6 b3 b4
a7 a8 a9 b5 b6
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



. (21)
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The first matrix VM is always the identity matrix IdM stacked vertically with an all-zero
matrix, since for any generator matrix meeting the integral extreme direction d, it can be
transformed into the reduced row echelon form by elementary row operations. We have
dY1|M = 3 for the second matrix V1, where the rank of the submatrix formed by the last
nine rows must be 3 since VM is fixed. Then, by elementary row operations, we have an I3
and the others are all-zero.

Since the first two matrices are fixed and dY2|M,Y1
= 3, in the third matrix V2 the rank

of the submatrix formed by the last six rows is 3. We use both elementary row and column
operations to get an I3, while the submatrix above I3 and the other elements of the last six
rows are all zero. As all four values for V2 need to be filled, from dY2|M = 5, we have the
rank of the last nine rows to be 5, then the y block is full rank and needs to be determined
later. Since dY2|Y1

= 5, it is similar for the x block.
Next, consider the fourth matrix V3, via dY3|M,Y1,Y2

= 0. We leave the last three rows
to be all zero and no elementary row operation can be implemented in this matrix since
the three matrices constructed before are fixed. Nevertheless, as dY3|M,Y1

= 3, we use
elementary column operations to obtain an I3 concatenated with an 03×2 above the last
three rows, and no further operation can be performed in V3. Since dY3|Y1,Y2

= 5, we have
the matrix of size 7× 7, which is a concatenation of the x block and the z block, that is
full rank. We can learn that the z block alone is full rank, as dY3 = 5 and by the non-
decreasing property of rank terms, it follows that dY3|Y1

= dY3|Y2
= 5 is already satisfied.

From dY3|M = 5, we need the b block to be full rank. For dY3|M,Y2
= 1, the matrix which is

the concatenation of the y block, the a block and the b block needs to be full rank.
The other matrices are constructed in a similar way, i.e., leaving the final variable part

to be determined by trial and error. Sometimes, these variables can be found with the
assistance of a computer, which carries out a brute force search.

Remark 9. The first idea that constructs the matrices one by one is learned from [32] Section 5),
where the authors faced the problem of verifying tremendous extreme directions and they handled
the i-th matrix by 2i−1 values in a combinatorial style without actual numerical vector construction.
On the other hand, our method uses the actual matrices constructed before for the matrix under
construction. Moreover, by Gaussian elimination, we determine the constant part without loss of
generality since the reduced row (column) echelon form is unique. The variable part is decided at last
to satisfy all elements of the vector d simultaneously, by hand or computer with brute force search.

Remark 10. There is a computational framework provided by [48] where group theoretic techniques
for combinatorial generation are utilized. However, we were not able to get any results for weeks.
In contrast, we used the manual method to tackle the two cases within four days. Still, when the
number of matrices |O| is larger, we do not think this manual method is efficient due to the number
of rank terms growing exponentially. Thus, we are not sure if the manual method would still work
for |O| ≥ 7, i.e., the number of middle-layer nodes is six.

7. Conclusions

In this paper, we have studied the capacity region of a three-layer wiretap network
that is a generalization of the secret sharing problem. By numerical experiments, we find
that the capacity regions are explicit polyhedral cones when the number of middle-layer
nodes is less than or equal to four. There are 274 non-tight decoding and eavesdropping
pattern pairs when the number of middle-layer nodes is five, where we only obtain the
linear capacity regions. The capacity regions for the other 74,222 pairs are found. In
obtaining converse results, we combine an existing bound for secret sharing or the wiretap
network and Benson’s algorithm to obtain the Shannon region, which is an outer bound
of the capacity region. Moreover, we modify Benson’s algorithm to obtain the common
information region, which is an outer bound of the linear capacity region. In achievability,
we propose the IKM algorithm and a manual method to obtain the linear schemes.
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