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Abstract: Heart rate variability (HRV) is used as an index reflecting the adaptability of the autonomic
nervous system to external stimuli and can be used to detect various heart diseases. Since HRVs are
the time series signal with nonlinear property, entropy has been an attractive analysis method. Among
the various entropy methods, dispersion entropy (DE) has been preferred due to its ability to quantify
the time series’ underlying complexity with low computational cost. However, the order between
patterns is not considered in the probability distribution of dispersion patterns for computing the
DE value. Here, a multiscale cumulative residual dispersion entropy (MCRDE), which employs a
cumulative residual entropy and DE estimation in multiple temporal scales, is presented. Thus, a
generalized and fast estimation of complexity in temporal structures is inherited in the proposed
MCRDE. To verify the performance of the proposed MCRDE, the complexity of inter-beat interval
obtained from ECG signals of congestive heart failure (CHF), atrial fibrillation (AF), and the healthy
group was compared. The experimental results show that MCRDE is more capable of quantifying
physiological conditions than preceding multiscale entropy methods in that MCRDE achieves more
statistically significant cases in terms of p-value from the Mann–Whitney test.

Keywords: electrocardiogram; heart rate variability; R-R interval; cumulative residual dispersion
entropy; complexity

1. Introduction

The physiological system is regulated by systems interacting across multiple spatial
and temporal scales. Such systems generate complex variations with information related
to dynamic systems [1]. The complexity of physiological systems has a property of dy-
namic models reflecting the ability to respond and adapt to the ever-changing environment.
Thus, quantifying a system’s complexity is a prospective tool for analyzing physiological
systems with non-static, nonlinear, and complex behaviors [2–5]. Such complexity anal-
ysis of physiological signals can help to extract primary information about the dynamic
relationship of systems in changes related to human statuses, such as aging, emotions,
and diseases. Moreover, it becomes essential to quantify physiological signals in clinical
diagnosis and prognosis cases for medical devices and healthcare, which have recently
received increasing attention.

Entropy has been broadly used as a measure to prove the existence of deterministic
chaos from data [6,7]. Richman et al. devised sample entropy (SampEn) which analyzes the
degree of self-similarity of the signals [8]. SampEn has been utilized in analyzing various
types of signals [9,10]. Despite SampEn’s capability, it is vulnerable to short-length signals
and is not feasible for real-time applications due to computational complexity, especially
for long signals. Another widely used entropy has been permutation entropy (PE), which
captures the order relations between values of a time series and extracts a probability
distribution of the ordinal patterns. Although PE is computationally simple and fast [11,12],
it does not consider the amplitude of information, such as the mean value of amplitudes
and differences between amplitudes values.
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As an alternative entropy measure, dispersion entropy (DE), which uses symbolic
patterns and Shannon entropy to quantify the uncertainty of time series, has been intro-
duced [13]. DE generates symbolic patterns, named dispersion patterns, transforming an
original time series into a new signal with only a few constituents. As a result, some specific
information may be lost, but certain invariant and robust features may be preserved [14–16].
Unlike PE, DE does not need to calculate every distance between two composite delay vec-
tors consisting of embedding dimensions m and m + 1, so DE gains a lower complexity cost.
In addition, DE is more capable of capturing features of changing amplitude, frequency,
and bandwidth of time series. Thus, DE can be a more suitable method than SampEn and
PE for real-time processing applications such as medical diagnosis.

Despite these strengths of DE, it also has drawbacks. DE does not consider the order of
each pattern in the probability distribution of the dispersion pattern. For example, suppose
there are four dispersion patterns for any two signals. The probability of each dispersion pat-
tern of one signal is P1 = {0.4, 0.3, 0.2, 0.1} and the other one is P2 = {0.1, 0.2, 0.3, 0.4}.
The DE values for these two distributions are equal because each entropy value is calculated
with only each probability without considering the order of patterns. However, those two
probability distributions are different, so the ability to distinguish between the signals
forming those two distributions is not sufficient. This could make distinguishing between a
biological signal with a high distribution of dispersion patterns corresponding to a low am-
plitude and one with a high distribution of dispersion patterns relating to a high amplitude
challenging. As a result, reliable clinical diagnosis may be difficult. A cumulative residual
entropy (CRE) has been used to solve this problem [17]. CRE uses a cumulative distribution
function instead of a probability density function to identify the information for continuous
variables. The probability distribution function in CRE results in more generality and
universal properties than the conventional Shannon entropy [17,18]. CRE has been utilized
in a variety of applications in this regard, including image signal processing and pattern
recognition [16,17,19,20]. Several studies have shown that considering the order of the
patterns improves the analysis of physiological and clinical signals [21,22]. However, the
entropy methods mentioned above measure the irregularity of the time series, yielding
that it may fail to capture the complexity of the time series. To solve this issue, Costa
et al. [23,24] have developed a multiscale entropy analysis that characterizes the complexity
of a time series over multiple scales of time. This multiscale entropy analysis has effectively
represented the dynamical characteristics of an underlying time series.

Here, a multiscale cumulative residual dispersion entropy (MCRDE), which computes
the cumulative residual dispersion entropy (CRDE) over multiple temporal scales, is
presented. Combining three entropy algorithms for the first time, the suggested method
inherits the benefits of DE, CRE, and multiscale entropy. As a result, the proposed MCRDE
improves the capability for quantifying the temporal dynamics of the underlying time
series. To validate the capability of the proposed MCRDE, we first compare the performance
of MCRDE with the conventional multiscale SampEn (MSE) and multiscale DE (MDE)
using synthetic signals, i.e., the white Gaussian noise (WGN) and 1/f noise. Next, the
proposed MCRDE is applied to inter-beat (RR) intervals extracted from the ECG signals
of congestive heart failure (CHF) patients, atrial fibrillation (AF) patients, and healthy
subjects. Through experiments, using public ECG datasets, the proposed MCRDE leads to
an improved capability for quantifying physiological status compared to the conventional
multiscale entropy methods regardless of the length of inter-beat intervals.

The remainder of this paper is organized as follows: DE, CRE, and the proposed
MCRDE are introduced in Section 2. In Section 3, the results using synthetic signal and ECG
datasets are presented to verify the effectiveness of the proposed MCRDE. Then, discussions
for the results are described in Section 4. Finally, Section 5 presents the conclusions.
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2. Materials and Methods
2.1. Dispersion Entropy (DE)

Assume we have a signal of length N: x = {x1, x2, · · · , xN}; DE algorithm is com-
posed of the following four steps as follows [13]:

(1) First, xi(i = 1, 2, · · · , N) are mapped to c classes labeled from 1 to c. In the map-
ping process, there are various linear and nonlinear mapping techniques. Although
the linear mapping algorithm is computationally fast, if the maximum or minimum
values of a signal are much larger or smaller than the mean or median value of the
signal, the majority of xi is biased only toward few classes. Here, the normal cumu-
lative distribution function (NCDF) for mapping x into y = {y1, y2, · · · , yN} from
0 to 1 is used. Each embedding vector um,c

i is made with embedding dimension m

and time delay d according to um,c
i =

{
uc

i , uc
i+d, · · · , uc

i+(m−1)d

}
, i = 1, 2, · · · , N −

(m− 1)d. Each time series um,c
i is mapped to a dispersion pattern πv0, v1, ··· ,vm−1 ,

where uc
i = v0, uc

i+d = v1, · · · , uc
i+(m−1)d = vm−1. The number of available disper-

sion patterns can be assigned to each vector um,c
i which is equal to cm because the

signal is made up of m members and each can be one of the integers from 1 to c.
(2) For each of cm possible dispersion patterns πv0, v1, ··· ,vm−1 , relative frequency is com-

puted as follows:

p
(
πv0, ··· ,vm−1

)
=

#
{

i
∣∣i ≤ N − (m− 1)d, um,c

i has type πv0, ··· ,vm−1

}
N − (m− 1)d

(1)

where # denotes cardinality. In fact, p
(
πv0, ··· ,vm−1

)
denotes the number of dispersion

patterns πv0, v1, ··· ,vm−1 that are assigned to um,c
i divided by the whole number of

embedded signals with embedding dimension m.
(3) Lastly, DE is obtained using the Shannon entropy approach [25] as follows:

DE(x, m, c, d) = −∑cm

π=1 p
(
πv0, ··· ,vm−1

)
·ln
(

p
(
πv0, ··· ,vm−1

))
(2)

For example, x = {0.1 2 3 2.2 3.5 5.7 2.5 3.4 7.3 1} is considered and shown on the
top left of Figure 1. DE of x with d = 1, m = 2, and c = 3 is computed in Table 1 and
Figure 1. Table 1 shows the dispersion patterns and their probability. Figure 1 shows
the time series x, classified series z, potential dispersion patterns and probability of
each potential dispersion pattern.
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Figure 1. Examples of the DE algorithm using series x = {0.1 2 3 2.2 3.5 5.7 2.5 3.4 7.3 1} with
c = 3, m = 2, τ = 1.
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Table 1. Dispersion patterns and the probability of each corresponding dispersion pattern.

z z2,3
1 z2,3

2 z2,3
3 z2,3

4 z2,3
5 z2,3

6 z2,3
7 z2,3

8 z2,3
9

Dispersion Pattern {1,1} {1,2} {2,2} {2,2} {2,3} {3,2} {2,2} {2,3} {3,1}
π π11 π12 π22 π22 π23 π32 π22 π23 π31
P 1

9
1
9

3
9

3
9

2
9

1
9

3
9

2
9

1
9

Next, a window with length 2, which is an embedding dimension, is moved along the
time series and the number of each of the corresponding dispersion patterns is counted. Fi-
nally, using Equation (2), DE value of x is calculated as DE(x, 2, 3, 1) = −∑ p(π)ln(p(π)) =
1.0297. It is noted that if all potential patterns occur equally, the value of DE will be the
largest. On the other hand, if only certain patterns happen regularly, the value of DE will
be the smallest.

2.2. Cumulative Residual Entropy (CRE)

Cumulative residual entropy (CRE) is more applicable and generable than traditional
Shannon entropy since it is plausible for continuous distributions [17,18]. For a given
random vector x = {x1, x2, · · · , xN} ∈ RN , CRE is obtained as follows:

CRE(x) = −
∫

RN
+

P(|x| > λ)log P(|x| > λ)dλ (3)

where λ = (λ1, λ2, · · · , λN), |x| > λ represents |xi|> λi and RN
+ =

(
xi ∈ RN ; xi ≥ 0

)
.

Next, CRE computation is applicable for a discrete version. For independent and
identical distributed discrete random variables, F(x) is the cumulative density function
and Fn(x) = 1

n ∑n
i=1 I{x≥xi} is empirical distribution function corresponding to each random

variable, where I{x≥xi} is the indicative function. CRE is obtained using

CRE(x) = −
∫ ∞

0 (1− Fn(x))log(1− Fn(x))dx
= − 1

n ∑n−1
i=1

n
n−i log n

n−i (xi+1 − xi)
(4)

Here, it is assumed that x is order statistics. In addition, the empirical distribution function
is obtained using

Fn(x) =


0, x < x∗1
k
n , x∗k ≤ x < x∗k+1
1, x ≥ x∗N

(5)

where x∗1 ≤ x∗2 ≤ · · · ≤ x∗N are ascending order statistics.
CRE possesses the following properties: (1) Although both continuous and discrete

variables have valid definitions, estimating the empirical distribution for differential en-
tropy of continuous variables is difficult. (2) CRE has nonnegative values. (3) CRE eventu-
ally converges.

2.3. Cumulative Residual Dispersion Entropy (CRDE)

For an N possible dispersion patterns, the entropy of s is obtained with
−∑N

k=1 P{sk}·log(P{sk}) based on classical Shannon entropy [25]. Here, P{sk} means
the probability of occurrence of the dispersion pattern sk. Assume that two distinct sig-
nals have four dispersion patterns s = {s1, s2, s3, s4}. As mentioned in the introduction,
DE does not consider the order between each dispersion pattern while calculating the
entropy value.

This study addresses the above shortcoming of DE by integrating CRE, thus yielding
cumulative residual dispersion entropy (CRDE). The proposed CRDE is computed as
follows: First, the probability distribution for possible dispersion patterns was computed



Entropy 2023, 25, 1562 5 of 20

as DE. Second, we calculate the cumulative density function for the probability distribution
of dispersion patterns. Finally, CRDE is obtained with

CRDE(x) = −
K

∑
j=1

(
1−

j

∑
i=1

P{si}
)
·log

(
1−

j

∑
i=1

P{si}
)

(6)

where K is the total number of dispersion patterns, and P{si} is the probability of occurrence
of a dispersion pattern si. Since forming the dispersion pattern is the same as DE, CRDE
can maintain the property of DE that is sensitive to amplitude values and bandwidth of
time series.

2.4. Multiscale Analysis of CRDE

To make CRDE applicable to the multiscale analysis of time series, a coarse-graining
procedure is integrated to generate multiple sets of time series with different time scales.
For a given original time series x = {x1, x2, · · · , xN} of length N is divided into non-
overlapping windows according to the time scale factor s. Then, a consecutive coarse-
grained time series ys =

{
ys

1, ys
2, · · · , ys

N/s

}
is developed, which consist of multiple ys

j . It
is obtained with

ys
j =

1
s ∑j·s

i=(j−1)s+1 xi, (1 ≤ j ≤ N
s
) (7)

For the scale factor s = 1, the coarse-grained time series y1 =
{

y1
1, y1

2, · · · , y1
N
}

is
identical with the original time series x. In general, the length of the time series after
coarse-graining is equal to N of the original time series divided by the scale factor s. This
multiscale analysis allows the assessment of the dynamic complexity associated with the
ability of physiological systems to adapt to changing environments. Finally, we calculate
multiscale CRDE (MCRDE) on the coarse-grained time series as follows:

MCRDE(x, s) = CRDE(ys). (8)

2.5. Synthetic Data and Real ECG Data

The synthetic data used in this work are 1/f noise and White noise. 1/f noise is also
called pink noise. It is one of the most common behaviors of biological systems. This noise
possesses a long-range autocorrelation property in which the power spectral density is
inversely proportional to the frequency of a signal. In contrast with White noise, it has a
constant power spectral density at different frequencies. Figure 2a,b depict examples of 1/f
noise and WGN, respectively.
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Real ECG datasets, i.e., BIDMC CHF, MIT-BIH AF, and Fantasia are obtained in
PhysioNet [26]. Specifically, BIMD CHF contains ECG records of 15 patients with CHF,
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consisting of eleven men aged 22–47 years and four women aged 54–63 years. Each
recording is approximately 20 h in duration with a sampling frequency of 250 Hz. MIT-BIH
AF database includes 25 long-term (10 h) ECG recordings of twenty-three paroxysmal and
two persistent. The Fantasia dataset contains 20 healthy subjects aged 21–34 years and
20 elderly subjects aged 68–85 years. Each recording is approximately 2 h in duration and
sampled at 250 Hz. RR intervals with lengths of N = 1000 were randomly extracted from
ECG recordings. Recording an ECG signal typically involves placing electrodes on the skin
at specific locations to capture the electrical activity of the heart. Then, the ECG lead that
gives the clearest R waves is chosen, followed by the detection of QRS waves. The R and
QRS waves are extracted using the Pan-Tompkins algorithm [27]. Then, the RR interval
on the ECG signal is obtained as the time between consecutive R waves, which are the
prominent upward spikes seen on an ECG trace. The representative RR interval time series
of CHF patient, AF patient, and healthy subject are shown in Figure 3a–c. For analyzing
ECG signals, MATLAB 2020b version was used.
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2.6. Statical Analysis Method

We performed the Mann–Whitney U test, also known as the Wilcoxon rank-sum test,
to verify whether a distinction using the proposed MCRDE between different groups is
statistically significant. The Mann–Whitney U test is a non-parametric statistical test that
is used to determine whether there is a difference between two independent samples. It
is often used when the data are not normally distributed or when the sample sizes are
small. In this test, the null hypothesis was that the two groups are indifferent, and the
significance probability p-value was the probability of an observed result assuming that
the null hypothesis is true. Generally, if the p-value is less than 0.05 or 5%, the results
are considered “statistically significant”. This implies that the observed data or results
are unlikely to be due to chance, suggesting a high likelihood of a meaningful difference
between the entropy values of different groups.

3. Results
3.1. Simulations Using Synthetic Data

In order to compare the performance of the proposed MCRDE to that of the conven-
tional MDE, the simulations using two synthetic signals, i.e., 1/f noise and WGN were
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conducted. In this simulation, the predefined parameters for DE as the number of classes
c = 3 and the embedding dimension m = 3 were used.

Figure 4 shows the probability density function (PDF) of possible dispersion patterns
which are presented with normalized values and corresponding cumulative distribution
curves of the probability distribution for the possible dispersion patterns. The histogram
of the dispersion pattern for WGN is roughly a normal distribution shown in Figure 4a.
However, 1/f noise has a left-skewed distribution. As can be seen, 1/f noise has a steeper
accumulation rate, resulting in relatively higher complexity than WGN.
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Figure 4. The histogram for possible dispersion patterns and cumulative distribution curves (the
solid red line) for synthetic signals: (a) WGN, N = 1000 and (b) 1/f noise, N = 1000.

Figure 5a,b demonstrate the entropy values of MDE and MCRDE consisted of
50 different 1/f noise and WGN with the length of N = 1000, respectively. It has been
known that 1/f noise has a higher complexity than WGN [26,27]. The results of MDE in
Figure 5a show two folds: First, at small scale factors less than 5, MDE values of WGN are
higher than those of 1/f noise. Second, as the scale factor increases, MDE values of 1/f
noise remain nearly constant, while MDE values of WGN monotonically decrease. The
results of MCRDE in Figure 5b shows that MCRDE values of 1/f noise computed remain
almost constant. In addition, the entropy values of WGN by MCRDE are less than those of
1/f noise by MCRDE on all scale factors and decrease as the scale factors increase. These
results imply that the proposed MCRDE is more capable of discriminating complexity in
underlying synthetic signals compared to MDE.
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Figure 5. Entropy values for synthetic signals: (a) results of MDE for N = 1000; (b) results of MCRDE
for N = 1000; scale range of 1–25 are used, and the value at each scale represents a mean ± standard
deviation.
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3.2. Experimental Results of ECG Dataset
3.2.1. Comparison of Entropy Measures for Distinct Cardiovascular Signals

Using the ECG database, the RR interval time series extracted from the ECG signals
were analyzed using MSE, MDE, and the proposed MCRDE. The Mann–Whitney U test
was used to verify the statistical difference among the three groups. Here, we set the
significance level of the hypothesis test decision to 0.05; thus, statistical significance is
accepted in cases of p < 0.05.

Figure 6a–c depict the histograms for dispersion patterns and corresponding cumu-
lative distribution curves for the RR interval time series of three groups, respectively. As
can be seen, the slope of the cumulative distribution curve decreases in the order of CHF
patient, AF patient, and healthy subject. As shown in Figure 6, the variation in RR intervals
of CHF patients is the smallest among the three groups. In addition, the occurrence of the
dispersion patterns is concentrated on low values, and the slope of the cumulative distribu-
tion curve is the highest among the three groups. In the case of AF patients, the RR interval
shows more diverse dispersion patterns, and the slope of the cumulative distribution
curve is smaller than that of CHF. Lastly, the RR interval of the healthy subject shows the
most significant variation among the three groups, implying that more diverse dispersion
patterns occur, and thus, its slope of the cumulative distribution curve is the lowest.

Entropy 2023, 25, x FOR PEER REVIEW 8 of 20 
 

 

  
(a) (b) 

Figure 5. Entropy values for synthetic signals: (a) results of MDE for N = 1000; (b) results of MCRDE 
for N = 1000; scale range of 1–25 are used, and the value at each scale represents a mean ± standard 
deviation. 

3.2. Experimental Results of ECG Dataset 
3.2.1. Comparison of Entropy Measures for Distinct Cardiovascular Signals 

Using the ECG database, the RR interval time series extracted from the ECG signals 
were analyzed using MSE, MDE, and the proposed MCRDE. The Mann–Whitney U test 
was used to verify the statistical difference among the three groups. Here, we set the sig-
nificance level of the hypothesis test decision to 0.05; thus, statistical significance is ac-
cepted in cases of 𝑝 < 0.05. 

Figure 6a–c depict the histograms for dispersion patterns and corresponding cumu-
lative distribution curves for the RR interval time series of three groups, respectively. As 
can be seen, the slope of the cumulative distribution curve decreases in the order of CHF 
patient, AF patient, and healthy subject. As shown in Figure 6, the variation in RR intervals 
of CHF patients is the smallest among the three groups. In addition, the occurrence of the 
dispersion patterns is concentrated on low values, and the slope of the cumulative distri-
bution curve is the highest among the three groups. In the case of AF patients, the RR 
interval shows more diverse dispersion patterns, and the slope of the cumulative distri-
bution curve is smaller than that of CHF. Lastly, the RR interval of the healthy subject 
shows the most significant variation among the three groups, implying that more diverse 
dispersion patterns occur, and thus, its slope of the cumulative distribution curve is the 
lowest.  

   
(a) (b) (c) 

Figure 6. The histogram for possible dispersion patterns and cumulative distribution curves (the 
solid red line) for RR intervals of three groups: (a) CHF patient, (b) AF patient, and (c) healthy sub-
ject. 

0 5 10 15 20 25
Scale

0

0.5

1

1.5

2

2.5

3

3.5

M
D

E

WGN
1/f

CHF patient

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized dispersion patterns

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ilit

y 
de

ns
ity

AF patient

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized dispersion patterns

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ilit

y 
de

ns
ity

Healthy subject

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized dispersion patterns

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ilit

y 
de

ns
ity

Figure 6. The histogram for possible dispersion patterns and cumulative distribution curves (the
solid red line) for RR intervals of three groups: (a) CHF patient, (b) AF patient, and (c) healthy subject.

The results of MSE, MDE, and MCRDE for RR interval time series for lengths of
N = 100 and 1000 are shown in Figures 7a–c and 7d–f, respectively. Here, to compare the
quantification capability of the complexity of short and relatively sufficient lengths of RR
intervals, N = 100, 250, 500, and 1000 were chosen. In Figure 7a, MSE values are not defined
on most scales, highlighting the limitation of MSE in analyzing short-term RR interval time
series. In Figure 7b, the MDE values in the case of N = 100 exhibit a decreasing trend as
the scale factor increases due to the insufficient length of a coarse-grained RR interval. In
addition, distinguishing the complexity of the three groups appears to be complicated.

The results of MSE, MDE, and MCRDE for RR Interval time series for lengths of
N = 100 and 1000 are shown in Figures 7a–c and 7d–f, respectively. Here, to compare the
quantification capability of the complexity of short and relatively sufficient lengths of RR
intervals, N = 100, 250, 500, and 1000 were chosen. In Figure 7a, MSE values are not defined
on most scales, highlighting the limitation of MSE in analyzing short-term RR interval
time series. In Figure 7b, the MDE values in the case of N = 100 exhibit a decreasing trend
as the scale factor increases due to the insufficient length of a coarse-grained RR interval.
In addition, distinguishing the complexity of the three groups appears to be complicated.
On the other hand, as illustrated in Figure 7c, the MCRDE values for RR interval time
series of length N = 100 are defined across all scales. In addition, MCRDE can capture the
complexity difference between the three groups.
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Figure 7. MSE, MDE, and MCRDE results of RR intervals for CHF patients, AF patients and healthy
group: (a) MSE for N = 100; (b) MDE for N = 100; (c) MCRDE for N = 100; (d) MSE for N = 250;
(e) MDE for N = 250; (f) MCRDE for N = 250; (g) MSE for N = 500; (h) MDE for N = 500; (i) MCRDE
for N = 500; (j) MSE for N = 100; (k) MDE for N = 500; (l) MCRDE for N = 500. The scale factor
ranges from 1 to 25. The entropy value at each scale factor represents a mean ± standard deviation.
The asterisks indicate a significant difference between groups obtained via Mann–Whitney U test
(p < 0.05).

Figure 7d shows the results of MSE for RR interval with N = 250. Although the MSE
computation is available on small scale factors, MSE values are not defined on large scale
factors. In Figure 7e, MDE values for RR interval with N = 250 show that MDE does not
easily reflect the complexity difference between CHF, AF, and healthy groups. Figure 7f
exhibits the results of MCRDE. As shown in the figure, MCRDE is not only well defined on
all scales but also discriminates the complexity of three groups in order of CHF, AF, and
healthy subjects.

Figure 7g–i show results of MSE, MDE, and MCRDE for RR interval with N = 500,
respectively. In Figure 7g, MSE values are obtained, but it is hard to discriminate the
complexity of three groups. In Fiigure 7h, MDE values are not able to differentiate three
groups. On the other hand, MCRDE in Figure 7i shows the difference in complexity
between the three groups more effectively compared to N = 100 and 250.

In Figure 7j, the result of the MSE values is defined across most scale factors when
the time series is sufficiently long as N = 1000. The MSE values of the healthy group are
distinguishable from other groups. However, the gap between MSE values from CHF
and AF patients is inconsistent across the scale factors. It may lead to an incapability to
discriminate the complexities between the three groups. In Figure 7e, the MDE value for
N = 1000 represents an improved capability for differentiating the entropy values from
the three groups compared to the results of MDE for N = 100. Although the results of
MDE show more discriminative trends than those of MSE, it is possible to distinguish three
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groups only at the scale factor s = 3, 4, and 6. In Figure 7f, MCRDE results represent a
more significant improvement in discriminating the complexities of the three groups. The
larger the scale factor, the more apparent the difference in the MCRDE values. Moreover,
the statistical analysis also shows that the use of MCRDE leads to a significant difference
between the three groups at most scale factors above s = 10.

The cumulative distribution of healthy group reaches one more slowly than other
groups, implying a broader dispersion pattern. On the contrary, the cumulative distribution
of CHF patients rises to one most rapidly due to the significant skewness of its dispersion
pattern. The slower the cumulative distribution reaches one, the lower the MCRDE value is.

3.2.2. Comparison of Entropy Measures for Healthy Young and Elderly Groups

We compared the entropy values for the RR interval time series of healthy young and
elderly subjects. We chose the length of RR interval of N = 100, 250, 500, and N = 1000.

Figure 8a–c depict the results of MSE, MDE, and MCRDE for RR interval time series
of two groups for N = 100. In Figure 8a, MSE values are not obtained at large scale factors
and at small scale factors less than 4, MSE values of two groups are statistically different.
In Figure 8b, MDE values of two groups are nearly indistinguishable, thus suffering from
statistically discriminating two groups. On the contrary, the MCRDE results in Figure 8c
demonstrate its ability to differentiate the complexity between two groups even for short
RR interval time series, especially at scale factors less than 13.

In Figure 8d–f, the results of MSE, MDE, and MCRDE for RR interval time series of
two groups for N = 250 are shown. In Figure 8d, MSE values at large scale factors such as
s = 24 and 25 are not defined for young subject, and MSE is capable of differentiating two
groups at the scale factors 5 or less. In Figure 8e, MDE values of two groups exhibit similar
behavior and it shows statistical difference at the scale factors s = 1, 2, 9, and 15. Figure 8f
shows that MCRDE is capable of discriminating two groups over all scale factors.
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Figure 8. MSE, MDE, and MCRDE results of RR intervals for healthy and old group: (a) MSE
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(f) MCRDE for N = 250; (g) MSE for N = 500; (h) MDE for N = 500; (i) MCRDE for N = 500; (j) MSE
for N = 100; (k) MDE for N = 500; (l) MCRDE for N = 500. The scale factor ranges from 1 to 25. The
entropy value at each scale factor represents a mean ± standard deviation. The asterisks indicate a
significant difference between groups obtained via the Mann–Whitney U test (p < 0.05).

Figure 8g–i shows results of MSE, MDE, and MCRDE for RR interval with N = 500,
respectively. The MSE results in Figure 8g show that two groups has statistically different
complexity at small scale factors. The MDE results in Figure 8h indicate that MDE values of
young subjects are higher than those of old subjects at the scale factors s = 4 or less, but the
opposite trend is shown for the scale factors above 6. In addition, at several scale factors, it
is possible to discriminate two groups using MDE values. In Figure 8i, the MCRDE values
of old subjects are consistently higher than those of young subjects over all scale factors.
Moreover, using MCRDE values leads to significant differentiation between two groups.

For sufficient long RR interval time series of N = 1000, MSE values are computed
over all scale factors and can capture statistical differences at small scale factors, which is
shown in Figure 8d. In Figure 8e, MDE values from two groups are differentiable, except
for the scale factor between 4–9 and 21. This result implies that MDE is more capable of
discriminating two groups than MSE. Finally, the results of MCRDE shown in Figure 8f
demonstrate that MCRDE has a superior capability in discriminating the complexity of
two groups across all scale factors. Through comparison results in Figure 8, it is clear that
MCRDE is suitable for quantifying age-dependent cardiological complexity.

3.2.3. Statistical Analysis of Entropy Measures

In order to evaluate the effectiveness of capturing the difference of complexity in RR
interval using MSE, MDE, and MCRDE with various lengths of time series, a statistical
analysis was carried out. In addition to empirical comparison in previous sections, the
Mann–Whitney U test was utilized to verify whether two healthy groups, i.e., healthy
young and elderly groups, can be discriminated. Here, statistical significance is accepted if
the p-value is less than 0.05 and those p-values are marked as gray in Tables 2–5.

Table 2. Statistical analysis results of MSE for RR interval of CHF patients, AF patients, and healthy
groups. The shadows indicate that the distinction between the groups is significant. C, A, and H
represent CHF, atrial fibrillation, and healthy group, respectively. s denotes scale factor and N/A
denotes ‘Not Available’.

MSE Statistical Results for RR Interval Time Series

s

p-Value

N = 100 N = 500 N = 1000

C–A C–H A–H C–A C–H A–H C–A C–H A–H

1 0.0629 0.8843 0.7870 0.1478 0.0134 0.9172 0.0203 9.50 × 10−4 0.9834

2 0.6625 0.0483 0.1904 0.0849 0.0011 0.2891 0.0409 8.5507 × 10−5 0.1006

3 0.6961 0.0396 0.1515 0.0366 2.7538 × 10−4 0.0773 0.0409 2.4494 × 10−5 0.0358

4 0.6295 0.0150 0.0188 0.0695 1.6847 × 10−4 0.0210 0.1237 6.4704 × 10−6 0.0235

5 0.9817 N/A N/A 0.0508 5.1825 × 10−4 0.0235 0.1478 2.9429 × 10−5 0.0083

6 0.6961 N/A N/A 0.3232 0.0020 0.0210 0.2603 1.2042 × 10−4 0.0150

7 N/A N/A 0.0415 0.7652 0.0057 0.0483 0.3953 2.3416 × 10−4 0.0150

8 N/A N/A N/A 0.8722 0.0106 0.0586 0.3232 1.6847 × 10−4 0.0210

9 0.3559 N/A N/A 0.9817 0.0065 0.0150 0.6259 6.0454 × 10−4 0.0261
10 N/A N/A N/A 0.9451 0.0323 0.1095 0.5972 0.0026 0.0643
11 N/A N/A N/A 0.9817 0.0532 0.0845 0.5351 0.0030 0.0483
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Table 2. Cont.

MSE Statistical Results for RR Interval Time Series

s

p-Value

N = 100 N = 500 N = 1000

C–A C–H A–H C–A C–H A–H C–A C–H A–H

12 N/A N/A N/A 0.6625 0.0438 0.0323 0.6625 0.0034 0.0235
13 N/A N/A N/A 0.6961 0.2706 0.1904 0.8005 0.0044 0.0438
14 N/A N/A N/A 0.5053 0.3286 0.1292 0.9996 0.0261 0.0643
15 N/A N/A N/A 0.7652 0.1904 0.0706 0.9817 0.0134 0.0586
16 N/A N/A N/A 0.4763 0.3714 0.0923 0.6625 0.0119 0.0168
17 N/A N/A N/A 0.2064 0.8516 0.1095 0.5351 0.0773 0.0483
18 N/A N/A N/A 0.2234 0.7552 0.0845 0.6259 0.0923 0.0532
19 N/A N/A N/A 0.2802 0.7238 0.1637 0.3953 0.2530 0.0586
20 N/A N/A N/A 0.0935 0.9834 0.1292 0.3462 0.4176 0.0845
21 N/A N/A N/A 0.0508 0.9834 0.0438 0.3953 0.2891 0.0483
22 N/A N/A N/A 0.1354 0.9834 0.0586 0.1753 0.5747 0.0050
23 N/A N/A N/A 0.0981 0.4176 0.1767 0.1753 0.6625 0.0261
24 N/A N/A N/A 0.0768 0.7238 0.2361 0.3703 0.9834 0.4176
25 N/A N/A N/A 0.1237 0.6623 0.2048 0.1904 0.9668 0.0532

Table 3. Statistical analysis results of MDE for RR interval of CHF patients, AF patients, and healthy
groups. The shadows indicate that the distinction between the groups is significant. C, A, and H
represent CHF, atrial fibrillation, and healthy group, respectively. In addition, s denotes scale factor
and N/A denotes ‘Not Available’.

MDE Statistical Results for RR Interval Time Series

s

p-Value

N = 100 N = 500 N = 1000

C–A C–H A–H C–A C–H A–H C–A C–H A–H

1 0.0769 0.4176 0.3496 0.0159 0.0013 0.7552 0.0123 0.0013 0.5747
2 0.6458 0.4797 0.9172 0.0291 9.502 × 10−4 0.1637 0.0229 5.182 × 10−4 0.0706

3 0.9817 0.0111 0.0093 0.0366 5.183 × 10−4 0.0586 0.0123 4.227 × 10−5 0.0119

4 0.7823 0.015 0.0036 0.018 2.035 × 10−5 0.0119 0.0366 1.398 × 10−5 0.0323

5 0.8528 0.1067 0.1943 0.0849 0.0011 0.002 0.0508 5.054 × 10−5 0.0034

6 0.4095 0.2408 0.8754 0.0628 1.016 × 10−4 0.0034 0.0456 1.688 × 10−5 0.0039

7 0.7041 0.0025 0.0022 0.2234 0.003 0.0034 0.1129 3.53 × 10−5 0.0323

8 0.5386 0.0074 0.0429 0.0935 0.0016 0.0396 0.1611 4.227 × 10−5 0.0065

9 0.8363 0.0627 0.0504 0.2802 0.003 0.0323 0.1753 2.943 × 10−5 0.0083
10 0.6573 0.4473 0.19 0.5972 0.0773 0.2201 0.1904 0.0013 0.0738
11 1 0.8111 0.8111 0.9451 0.0291 0.1006 0.2603 3.79 × 10−4 0.0188

12 0.5983 0.0112 0.0047 0.8005 0.00437 0.3496 0.2802 8.551 × 10−5 0.0261
13 0.7301 0.2443 0.4723 0.9633 0.0068 0.022 0.4347 0.0015 0.0773
14 0.5774 0.1361 0.3162 0.2061 0.4174 0.0613 0.5053 0.0034 0.0483
15 0.6528 0.1361 0.0602 0.6289 0.2699 0.2887 0.5052 0.002 0.0807
16 0.3531 N/A 0.3162 0.3939 0.9171 0.2041 0.4621 0.002 0.0234
17 0.3531 N/A 0.3162 0.1174 0.8351 0.0842 0.7652 0.015 0.1141
18 N/A N/A N/A 0.357 1 0.2605 0.6792 0.0358 0.1291
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Table 3. Cont.

MDE Statistical Results for RR Interval Time Series

s

p-Value

N = 100 N = 500 N = 1000

C–A C–H A–H C–A C–H A–H C–A C–H A–H

19 N/A N/A N/A 0.4207 0.2879 0.0501 0.9085 0.0199 0.0248
20 N/A N/A N/A 0.3207 0.4124 0.0645 0.5657 0.1005 0.0188
21 N/A N/A N/A 0.0874 0.9665 0.0301 0.5657 0.1833 0.0323
22 N/A N/A N/A 0.0058 0.5951 0.0105 0.3701 0.1901 0.0806
23 N/A N/A N/A 0.0517 0.4599 0.1034 0.4096 0.4045 0.0321
24 N/A N/A N/A 0.2481 0.8996 0.2099 0.5351 0.5746 0.0844
25 N/A N/A N/A 0.0357 0.4385 0.0799 0.2602 0.7869 0.1094

Table 4. Statistical analysis results of MCRDE for RR interval of CHF patients, AF patients, and
healthy groups. The shadows indicate that the distinction between the groups is significant. C, A,
and H represent CHF, atrial fibrillation, and healthy group, respectively. In addition, s denotes scale
factor and N/A denotes ‘Not Available’.

MCRDE Statistical Results for RR Interval Time Series

s

p-Value

N = 100 N = 500 N = 1000

C–A C–H A–H C–A C–H A–H C–A C–H A–H

1 0.1237 0.6625 0.1006 0.6625 0.3941 0.3496 0.3703 0.0396 0.0643
2 0.0628 0.5194 0.0706 0.1611 0.0773 0.7238 0.1354 0.0073 0.1292
3 0.0628 0.2361 0.1292 0.1237 0.0235 0.4928 0.1129 0.0044 0.1292
4 0.0159 0.2706 0.0706 0.1753 0.0483 0.4176 0.1129 0.0039 0.0706
5 0.0203 0.1292 0.0643 0.1029 0.0065 0.2706 0.0695 0.0026 0.0845
6 0.0366 0.3496 0.0586 0.1029 0.0106 0.3496 0.0628 0.0015 0.0643
7 0.018 0.6326 0.0261 0.0695 0.0057 0.2201 0.0409 0.0013 0.0532
8 0.0258 0.3286 0.1006 0.0366 0.0044 0.3286 0.0366 0.0015 0.119
9 0.0123 0.5194 0.0323 0.0935 0.0083 0.3496 0.0508 0.0015 0.0643

10 0.0108 0.6929 0.0291 0.0508 0.0020 0.2048 0.0291 4.44 × 10−4 0.0358

11 0.0094 0.3085 0.021 0.0456 0.0039 0.3085 0.0409 8.186 × 10−4 0.0586

12 0.0041 0.4669 0.0044 0.0565 0.0020 0.1904 0.0409 5.183 × 10−4 0.0358

13 0.018 0.6326 0.0358 0.0769 0.0026 0.1904 0.0456 8.186 × 10−4 0.0532

14 0.0229 0.9172 0.0134 0.0508 0.0017 0.2361 0.0456 6.045 × 10−4 0.0235

15 0.0456 0.7552 0.0073 0.0203 0.0026 0.1515 0.0229 7.04 × 10−4 0.0261

16 0.168 0.9834 0.1006 0.0291 0.0020 0.2201 0.0366 6.045 × 10−4 0.0643

17 0.1129 0.4928 0.0323 0.0456 0.0020 0.2048 0.0326 4.44 × 10−4 0.015

18 0.1351 0.4927 0.0199 0.0769 0.0083 0.3941 0.0258 5.18 × 10−4 0.0358

19 0.1029 0.9172 0.0438 0.0565 0.0039 0.1190 0.0366 4.44 × 10−4 0.0291

20 0.1353 0.7552 0.0807 0.0203 0.0013 0.2361 0.0229 6.045 × 10−4 0.0261

21 0.0384 0.4293 0.0047 0.0769 0.0057 0.4928 0.0258 2.754 × 10−4 0.0188

22 0.2061 0.1764 0.0306 0.0326 7.04 × 10−4 0.2361 0.0258 4.436 × 10−4 0.0358

23 0.3118 0.1048 0.0159 0.0203 0.0026 0.4669 0.0203 3.233 × 10−4 0.0106

24 0.818 0.2614 0.1291 0.0229 0.0022 0.2891 0.0159 4.44 × 10−4 0.0065

25 0.5962 0.8352 0.2526 0.0229 0.0022 0.3714 0.0326 1.988 × 10−4 0.0073
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Table 5. Statistical analysis results for RR interval of healthy young and elderly groups. The shadows
indicate that the distinction between the groups is significant. In addition, s denotes scale factor and
N/A denotes ‘Not Available’.

Statistical Results for RR Interval Time Series of Healthy Young and Elderly Groups

s

p-Value

MSE MDE MCRDE

N = 100 N = 500 N = 1000 N = 100 N = 500 N = 1000 N = 100 N = 500 N = 1000

1 3.0786 × 10−4 5.7598 × 10−4 5.7598 × 10−4 0.0016 5.7598 × 10−4 4.9369 × 10−4 0.0042 0.0028 0.0028

2 0.009 0.0021 0.0019 0.2051 2.6217 × 10−4 3.6093 × 10−4 0.0016 1.3564 × 10−4 0.0011

3 0.0202 0.0062 0.0032 0.1131 0.0251 0.0021 0.0019 1.1457 × 10−4 3.6093 × 10−4

4 0.0744 0.0128 0.0062 0.7675 0.2628 0.229 0.0037 4.8063 × 10−5 4.2247 × 10−4

5 0.068 0.0144 0.0090 0.7451 0.6187 0.4807 0.089 2.329 × 10−5 1.6033 × 10−4

6 0.2625 0.0512 0.0128 0.0057 0.3951 0.3837 0.0028 1.1457 × 10−4 7.8021 × 10−4

7 0.3835 0.0465 0.0181 0.3614 0.0971 0.1711 0.0021 4.02 × 10−5 9.0585 × 10−4

8 N/A 0.1150 0.0381 0.3554 0.0649 0.1150 0.0344 3.3568 × 10−5 0.0014

9 0.1896 0.0971 0.0225 0.1146 0.0152 0.2133 0.0062 1.0922 × 10−5 0.0037

10 0.3919 0.1249 0.0564 1 0.0619 0.0251 0.0564 4.8063 × 10−5 7.8021 × 10−4

11 N/A 0.1466 0.0564 0.5765 0.0709 0.0021 0.0279 3.0786 × 10−4 6.709 × 10−4

12 N/A 0.1354 0.0680 1 0.0889 0.0101 0.0465 5.7371 × 10−5 0.0032

13 N/A 0.2544 0.0512 N/N 0.0036 0.0191 0.7400 3.3568 × 10−5 0.0014
14 N/A 0.1466 0.0890 0.3506 0.3093 0.0744 0.4551 0.0011 0.0032
15 N/A 0.3837 0.1150 0.3506 0.0039 0.0042 0.3192 0.0016 0.0079
16 N/A 0.1585 0.1466 0.3506 0.0326 0.002 0.5614 4.9369 × 10−4 0.0016

17 N/A 0.1985 0.0971 N/A 0.0050 0.0048 0.0360 1.1457 × 10−4 0.0025

18 N/A 0.2290 0.0421 N/A 0.0170 0.0181 0.5457 6.709 × 10−4 0.0016

19 N/A 0.3615 0.1249 N/A 0.0323 0.0237 0.0529 9.0585 × 10−4 0.0037

20 N/A 0.1585 0.0815 N/A 0.0770 0.0399 0.0881 6.709 × 10−4 0.0062
21 N/A 0.8357 0.0971 N/A 0.0317 0.0512 N/A 0.0011 0.0048
22 N/A 0.2290 0.1249 N/A 0.1895 0.0037 N/A 9.0585 × 10−4 0.0128

23 N/A 0.1585 0.0680 N/A 0.0267 0.0026 N/A 3.0786 × 10−4 0.0019
24 N/A 0.4428 0.1249 N/A 0.0414 0.0101 N/A 0.0037 0.0114
25 N/A 0.2455 0.1249 N/A 0.1171 0.0034 N/A 0.0016 0.0114

Table 2 depicts the p-values in which the MSE values of paired comparison between
CHF patients, AF patients, and the healthy group in cases of N = 100, 500, and 1000. For
N = 100, it is not able to compute MSE values over most scale factors due to the shortage
of the length of a coarse-grained RR interval. For N = 500 and 1000, it is clear that p-value
computation is available, and there are increased cases of statistically significant difference.
However, it still lacks in distinguishing CHF and AF patients using MSE values.

Table 3 shows the comparison results of MDE. As can be seen, the use of MDE yields
an improved capability for distinguishing complexities of different physiological groups
than MSE. For N = 100, it is possible to compute MDE values for more scale factors and
increase the statistically significant cases compared to MSE. In addition, for sufficient long
RR intervals as N = 500 and 1000, the use of MDE results in a more statistically significant
difference than MSE.

In Table 4, the results of MCRDE N = 100, 500, and 1000 are shown. For N = 100,
MCRDE values are computed over all scale factors and yield a much more statistically
significant difference, especially between CHF and AF patients as well as AF patients
and the healthy group. In addition, the statistical results of MDE in Table 3 show that
for sufficient long lengths of RR interval, i.e., N = 500 and 1000, the difference utilizing
MCRDE values across three groups is statistically significant and better than MSE and
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MDE. Through comparison between Tables 2 and 4, the proposed MCRDE shows a superior
capability for distinguishing three groups regardless of the length of RR interval.

Lastly, we conducted a statistical analysis to compare the healthy young and healthy
elderly subjects. In Table 5, MCRDE exhibits superior discrimination performance with
much more statistically significant differences for all lengths of RR interval (N = 100, 500,
and 1000) compared to conventional MSE and MDE.

4. Discussion

This work presents a multiscale version of DE utilizing cumulative distribution with
application to the analysis of the cardiovascular signal, i.e., ECG recordings. Various en-
tropy measures play an important role in representing the complexity of neurophysiological
signals. Although entropy estimation of neurophysiological signals can to represent the
complexity of underlying neural systems to some extent, the relationship between entropy
and complexity remains controversial.

The popular entropy measure, i.e., MSE, provides a solution to address inconsistency
with complexity [23]. Due to the capability of MSE, it has been widely used in diverse
applications including biomedical environments [28–33]. Unlike other applications, there
are certain things to consider when utilizing cardiovascular signals [34,35]. The ability to
accurately and quantitatively determine the meaning of a signal in a short amount of time
is essential. This can diagnose various serious cardiovascular diseases, monitor prognosis,
and more. The need for entropy methods that employ multiscale techniques has increased
due to the inaccurate entropy estimation or invalid calculation of short-length signals with
conventional MSE methods [3,4,30]. MSE has certain limitations when it is applied to short-
length signals. As the scale factor increases, the length of the coarse-grained time series
decreases (original length divided by a scale factor). For short-length signals, this results
in extremely short coarse-grained time series at higher scales. Sample Entropy (SampEn)
calculation involves counting the occurrences of similar patterns within the time series.
Short time series may not contain enough data points to accurately identify and count
the recurrence of similar patterns, especially at larger scales. MSE is not defined in this
situation, as shown in Figures 7 and 8. In addition, as reported in [36], the coarse-grained
time series of MSE is identical to the results of a simple moving average; thus, it may lead
to inevitable issues.

In this context, we have shown that the proposed MCRDE can bridge the mismatch
between entropy and complexity through simulation using synthetic signals. It shows that
the MCRDE values of 1/f are higher than those of WGN over multiple temporal scales.
The quantification provided by MCRDE is more consistent than that of MDE because it
can tell the difference between 1/f and WGN at all scales, while MDE cannot do that at
some scales.

By applying traditional multiscale entropy measures and the proposed MCRDE to the
analysis of RR intervals extracted from ECG signals, we aim to differentiate the distinct
physiological statuses of subjects. Specifically, it needs to be available for short-length RR
intervals as well as for RR intervals with sufficient length.

In the case of discriminating RR intervals from distinct cardiovascular systems such
as CHF, AF, and healthy subjects, MCRDE is more competent than its predecessors for
two reasons. First, for short-length RR intervals, MCRDE values are not only valid but
also exhibit similar patterns compared to the results of sufficient length. Thus, MCRDE
values of different physiological statuses are differentiated regardless of the length of RR
intervals. However, MSE suffers from the invalid computation of entropy value in the
case of short-length RR intervals, as known previously [31]. The computation of MDE is
available for short-length RR intervals, but it cannot discriminate physiological status by
quantifying complexity compared to MCRDE.

Following the experiment using young and old subjects’ ECG recordings, similar
results from the previous experiment are observed: MCRDE performs better than MSE and
MDE irrespective of the length of RR intervals.
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Statistical results using the Mann–Whitney U test suggest the following: First, MCRDE
is capable of discriminating the complexity between CHF and AF subjects as well as
between AF and healthy subjects with short-length RR intervals, while MSE and MDE
cannot be computed at high scale factors, and MDE can discriminate different statuses at
less scale factors than MCRDE. Second, for longer lengths of RR intervals, MCRDE has a
better capacity for discriminating between CHF and healthy subjects. In addition, MDE
performs better in discriminating between AF and healthy subjects at small scale factors,
while MCRDE shows better performance over higher scale factors. It suggests that MDE
and MCRDE can be combined to distinguish between AF and healthy subjects.

Statistical analysis using ECG recordings of healthy subjects shows that MCRDE is
a better indicator using short-length and sufficient lengths of RR intervals; thus, MCRDE
might play a role in representing subtle changes in cardiovascular signals.

The early diagnosis of diseases from ECG signals often requires detailed analysis of
various cardiac intervals besides the RR interval. These intervals include the QRS duration,
PR interval, JT interval, QT interval, and segments like the ST segment [37,38]. For example,
the QRS duration is able to indicate bundle branch block or ventricular hypertrophy. In
addition, the portion of the ECG between the QRS complex and the T wave is the ST
segment. Elevation or depression in the ST segment can indicate myocardial infarction,
ischemia, or other forms of heart stress. Thus, the complexity analysis for subtle cardiac
intervals would play a pivotal role in providing effective tools for diagnosing cardiac
diseases. Beyond the RR interval analysis, it is notable that reflecting correlations between
ECG parameters would highlight the emergence of complicated dynamical processes
in the cardiovascular system throughout the load by the external stimuli and recovery
processes [39].

By analyzing the MCRDE values of ECG signals, it can detect subtle changes that may
not be apparent through traditional ECG analysis. Thus, this methodology might play a
pivotal role in various clinical applications: early detection of cardiac diseases, monitoring
chronic conditions, risk stratification in patients, researching the effects of various drugs or
treatments on heart function, and telemedicine and remote monitoring.

Finally, since MCRDE is effective in quantifying dynamic complexity depending on
temporal scales, it can be applied to the quantification of other physiological signals such
as electroencephalography (EEG), electromyography (EMG), and so on.

5. Conclusions

This paper has presented an improved multiscale entropy measure, named MCRDE,
by utilizing the cumulative distribution of time series and dispersion entropy in multiple
temporal scales. The resultant MCRDE preserves generality and efficient computation of
the complexity of underlying cardiovascular signals. Through simulations using synthetic
signals and cardiological signals, i.e., RR intervals from ECG signals, the proposed MCRDE
is shown to be effective in quantifying and distinguishing different complexity compared to
conventional multiscale entropy measures such as MSE and MDE regardless of the length of
time series. Based on the advantageous properties of MCRDE, it may provide a promising
measure for recognizing various physiological dynamics in biomedical applications. Future
works include diverse analyses of ECG signals from other cardiovascular diseases. This
work shows that the proposed MCRDE might be a solution for computer-aided diagnosis
of cardiovascular diseases.
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