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Abstract: The innovation of private enterprises plays a crucial role. This study focuses on the impacts
of market information asymmetry, the technology spillover effect, and the order of innovation
research and development (R&D) decisions on the evolution of private enterprises’ innovation. This
study constructs a dynamic model to analyze how the innovation decision-making order of private
enterprises influences their profits and intertemporal innovation decision making. First, we derive
the equilibrium point under sequential decisions and the stability of the system at the equilibrium
point. Second, we investigate the impact of sequential and simultaneous innovation decisions on the
evolution of the dynamic system and its economic implications. Finally, we study the evolutionary
dynamics of the attractor with the rate of innovation adjustment and point to the existence of multiple
equilibria. The results suggest that the speed of the innovation R&D cost change should be moderate,
and the asynchronous updating of the innovation R&D strategy can prevent the system evolution
from turning into chaos. These conclusions guide innovation policies.

Keywords: information asymmetry; technology spillover effect; decision-making order; innovation
research and development; private enterprises

1. Introduction

The exogenous growth theory of Solow [1] and the endogenous growth theory repre-
sented by Lucas [2], Romer [3], and others have extensively explained that technological
innovation is a key driver of economic growth. Innovative research and development
(R&D) serves as the engine of technological progress, and it is crucial for the development
of private firms. The spillover effects from R&D activities are paramount factors that
academics have focused on (Aspremont and Jacquemin [4]; Wang et al. [5]; Hu et al. [6];
Hu et al. [7]; Belitski et al. [8]; Gao et al. [9]). By promoting technological progress, a firm’s
R&D activities can make the entire industry highly cost-effective and productive.

Mauleon et al. [10] studied the formation of R&D networks when firms can be either
myopic or farsighted, with farsighted firms having additional collaborations on average.
The evolution of R&D networks reveals that nearly symmetric networks will be rapidly
dismantled, whereas asymmetric networks will persist indefinitely. Qiu R. et al. [11]
investigated how innovation depends on the structure of an R&D network and how the
structure readjusts based on previous innovation. They constructed an R&D network
for firms, each of which calculates its cost and profit in every period and determines the
firms that it needs to cooperate with accordingly. However, owing to the path-dependent
nature of economic system evolution, R&D networks in many industries have gradually
transformed into oligopolistic markets where a few large firms dominate the market share.

In an oligopolistic market, firms producing homogeneous goods must consider the
behavioral strategies of other firms when making their production decisions. Additionally,
firms consider one another’s innovation R&D statuses and innovation spillovers to deter-
mine their optimal innovation R&D strategies. Various improved Cournot models have
been developed to analyze the game behavior of oligarchs (Cournot; Rand [12]; Day, [13];
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Li et al. [14]; Li et al. [15]; Ding et al. [16]; Mohsin et al. [17]). Li et al. [14] proposed a
two-channel game model with different management objectives. Li et al. [15] introduced
the Cournot game with conjectural variation and differentiated products. Ding et al. [13]
constructed a cooperative duopoly model with implicit collusion. Other studies focused
on Gounod’s dynamic model (Agiza [18]; Agliari et al. [19]; Bischi et al. [20]; Bischi and
Lamantia [21]), which directly examines the optimal output and system stability with a
small number of manufacturers. Askar [22] presented a Cournot duopoly model where
competitors aim to maximize their objective functions defined by profits and social welfare.
The research explored the stability conditions for the game’s Nash equilibrium and demon-
strated that the Nash equilibrium point can become unstable through flip bifurcation.

A completely rational game is typically based on two assumptions: (1) each enterprise
has complete information during decision-making, and (2) each enterprise makes decisions
based on complete rationality. However, in economic reality, the game among enterprises
is continuous, and reaching the Nash equilibrium state immediately is impossible. Addi-
tionally, enterprises do not have sufficient information, and corporate decisions are made
by individuals who are limited by cognitive abilities and language constraints, resulting
in limited rationality (Agiza et al. [18]; Agiza et al. [23]; Long et al. [24]; Williamson [25]).
Long et al. [24] examined a dynamic Stackelberg–Cournot duopoly game with one-way
spillovers and found that complex dynamic behaviors, such as cycles and chaos, can occur
as model parameters vary. Based on this research, we incorporated finite rational pro-
duction and innovation decisions into the Cournot model and developed a cross-period
evolution nonlinear dynamics model to analyze the profitability and survival of firms
under finite rational innovation decisions.

In the theoretical calculation part, we incorporated various useful, cutting-edge, and
insightful algorithms and mechanisms. Deng et al., Song et al. and Song et al. [26–28] pro-
posed optimized parameters for photovoltaic models, utilizing the reverse learning mecha-
nism to generate initial subpopulations, to enhance the convergence velocity, and maintain
the population diversity. We would like to express our gratitude to Deng et al. [29] and
Deng et al. [30] for their contribution in helping us determine suitable control parameters
and select a reasonable mutation strategy for differential evolution to solve real-world engi-
neering optimization problems. Additionally, Grubljesic et al. [31], Namasudra et al. [32],
and Shahri et al. [33] provided us with new ideas and insights, which have greatly aided in
the construction and analysis of our model.

This study builds upon previous research and focuses on the sequential order of inno-
vation decisions. In the classical game theory, decisions are typically made simultaneously,
but this may not be ideal owing to information asymmetry. In line with this, we adopted
the approach of Zhou et al. [34] and Zhang et al. [35], where a private enterprise first makes
its innovation-decision, specifically determining its R&D investment. Subsequently, an-
other private enterprise can observe the innovation-decision of the first enterprise through
certain methods. Hence, the second private enterprise can make an optimal innovation
decision based on this information. Our objective is to examine the evolution mechanism
of innovation decisions in two private enterprises under this sequential decision-making
process and compare it with the traditional simultaneous decision-making scenario. We
aim to provide relevant countermeasures and suggestions.

The structure of this paper is organized as follows: Section 2 establishes a two-stage
Cournot model with R&D spillover, assuming discrepant products in the market. Section 3
investigates the dynamic model through mathematical calculations, focusing on the stability
of equilibrium points and providing stability conditions for these points. Section 4 con-
ducts numerical simulations to analyze bifurcation, stability, routes to chaos, and strange
attractors of the system. Finally, Section 5 concludes the study.

2. Evolution Model of Innovation Strategy of Two Private Enterprises

We assume that there are two private enterprises in a market, and the index is
i(i = 1, 2). In addition, the two enterprises produce homogeneous products supplied
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in the same market. We further assume that horizontal differences exist between the
products produced by the two private enterprises to capture the feature of the market
competition. Therefore, the inverse demand function can be written as follows:

pi(qi, qj) = a− qi − bqj, (1)

where qi refers to the selling price set by the enterprise i (which is also applied to j), a
refers to the total market share, and b refers to the product differentiation degree of the
two enterprises. Specifically, b = 0 means that the products of the two enterprises are
completely independent and that the output does not affect them; if b = 1, the products
of the two enterprises can completely replace each other, and if 0 < b < 1, the products
produced by the two enterprises are substitutes for each other, and b describes the degree
of substitutability between them.

Innovation is a creative activity that allows enterprises to expand their knowledge base.
Within the market, technology enterprises frequently engage in R&D to enhance production
efficiency and reduce costs. The competition between private enterprises can typically be
described as a two-stage game, which leverages R&D to achieve a cost reduction. In the
first stage, all technology enterprises determine the level of R&D investment. Subsequently,
in the second stage, these enterprises select the quantity of their products and compete in a
Cournot fashion. Owing to the presence of externalities resulting from production and R&D
activities, the R&D efforts of private enterprises are often influenced by spillover effects.
For instance, the movement of technical personnel or the government’s patent protection
policy can facilitate the transfer of technology among private companies. Therefore, the
production cost of an enterprise is not only a function of its R&D investment but also of the
R&D investment of its competitors:

Ci(xi, xj) = c− xi − βxj, (2)

where c is the marginal cost of no R&D effort circumstance, a > c > 0, and β measures
the innovation spillover effect between firms i and j, which means that the spillover effect
will always be symmetrical between two firms and β ∈ [0, 1]. The higher the technology
spillover coefficient β, the lower the protection degree of enterprise i to the technology
patent. β = 0 means that the technology of the technology company is confidential; β = 1
means that the technology of innovative R&D is completely open to the public. According
to Aspremont and Jacquemin [4], the innovation R&D investment of a firm i can be regarded
as a quadratic function of the R&D effort, that is, I(xi) = 1

2 γx2
i . Among them, γ is the

cost coefficient of the enterprise i for innovation and R&D. The lower the innovation R&D
cost coefficient γ, the stronger the innovation capability of the enterprise i, that is, an
enterprise that uses less cost than other enterprises to achieve the same level of innovation
and development has a stronger innovation capability. Under the above assumptions, the
individual profits of firms 1 and 2 are given as follows:{

π1(q1, q2, x1, x2) = [p1(q1, q2)− C1(x1, x2)]q1 − 1
2 γx2

1

π2(q1, q2, x1, x2) = [p2(q1, q2)− C2(x1, x2)]q2 − 1
2 γx2

2
. (3)

From Equation (3), the profit of an enterprise is determined by its product output and
the level of innovation and R&D efforts. Moreover, the profit of an enterprise is influenced
not only by its own output and R&D efforts but also by the product output and innovation
R&D efforts of its competitors. By substituting Equations (1) and (2) into Equation (3), we
can derive the following outcomes:{

π1(q1, q2, x1, x2) = [(a− q1 − bq2)− (c− x1 − βx2)]q1 − 1
2 γx2

1

π2(q1, q2, x1, x2) = [(a− q2 − bq1)− (c− x2 − βx1)]q2 − 1
2 γx2

2
. (4)
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To find the optimal output of the first stage game, the first derivative of the profit
function of the enterprise concerning its product output is obtained:

∂π1
∂q1

= a− 2q1 − bq2 − c + x1 + βx2

∂π2
∂q2

= a− 2q2 − bq1 − c + x2 + βx1
. (5)

As shown in Equation (5), to solve the optimal production level, let ∂πi/∂qi = 0
and i = 1, 2. Through calculation, we can obtain the perfect Nash equilibrium of the
second-stage sub-game:  q∗1 = (a−c)(2−b)+(2−bβ)x1+(2β−b)x2

4−b2

q∗2 = (a−c)(2−b)+(2β−b)x1+(2−bβ)x2
4−b2

(6)

Then, the profit functions of enterprises 1 and 2 can be rewritten as the functions of
their R&D efforts by substituting the equilibrium output of Equation (6) into Equation (4):

π1(x1, x2) =
[(a−c)(2−b)+(2−bβ)x1+(2β−b)x2]

2

(4−b2)
2 − 1

2 γx2
1

π2(x1, x2) =
[(a−c)(2−b)+(2β−b)x1+(2−bβ)x2]

2

(4−b2)
2 − 1

2 γx2
2

. (7)

By differentiating Equation (7) with respect to enterprises 1 and 2, respectively, we can
obtain a local estimate of the marginal profit of the R&D efforts:

∂π1
∂x1

= 2(2−bβ)[(a−c)(2−b)+(2−bβ)x1+(2β−b)x2]

(4−b2)
2 − γx1

∂π2
∂x2

= 2(2−bβ)[(a−c)(2−b)+(2β−b)x1+(2−bβ)x2]

(4−b2)
2 − γx2

. (8)

Owing to the lack of complete market information, enterprises are unable to engage in
completely rational market competition. They often lack access to crucial data, such as the
actual market demand, output, and R&D efforts of their competitors. Consequently, these
companies tend to exhibit a certain degree of short-sightedness. To maximize their profits,
these short-sighted private enterprises make adjustments to their investments in innovation
and R&D. We assume that, in period t+ 1, if the marginal profit of enterprise i in phase t+ 1
is positive, that is, ∂πi/∂xi > 0, then enterprise i increases its R&D investment in period
t + 1. On the contrary, if ∂πi/∂xi < 0 in phase t, firm i will reduce its R&D investment in
phase t + 1. To greatly understand the influence of information asymmetry on innovation
and research in private enterprises, we conducted a study where enterprise 1 made its
innovation decision first. Subsequently, enterprise 2 acquired information about enterprise
1’s decision, including the amount of their innovation and research investments. Based on
this information, enterprise 2 then made its own innovation decision. x1(t + 1) = x1(t) + α1x1(t)

∂π1
∂x1

(x1(t), x2(t))

x2(t + 1) = x2(t) + α2x2(t)
∂π2
∂x2

(x1(t + 1), x2(t))
. (9)

By substituting Equation (8) into Equation (9), we can obtain the dynamic model of
innovation R&D investment of two enterprises as follows:

x1(t + 1) = x1(t) + α1x1(t)
{ 2(2−bβ)[(a−c)(2−b)+(2−bβ)x1(t)+(2β−b)x2(t)]

(4−b2)
2 − γx1(t)

}
x2(t + 1) = x2(t) + α2x2(t)

{ 2(2−bβ)[(a−c)(2−b)+(2β−b)x1(t+1)+(2−bβ)x2(t)]
(4−b2)

2 − γx2(t)
} . (10)

In this formula, αi is the adjustment speed of enterprise i. The enterprise readjusts
its R&D efforts according to its marginal profit in period t + 1 during period t. Suppose
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αi > 0, and assume a > 0 represents the market size; b represents the degree of product
differentiation, where b ∈ [0, 1]. c represents the marginal costs without R&D efforts, where
a > c > 0. β measures the spillover effect between firms i and j, β ∈ [0, 1]. To simplify the
expression, we make R = 2(2− b)(a− c)(2− bβ), T = 2(2β− b)(2− bβ), S = (4− b2)

2,
and U = 2(2− bβ)2 − γ(4− b2)

2.
Then, Equation (10) can be simplified to the following form: x1(t + 1) = x1(t) + α1x1(t)(U

S x1(t) + T
S x2(t) + R

S )

x2(t + 1) = x2(t)[
α1α2TU

S2 x2
1(t) +

α1α2T2

S2 x1(t)x2(t) + (α2 +
α1α2R

S )x1(t) +
α2U

S x2(t) + 1 + α2R
S ]

. (11)

3. Stability Analysis of the Model
3.1. Existence of Fixed Points

The two-dimensional map for the system in Equation (11) takes the following form:{
x1 7→ x1 + α1x1(

U
S x1 +

T
S x2 +

R
S )

x2 7→ x2[
α1α2TU

S2 x2
1 +

α1α2T2

S2 x1x2 + (α2 +
α1α2R

S )x1 +
α2U

S x2 + 1 + α2R
S ]

. (12)

To greatly understand the intricate dynamic behavior of the system in Equation (11),
first, the equilibrium point of the model should be examined, and its stability in the
vicinity of this point must be assessed. The fixed points of the map in Equation (12) can be
determined by solving the following equations:{

x1 = x1 + α1x1(
U
S x1 +

T
S x2 +

R
S )

x2 = x2[
α1α2TU

S2 x2
1 +

α1α2T2

S2 x1x2 + (α2 +
α1α2R

S )x1 +
α2U

S x2 + 1 + α2R
S ]

. (13)

By applying a simple calculation, we could obtain the four equilibrium points, E1(0, 0),
E2(0,− R

U ), E3(− R
U , 0), and E4(− R

U+T ,− R
U+T ), by solving the equation.

3.2. Stability of Fixed Points and Bifurcations

The equilibrium points E1, E2, and E3 are the boundary equilibrium points, where
E4 is the only Nash equilibrium point. To focus on the economic significance, the four
equilibrium points should be non-negative. From the previous analysis, the parameters
satisfy a > c, 0 ≤ b ≤ 1, 0 ≤ β ≤ 1, and R > 0. By solving the inequality, all equilibrium
points are non-negative when the parameters U and T satisfy the following condition:{

U < 0
U + T < 0

. (14)

To study the local stability of the equilibrium point, we calculate the Jacobian matrix
of the map evaluated at point (x1, x2), which is given by the following equation:

J =

 1 + α1(
R
S + 2U

S x1 +
T
S x2) α1x1

T
S

α2x2[
2α1TU

S2 x1 +
α1T2

S2 x2 + (1 + α1R
S )] α1α2TU

S2 x2
1 +

2α1α2T2

S2 x1x2 + (α2 +
α1α2R

S )x1 +
2α2U

S x2 + (1 + α2R
S )

. (15)

To determine the stability of the equilibrium point, we calculate the eigenvalue of the
Jacobian matrix at these points below.

Proposition 1. The boundary equilibrium point E1 is a repelling node point.
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Proof. For the boundary equilibrium point E1(0, 0), set x1 = 0 and x2 = 0; then, the
Jacobian matrix in Equation (12) becomes

J(E1) =

[
1 + α1

R
S 0

0 1 + α2
R
S

]
. (16)

Considering that R > 0 and S > 0, the absolute values of the eigenvalues of the
Jacobian matrix at equilibrium point E1 are |λ1| = (1+ α1

R
S ) > 1 and |λ2| = (1+ α2

R
S ) > 1,

so the equilibrium point E1 = (0, 0) is the repelling node point. �

Proposition 2. For boundary equilibrium point E2(0,− R
U ):

(i) As U − T < 0, the equilibrium point E2 is unstable.
(ii) As U − T > 0, 0 < α1 < −2SU

R(U−T)

If α2 > 2S
R , equilibrium point E2 is an unstable saddle point.

If α2 < 2S
R , equilibrium point E2 is a stable node point.

(iii) As U − T > 0, α1 > −2SU
R(U−T) , and equilibrium point E2 is an unstable point.

Proof. For the boundary equilibrium point E2, the Jacobian matrix can be written as follows:

J(E2) =

 1 + α1
R(U−T)

US 0
−α2RT

US 1− α2R
S

. (17)

The eigenvalues of the Jacobian matrix at the boundary equilibrium point E2 are
λ1 = 1 + α1

R(U−T)
SU and λ2 = 1− α2R

S .

If U − T < 0, the absolute value of the eigenvalue is |λ1| =
∣∣∣1 + α1

R(U−T)
SU

∣∣∣ > 1.
Therefore, when U − T < 0, equilibrium point E2 is unstable.

Otherwise, if U − T > 0 and 0 < α1 < −2SU
R(U−T) , the absolute value of the eigenvalue is

|λ1| =
∣∣∣1 + α1

R(U−T)
SU

∣∣∣ < 1. In this case, if α2 > 2S
R , the absolute value of the eigenvalue is

|λ2| =
∣∣∣1− α2R

S

∣∣∣ > 1, so the equilibrium point E2 is an unstable saddle point; if α2 < 2S
R ,

the absolute value of the eigenvalue is |λ2| =
∣∣∣1− α2R

S

∣∣∣ < 1, and the equilibrium point E2

is a stable node point.
Finally, if U − T > 0 and α1 > −2SU

R(U−T) , the absolute value of the eigenvalue is

|λ1| =
∣∣∣1 + α1

R(U−T)
SU

∣∣∣ > 1; hence, equilibrium point E2 is unstable.
For boundary equilibrium point E3, the case is almost the same as equilibrium point

E2. The Jacobian matrix is the upper triangular matrix, which can be expressed as follows:

J(E3) =

1− α1R
S

−α1RT
US

0 1 + α2
R(U−T)

SU

. (18)

The two real eigenvalues of the Jacobian matrix at boundary equilibrium point E3 are
λ1 = 1− α1R

S and λ2 = 1+ α2
R(U−T)

SU . The discussion for E2 also applies to E3 because their
coordinates are symmetric. �

From a mathematical perspective, the local stability of equilibrium points E1, E2, and
E3 should be analyzed, including their behaviors at the boundary of the local stable region.
However, notably, these equilibriums correspond to scenarios where one or both firms exit
the market, resulting in a transition from a duopoly to a monopoly market. Our main focus
is to examine the evolution of a duopoly market as the parameters change. Therefore, we
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will solely concentrate on analyzing the local stability, bifurcation, and chaos of the Nash
equilibrium E4.

By setting x1 = x2 = − R
U+T , we obtain the Jacobian matrix at point E4(− R

U+T ,− R
U+T ):

J(E4) =

 1 + α1
R+2U+T

S
−R

U+T α1
−R

U+T
T
S

2α1α2TU+α1α2T2

S2
−R

U+T
2
+ (α2 +

α1α2R
S ) −R

U+T
α1α2TU+2α1α2T2

S2
−R

U+T
2
+ α2S+α1α2R+2α2U

S
−R

U+T + (1 + α2R
S )

. (19)

The theoretical calculation would be so complex that we directly go to the simulation
part to show the dynamic features of E4.

4. Numerical Simulation Results

Numerical simulation methods form the foundation of a nonlinear dynamic analysis.
In this section, we will perform various numerical calculations to support our analysis.
Specifically, we will present the bifurcation diagram along with the corresponding largest
Lyapunov exponent, including the evolution of attractors and basins of attraction. These
diagrams will allow us to observe numerous typical features.

4.1. Bifurcation Diagram

In the previous section, we focused on examining the local stability and local bifur-
cation of the equilibrium points. In this section, we will shift our focus to analyzing the
dynamic behavior of the model using the numerical simulation method.

First, we would fix the parameters to a = 61, b = 0.85, c = 51.5, β = 0.75, and
γ = 0.8, and then investigate the influences of α1 and α2 (the speeds of adjustment for two
firms) on the evolution dynamics of innovation R&D investment under sequential and
simultaneous decision situations. Specifically, we would fix the value α1 at 0.45, divide α2
into 1000 parts in an interval, [0, 0.5] or [0, 0.65] (depending on whether the value of x1 goes
infinite), and draw the bifurcation diagram of evolution dynamics concerning parameter
α2 under sequential decision and simultaneous decision, respectively.

Figure 1 shows that in the case of simultaneous versus sequential decision making,
the bifurcation diagram shows a completely different pattern. In the case of simultaneous
decision making, as shown in Figure 1, when we fix α1 = 0.45 and draw the bifurcation
diagram, a flip bifurcation is displayed when α2 is approximately 0.1. Before α2 increases
to approximately 0.35, the dynamic system in Equation (11) is in a stable period-2 state.
Then, when α2 is bigger than approximately 0.35, the system turns into a quasi-periodic
state, so there is a Neimark–Sacker bifurcation. Then, the system turns into a chaotic state.
Figure 1 shows the largest Lyapunov exponent with varied α2. When the largest Lyapunov
exponent is less than zero, the system is in a stable state, whereas when it equals zero,
bifurcation occurs. Finally, when the largest Lyapunov exponent is larger than zero, the
system turns into chaos.

With regard to sequential decision making, as shown in Figure 1, the whole system
can stay at Nash equilibrium, whereas α2 is less than approximately 0.47. With the increase
in α2, the system then goes into a chaotic state. In addition, Figure 1 shows that the largest
Lyapunov exponent is less than zero, so the system goes back to the stable state when α2
is approximately 5.95. However, there are seven different stable nodes, which are called
multi-stability and will be analyzed later.

After completing the mathematical description of the nonlinear dynamic system, we
delve into its economic implications. First, Figure 1 shows that a low adjustment speed can
contribute to system stabilization. As the adjustment speed increases, the system tends to
exhibit chaotic behavior, implying that the market dynamics become highly unpredictable.
Consequently, market participants may find it challenging to make informed decisions
regarding purchase volumes, production volumes, and prices, resulting in reduced market
efficiency. Second, when comparing the simulation results of simultaneous and sequential
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decision making, we observe that the system can maintain stability at Nash equilibrium for
large values of α2 when sequential decision making is implemented.
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Figure 1. Bifurcation diagram with respect to α2 under simultaneous decision and sequential decision
(α1 = 0.45).

4.2. Evolution of Attractors

Studying nonlinear systems is crucial to understand their final states. Attractors play
a significant role in revealing the asymptotic behavior of a nonlinear dynamic system as
the number of iterations approaches infinity. To carry this out, we still fix the parameters
as a = 61, b = 0.85, c = 51.5, β = 0.75, γ = 0.8, and α1 = 0.45 and study the effect of the
adjustment speed α2 on the dynamic system under sequential innovative decision.

Figure 2a shows that when parameter α2 = 0.468, the attractor is a period-1 focus with
rough selvage. With the increase in α2, the period-1 focus turns into an invariant cycle
with rough selvage through Neimark–Sacker bifurcation, as shown in Figure 2b. Then,
the invariant cycle grows in size, and the rough selvage vanishes (Figure 2c). The shape
of the invariant cycle continues to change with an increase in α2, as shown in Figure 2d.
As shown in Figure 2e, when α2 equals 0.5965, the invariant cycle breaks and forms an
eight-piece attractor.

After that, each piece individually forms an invariant cycle at α2 = 0.613 (Figure 2f).
Then, the attractor turns into chaos (Figure 2g) and finally forms a connected chaotic
attractor (Figure 2h).

The coexistence of multiple equilibria in economies is an intriguing and significant
phenomenon. The stability of an equilibrium point is influenced by the initial conditions,
leading to path dependence in economics. This path dependence can result in multiple
bifurcations at the same level, giving rise to complex dynamic behaviors, such as the
coexistence of multiple attractors, fractals, and chaos. The presence of multiple attractors
indicates the existence of multiple steady states in the system. In other words, the bifur-
cation of a nonlinear system can cause the number of solutions to change with variations
in the parameters and initial conditions. Therefore, the study of multi-steady motion is
closely linked to a bifurcation analysis. By examining the coexistence of multiple attractors
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and their corresponding basins of attraction, we can gain insights into the global dynamic
behavior of the system in Equation (11).
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Figure 2. (a) The attractor diagram when α2 = 0.468. (b) The attractor diagram when α2 = 0.4703.
(c) The attractor diagram when α2 = 0.48. (d) The attractor diagram when α2 = 0.59623. (e) The
attractor diagram when α2 = 0.5965. (f) The attractor diagram when α2 = 0.613. (g) The attractor
diagram when α2 = 0.616. (h) The attractor diagram when α2 = 0.618.

Furthermore, the simulation results highlight the high sensitivity of the system’s
solution to the initial values. Accurately identifying the current state of the system can
be immensely valuable in managing and facilitating the evolution of innovation. This
understanding can aid in formulating rational policies that enable firms to operate optimally
by utilizing efficient inputs and outputs.
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5. Conclusions

This study presents a two-stage dynamic game model that considers asymmetric
information and innovation R&D spillovers between two private enterprises. This study
focuses on analyzing how one player’s knowledge of the other’s behavior affects the
stability of the Cournot–Nash equilibrium in the market.

In the first stage, both enterprises determine their R&D efforts to lower production
costs. In the second stage, they compete in a Cournot competition market and decide their
output levels. To account for the impact of sequential innovation decisions resulting from
information asymmetry, the model allows enterprise 1 to make its innovation decision
first, with enterprise 2 subsequently learning about enterprise 1’s decision through certain
means. Enterprise 2 then makes its own innovation decision based on this information to
maximize its profits.

A theoretical analysis demonstrates that information serves to stabilize the Nash
equilibrium and suppress chaotic behavior. Bifurcation diagrams, the largest Lyapunov
exponent, and the evolution of attractors are employed to examine the dynamics of the
model. The findings indicate that acquiring information about the strategies of other
enterprises can enhance the stability of the Nash equilibrium in the market of the two
private enterprises. Numerical simulations further demonstrate that updating strategies
asynchronously can prevent chaotic behavior. These results have important implications
for government policymakers seeking to develop innovation policies that stabilize the
market and promote social innovation.
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