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Abstract: Over the past few years, we have seen an increased need to analyze the dynamically
changing behaviors of economic and financial time series. These needs have led to significant
demand for methods that denoise non-stationary time series across time and for specific investment
horizons (scales) and localized windows (blocks) of time. Wavelets have long been known to
decompose non-stationary time series into their different components or scale pieces. Recent methods
satisfying this demand first decompose the non-stationary time series using wavelet techniques
and then apply a thresholding method to separate and capture the signal and noise components
of the series. Traditionally, wavelet thresholding methods rely on the discrete wavelet transform
(DWT), which is a static thresholding technique that may not capture the time series of the estimated
variance in the additive noise process. We introduce a novel continuous wavelet transform (CWT)
dynamically optimized multivariate thresholding method (WaveL2E). Applying this method, we
are simultaneously able to separate and capture the signal and noise components while estimating
the dynamic noise variance. Our method shows improved results when compared to well-known
methods, especially for high-frequency signal-rich time series, typically observed in finance.

Keywords: continuous wavelet transform; data-driven and adaptive thresholding; partial density
estimation; integrated squared error; WaveL2E; nonparametric method

1. Introduction

Various time series in economics and finance are formed by non-stationary processes.
For instance, Exchange Traded Funds (ETF’s) consist of combinations of different equities
functioning at different periodicities. In order to understand and identify dynamic associa-
tions, it is necessary to explore the characteristics within each individual time series and
the changing dynamics across a series. Over the past decade, there has been a significant
increase in the use of time-varying spectral representations to analyze dynamic time series
behavior in finance. Recently, emphasis has been placed on using wavelets. Rostan and
Rostan [1] mention that quantitative analysts (quants) “nibbling” with wavelets are heav-
ily being recruited by major hedge funds. They specifically point out that the interest in
wavelet analysis has spiked in recent years because new methods and techniques have come
about to analyze physical phenomena, such as seismic and electrical signals, that propagate
through time in waveform. These methods are being adapted and applied to economic
and financial time series as these signals also propagate through time in waveform. The
application of time-varying techniques to augment traditional portfolio management tools
by distinguishing across multiple investment horizons or scales is becoming a growing field
of interest as well [2–4]. Chaudhuri and Lo [5], who coined the term spectral portfolio theory,
suggest that the flexibility of the wavelet transform could be used to overcome various
difficulties of the Fourier transform for spectral portfolio analysis. Wavelet transforms,
when specified correctly, are simple to interpret and can add tremendous value to the
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quantitative finance models that financial engineers implement. Wavelets have also proven
useful in characterizing two-dimensional fractional Brownian fields, often used in financial
studies [6]. For an expanded discussion of wavelet theory and implementation examples in
finance, see [7].

The decomposition of time series into their component pieces is frequently applied,
but further inference such as optimal dynamic thresholding and forecasting has only increased
in interest over the past few years. A recent paper by Reményi and Vidakovic [8] proposes
adaptive wavelet denoising methodology using a fully Bayesian hierarchical model in the
complex wavelet domain. They compare their results to two methods proposed by [9].
These authors also compare their methods to the well-known Empirical Bayesian Threshold
(EBayesThresh) of [10] and various other superior universal hard and soft thresholding
methods such as the SureShrink methods of [11]. Even though these two papers were
written ten years apart and are over a decade old, they are still commonly referenced and
can be seen as the gold standard in the domain of wavelet thresholding. For a survey
of other wavelet denoising or thresholding techniques and their comparisons, see [12].
More recent thresholding (denoising) methods were developed by the authors of [9] who
proposed two new complex-valued wavelet techniques, while the authors of [13] proposed
a data-driven threshold called the SureBlock, which uses Stein’s unbiased risk estimate
(SURE) criterion. He et al. [14] designed a new threshold, considering interscale correlation
by improving the basic universal hard threshold in order to address the issue of removing
too many wavelet coefficients. Each method improved characteristics that are lacking in
the existing “gold standard” methods.

In general, hard thresholding reduces all coefficients to zero that do not exceed the
threshold. Soft thresholding pushes toward zero any coefficient whose magnitude exceeds
the threshold, and zeros the coefficient otherwise. As a comparison to our proposed
method, we specifically use the SureShrink methods for the hard and soft thresholds.
We also compare our methods to the EBayesThresh. We choose these methods for our
comparison as they show superior results to the more recent and well-cited methods
pointed out earlier in this paper.

The choice of wavelet family is very important. Most solutions are not based on the
continuous wavelet transform (CWT) due to the difficulty of having a tractable solution
or an analytical solution [1]. The CWT is calculated by shifting, continuously, a scalable
function over a signal and by calculating the correlation between the function and signal,
resulting in potential redundancies. However, we mitigate these redundancies as well
as address both the tractability and analytical issues by uniquely choosing the Morlet
wavelet with the exact specifications for concise interpretation, see Section 2 and [15] for
more details.

The novel wavelet thresholding method we propose in this paper builds upon work on
minimum distance estimation, initiated by the authors of [16,17]. We propose decomposing
each univariate time series into scale-specific wavelet coefficients using a CWT. After
decomposition, we apply Scott’s multivariate minimum distance partial density estimation
(L2E) to each time increment. In doing so, we separate each time point into a mixture
model of signal and noise without having to explicitly assume a model for the signal. Upon
analyzing these results, we are not only able to find the optimal signal, but we also estimate
the variance of the noise component. In essence, we model the wavelet coefficients as a two-
component mixture, where the signal component is unspecified and the noise component
is Gaussian; see the Methods section for more details. The L2E (distance criterion) can be
used to exclude groups of outliers; therefore, by estimating the partial density parameters
of the noise component, we do not have to make assumptions on the signal component.
Ultimately, we are able to distinguish between signal and noise, by taking our signal to be
“outliers” while assuming that the noise has a known structure which we can model.

Section 2 describes the WaveL2E method, starting with a mathematical exposition of
wavelets in Section 2.1. We use [18–20] as examples to explain wavelet characteristics and
introduce statistical methods that extend the capabilities of wavelets to visualize unexpected
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structures in multidimensional data in Section 2.1.1. We then introduce the WaveL2E
in Section 2.2 and further identify how our method compares to other well-established
wavelet thresholding methods, using simulated time series that have dynamically changing
behaviors. In Section 3, we discuss and display the comparative analysis. In this section, we
also note that our WaveL2E results yield improved outcomes with added information and
interpretations. Before concluding in Section 5 with the strengths of the new methods and a
list of the next potential steps and applications, we introduce an example in Section 4. The
selected example addresses the investment relationships in water and energy ETF’s [19].
In this example, we highlight the post-thresholding improved coherence analysis of the
water–energy nexus.

2. Methods
2.1. Wavelets

Wavelets are mathematical functions that decompose temporally localized frequency
components, providing information of each component with a resolution matched to its
scale. Wavelet analysis in economics and finance has demonstrated promising results. This
has led to a resurgent of the literature focused on wavelet transforms and denoising.

2.1.1. CWT

A wavelet is usually derived by scaling and shifting a mother wavelet ψ(t) ∈ L2(R)
into daughter wavelets ψa,b(t) ∈ L2(R):

ψa,b(t) =
1√
a

ψ

(
t− b

a

)
, (1)

where a > 0 defines the scale and b ∈ R defines the shift. Given a time series x(t) ∈ L2(R),
the continuous wavelet transform (CWT) provides a decomposition of x(t) into time-
scale components:

Wx(a, b) = 〈x, ψa,b〉 =
∫
R

x(t)ψ∗a,b(t) dt, (2)

where ∗ denotes the complex conjugate. Usually the CWT coefficients are presented in
a power spectrum, where wavelet power is defined as |Wx(a, b)|2 and visualized in the
time-scale {b, a} half plane with logarithmic scale a-axis (vertical) increasing upward and a
linear time-scale b-axis (horizontal) (see Figure 1). More generally, the CWT can be seen as
a set of continuous band-pass filters applied to a time series.

Formally, ψ(t) is a mother wavelet if the following three conditions are met: (1)∫
R ψ(t)dt = 0, (2)

∫
R ψ2(t)dt = 1, and (3) it satisfies an admissibility condition. The admis-

sibility condition ensures the reconstruction of a time series from its wavelet transform:

x(t) =
1

a2Cψ

∫ ∞

0

[∫
R

Wx(a, b)ψa,b(t)db
]

da, (3)

where Cψ =
∫
R
|ψ̂(ω)|2
|ω| dω and ψ̂(ω) is the Fourier transform of ψ(t) in the CWT. By the

convolution theorem, the CWT, Wx(a, b), of a discrete time series x(t) can be approximated
by averaging n (the length of the time series) convolutions for each scale using the discrete
Fourier transform (DFT) of x(t) and ψ̂(ω) [21]. Traditionally, the constant (Cψ) is called the
wavelet admissible constant and a wavelet whose admissible constant satisfies 0 < Cψ < ∞
is called an admissible wavelet. The most commonly used mother wavelet in finance and
economic research is the Morlet wavelet:

ΨM(t) = π−
1
4 e−

1
2 t2

eiω0t, (4)

where eiω0t is the complex sinusoid, e−
1
2 t2

is a Gaussian envelope with a standard deviation
of one, and π−

1
4 normalizes the wavelet to have unit energy, i.e., satisfying the admissibility

conditions. As suggested in [22,23], we set the central frequency ω0 = 6. This value
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provides a reasonable trade-off between frequency localization and temporal evolution.
Choosing a Morlet wavelet with the above specifications provides us with unique properties
described in [15]. First, by choosing a complex wavelet, we have a separation of information
between the phase and amplitude. This allows us to examine leading–lagging relationships
depicted in Section 4 (see [19] for more details). Furthermore, our method is able to
recover the original series without using the inverse transform. However, the Morlet
wavelet is also analytic, allowing us to recover the original time series through an inverse
transform. Second, ref. [24] describes three different ways to convert scales into frequency.
These special frequencies are all equal to the central frequency, ω0, for the Morlet wavelet.
Using the usual definition of the relation between scale and Fourier frequency, defined
as f (s) = ω0

2πs , as well as selecting ω0 = 6, results in f (s) ≈ 1
s , which provides better

interpretability. Further, with this parameterization, the standard deviation in both time
and frequency are equal, proving an optimal relationship between time and frequency
accuracy. The current literature indicates that the choice of Morlet wavelet with ω0 = 6
proves to be best when using wavelets for feature extraction purposes in economic research.
Once again, for a further breakdown of the above summarized specifications, see [15]. A
good source for different wavelets and their inherent characteristics can be found in [25].

(a) CGW Prices

(b) XLE prices
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(c) CGW returns (d) XLE Returns

Figure 1. The continuous wavelet transform (CWT) power spectrum of water (a,c) and energy (b,d)
commodity ETF prices (a,b) and returns (c,d). These plots are visual representations of the power
spectrum of each individual series. The investment horizons (vertical axis) are such that the value one
through fourteen represents weekly and biweekly investment horizons. Sixty-four days represent
a quarterly investment horizon, whereas 250 and above represent annual and larger investment
horizons. The horizontal axis indicates the 10 years of data. The white overlay defines the cone
of influence.

2.2. WaveL2E Threshold

In this section, we combine the CWT and the L2E method. Scott [16] proposed mini-
mizing the Integrated Square Error (ISE) with the aim of minimizing the squared distance
between two probability density curves using the L2 estimation criterion (referred to as the
L2E). In Appendix A, we show that for a general multivariate mixture distribution:

h(x) = w f (x|θ) + (1− w)g(x) , (5)

where g(x) is an unspecified density, and w ∈ (0, 1) is a mixing parameter, then the L2E for
θ = (w, σ) is found by (numerically) minimizing

L2E(w, σ) =
w2

(2σ
√

π)d −
2w
n

n

∑
i=1

φ(xi|0, σ2 Id). (6)

To formulate the dynamic selection of the coefficients of the multivariate continuous
wavelet transform using the L2E, we first describe our time series y with the simple signal
plus noise model:

y = q(t) + ε, (7)

where y = (y1, . . . , yn) denotes the observations at our n time points, the signal is defined by

q(t) = (q(t1), . . . , q(tn)), q(t) ∈ L2(R), and ε = (ε1, . . . , εn)
iid∼ N(0, σ2 In), with unknown

variance σ2. Taking the continuous wavelet transform (W) of the time series, we can further
express the additive noise model as:

Wy = Wq(t) + Wε. (8)

Framing the additive noise model in Equation (8) as a general multivariate mixture dis-
tribution, we equate Wy to h(x) of Equation (5), with the strong signal components of
the wavelet coefficients, Wq(t), assigned to (1− w)g(x). The remaining wavelet coeffi-
cients are categorized as noise, and are combined with Wε, which is equated to w f (x|θ)
of Equation (5). With this specification, minimizing (6) allows us to estimate the noise
component parameters without making assumptions of the number or distribution of the
‘significant’ wavelet coefficients embodied in g(x). Since we assume i.i.d Gaussian noise
with variance σ2, we also assume that the pure noise wavelet coefficients are i.i.d with
covariance matrix σ2 Id. Thus, the wavelet coefficients with the covariance matrix, σ2 Id, are
assumed to be independent. This assumption of independence means that we only have
two parameters to estimate, namely σ and w, regardless of the dimension.

After minimizing the criteria and recovering our parameters (σ̂, ŵ), we apply two
thresholding methods to the wavelet coefficients based on these estimates. We apply the
first of these thresholds to the distribution of the squared wavelet coefficients, referred to
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as the WaveL2E. The reason we apply the minimization to the squared wavelet coefficients
is due to our assumptions that we have standard Gaussian noise, the square of the wavelet
coefficients representing the Gaussian noise is therefore assumed to be distributed χ2.
The second threshold is determined using the 95% χ2 critical value of the the squared
wavelet coefficients distribution. This threshold is referred to as the WaveL2Eχ2 . The
squared wavelet coefficients are also the power of the signal; in Section 2, we present these
in a CWT power spectrum. After applying the threshold, the power spectrum can be
used to visualize the applied thresholds. For a simple simulated demonstration of these
thresholding methods, see Figure 2. This figure visualizes an additive noise model, with
three stationary signals, before and after thresholding, using both the WaveL2E and the
WaveL2Eχ2 thresholding methods. We are able to recover the pure signal for the three
periods in the original additive noise model by removing the induced noise across all
wavelet coefficients. These methods work well for signals that are constant or stationary.
However, when there are inter-scale dependencies, the static version of these thresholds do
not necessarily extract all the signals. Therefore, we introduce a dynamic version of the
static L2E criterion.

(a) Additive noise model (b) Pure signal

(c) WaveL2E threshold (d) WaveL2Eχ2 threshold

Figure 2. The CWT power spectrum (a) of a simple additive noise model with three stationary
signals. Biweekly (15 days), quarterly (64 days), and biannually (125 days). Hence, we have that:
yt = sin( 2πt

15 ) + sin( 2πt
64 ) + sin( 2πt

125 ) + ε, where ε ∼ N(0, 0.1) and t = (1, . . . , 2400). Also, this
figure shows the CWT power spectrum (b), which is the pure signal without noise, the CWT power
spectrum (c) after the WaveL2E threshold, and the CWT power spectrum (d) after the WaveL2Eχ2

threshold. For the minimization process, we use constrained optimization using PORT routines with
0 ≤ σ < ∞ and 0 ≤ w < 1 [26].

2.3. Dynamic WaveL2E Threshold

Minimum distance estimators, like the L2E, identify the portion of the data that
matches the model and separates the data that do not match. Scott [16] showed that the
inefficiencies (asymptotically) of the parameters estimated using the maximum likelihood
estimator versus the minimization of the ISE or the L2E criterion are roughly that of the the
mean versus the median in a general statistical analysis. The L2E criterion specified in [16]
for mixture distributions is therefore very good at identifying groups of outliers in large
datasets. This minimum distance estimator is also robust, without requiring additional
specifications (meta-parameters) that are needed in other likelihood estimators, making it
an ideal candidate for thresholding.

In order to evaluate the changing weight, wt, and the changing noise variance, σt,
across time, the implementation of the L2E minimization needs to be adapted to optimally
estimate (ŵt, σ̂t) at each time-localized observation.
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Therefore, by adapting Equation (6) for time-dependency, we change the L2E criterion
to obtain unique estimates σ̂t and ŵt. The result is the dynamic optimization by minimizing
the following L2E criterion:

L2E(wt, σt) =
w2

t
(2σt
√

π)d −
2wt

n

n

∑
i=1

φ(xi|0, σ2
t Id). (9)

We apply the same two thresholding methods mentioned previously, based on these
estimates. The only difference in the adjusted implementation is that we apply these thresh-
olds to the distribution of the squared wavelet coefficients at each time point. Figure 3 is a
simple demonstration of the steps followed to implement the WaveL2E method and the re-
sulting estimates recovered. The steps for implementation are as follows (see our R Package
referenced in Data Availability Statement for more detailed implementation instructions):

• Calculate the wavelet transform of the observed time series and recover the squared
wavelet coefficients.

• Apply the WaveL2E and WaveL2Eχ2 at each time point, solving for the estimates
(ŵt, σ̂t) of the L2E criterion.

• Threshold the wavelet coefficients based on the estimates.
• Calculate the inverse transform of the denoised time series or solve for the pure signal

using the recovered estimates.

Figure 3. Demonstration of the process applied to a time series. Starting with the observed time series,
we apply the Morlet wavelet, a continuous wavelet transform (CWT), and then after decomposition,
we minimize the L2E criterion. This minimization provides us with the optimal estimates for σt and
wt. After estimation, we can remove the noise component and recover the signal component of the
original observed series.

Further extending and generalizing Equation (9), we include intra-scale dependence
(within scale) by evaluation blocks (windows) of time across scales. We perform this by
enabling block sizes of length h. The first block is labeled as block zero, with estimates
(ŵ0, σ̂0). The WaveL2E and WaveL2Eχ2 are applied to each of these blocks, across the scales;
see Figure 3. For example, if we identify a time window (block) of 22 days, an average fiscal
month, we would have estimates for (ŵt, σ̂t), at t = h, where (h = 0, 22, 44, 66, . . . , T), with
T being the length of the series. When h = T, we have the static L2E criterion described in
Equation (6). More specifically, the generalization of the L2E criterion then becomes:

L2E(wh, σh) =
w2

h
(2σh
√

π)d −
2wh

n

n

∑
i=1

φ(xi|0, σ2
h Id). (10)

3. Results and Comparative Analysis
3.1. Inter-Scale and Intra-Scale

In this section, our main goal is to show comparative results of our methods against
the EBayesthresh and SureShrink referenced in Section 1. We refer to these methods as the
gold standard for wavelet thresholding. To further understand our findings, we examine
the percentage of significance area (PSA) and the percentage of total volume (PTV) given
in [27]. We use these two measures to estimate the statistically significant area maintained
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after our threshold implementation and the portion of volume in the CWT power spectrum,
respectively. Thus, to simplify, PSA measures the percentage of the wavelet coefficients
removed by our method and PTV measures the resulting statistical significance captured
by our method.

Current thresholding methods have two limiting assumptions. First, most methods
assume wavelet coefficients, representative of the signal components, which follow a
specified parametric model. Unlike Bayesian methods with hyperparameters that need to
be tuned, our multivariate wavelet thresholding method is adaptive and data-driven, so
no specifications are needed. Second, traditional wavelet thresholding methods assume
independence of all wavelet coefficients. However, wavelet correlation theory suggests
that signal coefficients are not independent and only the wavelet coefficients of noise
are uncorrelated (see [28] for more details). These methods generally assume that the
smallest level of wavelet coefficients are likely to contain pure noise. Both SureShrink
and EbayesThresh methods use adaptions of the median absolute deviation (MAD) of
the finest level of coefficients to estimate the noise variance of the signal. However, these
MAD estimates of the smallest scale wavelet coefficients overestimate the variance in high-
frequency data when compared to our noise variance estimate. Overestimation results in
too large a threshold. Visualizations of these comparative results for the different estimates
of the noise variance can be found in [17]. Therefore, noise variance has to be estimated
in a data-driven, dynamic manner as we suggest in our proposed wavelet thresholding
method, the WaveL2E.

The assumption that all levels of wavelet coefficients are independent leads to thresh-
olding methods that do not capture both the inter-scale (between) and intra-scale (within)
dependencies. Figure 4 summarizes these differences by pointing out how the WaveL2E
thresholding method mitigates these within and between scale dependencies. Figure 3
provides a simple demonstration of how the WaveL2E method incorporates between scale
dependencies, by evaluating the additive noise model at each increment, and within scale
dependency, by allowing blocks of time to be evaluated simultaneously. Our method has
the flexibility to separate the noise and signal components by minimizing the L2E criterion
across scales and for specific time windows. In the next subsection, we will show how
this flexibility results in better, simplified thresholding and the interpretation of commonly
simulated signals. This subsection then leads to an example of how our method can be
implemented to analyze real- world applications.

Figure 4. Summary of the difference between the wavelet L2E thresholding method we introduce in
this paper and the other gold standard methods. The fundamental difference is that our novel method
incorporates both inter-scale and intra-scale dependencies with no limitations on the estimates of the
noise variance or parametric specifications.

3.2. Comparative Analysis

We start our comparative analysis by analyzing the root-mean-squared error (RMSE)
of both the gold standard methods and our method for the simulated periodic time series
in Figure 2. Figure 5 extends the previous static analysis and includes the dynamic analysis
from Equation (9) for both the WaveL2E and WaveL2Eχ2 thresholds. The static implementa-
tion removed a significant amount of the coefficients, whereas the dynamic implementation
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was more selective. This property becomes more relevant when the signals are not as
simple as what was simulated in this example. In Table 1, we point out the percentage
total volume (PTV) and the percentage significance area (PSA). These two measures refer
to the percentage of the total wavelet coefficients that represent the estimated true signal
after threshold implementation and the percentage of the total statistical significance rep-
resented by these thresholded wavelet coefficients. The static implementation thresholds
about 80% of the coefficients for the WaveL2E and about 92% of the coefficients for the
WaveL2Eχ2 . The remaining wavelet coefficients represent about 94% and about 55% of the
statistical significance for the respective thresholding methods. On the other hand, the
dynamic implementation thresholded about 42% and about 50% of the wavelet coefficients
for the respective methods, but this implementation was able to maintain about 99% of the
statistical significant wavelet coefficients for both methods.

Table 1. The percentage total volume (PTV) and percentage significance area (PSA) of the static
and dynamic WaveL2E and WaveL2Eχ2 thresholding methods, for the simulated series defined in
Figure 2.

Analysis WaveL2E WaveL2Eχ2

Static PTV 20.48% 7.80%
Static PSA 94.10% 54.59%
Dynamic PTV 57.77% 50.79%
Dynamic PSA 99.84% 99.64%

Figure 5. Two different comparative analyses: The first plot (left) is the base CWT power spectrum
for the signal yt = sin( 2πt

15 ) + sin( 2πt
64 ) + sin( 2πt

125 ) + εt, where εt ∼ N(0, 0.1) and t = (1, . . . , 2400).
The top analyses is the WaveL2E (left) and WaveL2Eχ2 (right) thresholds from Equation (6) and the
bottom analysis is the dynamic WaveL2E (left) and WaveL2Eχ2 (right) thresholds from Equation (9).

In Table 2, we include the root-mean-squared error (RMSE) for the wavelet SureShrink
(WavShrink) universal hard threshold (RMSE: 0.1120), the WavShrink universal soft thresh-
old (RMSE: 0.2205), and the empirical Bayes threshold (RMSE: 0.0734). Our static implemen-
tation for the WaveL2E threshold has an RMSE of 0.0775 and for the WaveL2Eχ2 threshold
has an RMSE of 0.1271. The generalization and implementation of the dynamic method
results in an RMSE of 0.0931 and an RMSE of 0.0963 for the WaveL2E and WaveL2Eχ2

thresholds, respectively.

Table 2. RMSE comparison of our method using the static L2E criterion and the dynamic L2E criterion
to the gold standard (GS) methods. The RMSE of the WaveShrink (WShrink) hard (H) and WShrink
soft (S) thresholds as well as the EBayes threshold, for the simulated series defined in Figure 2.

Analysis WShrink (H) WShrink (S) EBayes WaveL2E WaveL2Eχ2

Static RMSE 0.1120 0.2205 0.0734 0.0775 0.1271
Dynamic RMSE 0.1120 0.2205 0.0734 0.0931 0.0963

As we pointed out earlier in this section and in Figure 4, most traditional methods
assume independence between scales (inter-scale). When we only have stationary signals,
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as we see in Figure 5, the EBayesThresh method slightly outperforms the new method
we introduce in this paper. However, the moment high-frequency data and inter-scale
dependency are introduced, see Figure 6 and Table 3, our method outperforms the other
methods when implementing the static L2E criterion, and the results are equivalent in
RMSE when applying the dynamic L2E criterion. We also see similar results for the PTV
and PSA in Table 4, where the dynamic implementation maintains more of the statistical
significant wavelet coefficients. The signal we identified to analyze with the aforementioned
specifications consists of a ten-year cycle (as the first periodic component) and the second
periodic component is a one-year cycle that changes to a three-year cycle between 10 and
20 years and a five-year cycle between 50 and 60 years with variance that changes five
times, i.e., every 20 years. The simulated series represents 100 years of monthly values, or
1200 observations. Specifically,

yt = cos
(

2πt
p112

)
+ cos

(
2πt
p212

)
+ εt, t = (1, 2, . . . , 1200), (11)

where εt ∼ N(0, p3) with p3 = (0.5, 0.05, 0.25, 0.15, 0.05) with p1 = 10, p2 = 3 when
10 ≤ t

12 ≤ 20, p2 = 5 when 50 ≤ t
12 ≤ 60, and p2 = 1 otherwise. Figure 6 shows two

different analyses, the first using the static L2E criterion and the second using the dynamic
L2E criterion.

Figure 6. Two different comparative analyses. The first plot (left) is the base CWT power spectrum for the signal
from Equation (11). The top analyses is the WaveL2E and WaveL2Eχ2 thresholds from Equation (6) and the bottom
analysis is the dynamic WaveL2E and WaveL2Eχ2 thresholds from Equation (9).

Table 3. RMSE comparison of our method using the static L2E criterion and the dynamic L2E criterion
to the gold standard (GS) methods. The RMSE of the WaveShrink (WShrink) hard (H) and WShrink
soft (S) thresholds as well as the EBayes threshold, for the simulated series from model (11).

Analysis WShrink (H) WShrink (S) EBayes WaveL2E WaveL2Eχ2

Static RMSE 0.2740 0.2939 0.2430 0.1844 0.2682
Dynamic RMSE 0.2740 0.2939 0.2430 0.2535 0.2547

Table 4. The percentage total volume (PTV) and percentage significance area (PSA) of the static and
dynamic WaveL2E and WaveL2Eχ2 thresholding methods, for the simulated series from model 11.

Analysis WaveL2E WaveL2Eχ2

Static PTV 20.54% 7.03%
Static PSA 87.44% 55.81%
Dynamic PTV 75.17% 70.81%
Dynamic PSA 99.93% 99.86%

Introducing more inter-scale dependency, we analyze eight different signals by im-
plementing the dynamic L2E criterion. We also add to the analysis the empirical WaveL2E
calculation (EWaveL2E). After recovering both (ŵt, σ̂t) and since we are assuming indepen-
dence, we can recover the denoised signal from the original equation by solving for the
estimated true signal, ĝ(x):
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ĝ(x) =
h(x)− ŵhφ(x|0, σ̂2

h Id)

(1− ŵh)
. (12)

Equation (12) provides us with the flexibility to create a potential forecasting model;
however, this task is left for future research. In Table 5, the last column contains the RMSE
of an adjusted EWaveL2E for all the signals. We made an adjustment to ensure that we
can include the results of various different signals. We use the median absolute deviation
(MAD) of each of the estimates (σ̂h, ŵh) to recover the estimated ĝ(x). The time series and
CWT power spectrum of each of these signals are visualized in Figure 7. These spectra
clearly show the inter-scale dependencies.

Tables 5 and 6 are the RMSE results of the eight different signals with two different
signal-to-noise ratio’s (SNR), 2 and 5, respectively. As soon as there is more inter-scale
dependency and the signals are not only noise, our model outperforms. Another interesting
observation is the difference between the empirical calculation and the inverse wavelet
transform. It seems that the inversion does yield better results. However, the adjusted
empirical results (EWaveL2E) compared to the WaveL2E and WaveL2Eχ2 for some of the
signals are very similar. To show the value in our new method, we expand the example of
the water–energy nexus in the next Section (see [19]).

Table 5. Using a signal-to-noise ratio (SNR) of two, we analyze the RMSE comparison of our method
using the dynamic L2E criterion to the gold standard (GS) methods for eight different signals: the
RMSE of the WaveShrink (WShrink) hard (H) and WShrink soft (S) thresholds, as well as the EBayes
threshold. We identify the smallest RMSE with a star (*).

Signal WShrink (H) WShrink (S) EBayes WaveL2E WaveL2Eχ2 EWaveL2E

hisine 0.7069 0.7069 0.7116 0.3443 0.3425 * 0.3832
losine 0.1457 0.2813 0.1301 * 0.3196 0.3201 0.3642
linchirp 0.3145 0.4520 0.2203 * 0.3296 0.3257 0.4026
twochirp 0.9662 0.9728 0.9315 0.4897 0.4835 * 0.5543
quadchirp 0.5694 0.6232 0.4812 0.3416 * 0.3543 0.4018
mishmash1 1.1166 1.1635 1.0778 0.6493 0.6478 * 0.7096
mishmash2 1.3406 1.3620 1.2559 0.8034 * 0.9486 0.9420
mishmash3 0.9354 1.0594 0.6603 0.5919 0.5899 * 0.6702

Table 6. Using a signal-to-noise ratio (SNR) of five, we analyze the RMSE comparison of our method
using the dynamic L2E criterion to the gold standard (GS) methods for eight different signals: the
RMSE of the WaveShrink (WShrink) hard (H) and WShrink soft (S) thresholds, as well as the EBayes
threshold. We identify the smallest RMSE with a star (*).

Signal WShrink (H) WShrink (S) EBayes WaveL2E WaveL2Eχ2 EWaveL2E

hisine 0.7068 0.7068 0.7076 0.1371 0.1359 * 0.1619
losine 0.0810 0.1339 0.0559 * 0.1248 0.1207 0.1830
linchirp 0.1378 0.2498 0.0925 * 0.1295 0.1929 0.1804
twochirp 0.9668 0.9727 0.9127 0.2145 * 0.2389 0.2901
quadchirp 0.3507 0.5088 0.1744 0.1541 * 0.2338 0.2791
mishmash1 1.1156 1.1637 1.0772 0.2693 * 0.3241 0.3078
mishmash2 1.3386 1.3618 1.2360 0.5202 * 0.6562 0.5630
mishmash3 0.7803 0.9463 0.4679 0.2525 * 0.2567 0.3467
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(a) Signal time series plots.

(b) CWT power spectrum of hisine, losine, linchirp, and twochirp.

(c) CWT power spectrum of quadchirp and mishmash 1 through 3.

Figure 7. Comparative analysis of eight traditional time series depicted in the top panel (7a) before a
wavelet transform. The series are labeled hisine, losine, linchirp, twochirp, quadchirp, mishmash1,
mishmash2 and mismash3. The CWT for hisine, losine, linchirp and two chirp is given in panel
7b reading from left to right and top to bottom, whereas the CWT for the remaining four series is
provided in panel 7c, namely quadchirp and mishmash1 through mishmash3.

4. Motivating Example: Water–Energy Nexus

Raath and Ensor [19] quantify the dynamic relationship between energy and water
commodities by applying wavelet techniques to better understand the dynamic relationship
that exists in the water–energy nexus. Using daily water and energy commodity ETF price
data from 2007 to 2017, they evaluate the respective wavelet transforms of each time series.
We use this water–energy nexus quantification as a motivating example in explaining each
component of our novel thresholding method.
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After thresholding both the water (CGW ETF) and energy (XLE ETF) prices and re-
turns, as seen in Figure 1, we further analyze by comparing the wavelet-squared coherence
(WSC) before and after thresholding, using the WaveL2E. The WSC analyzes local linear
correlations in regions of statistical significant co-movement and can be used to define in-
vestment horizon-specific behavior. In Figure 8, the top two plots represent the before (left)
and after (right) thresholding results. It can clearly be seen that there are less statistically
significant co-moving components in the WSC plot after thresholding (top right). We also
note that during the financial crisis, from 2008 to 2012, there were no statistically significant
behaviors at the weekly and biweekly investment horizons (scale); the relationship was
only noise.

Figure 8. Analyzing the wavelet-squared coherence (WSC) of the water–energy nexus before (top
left) and after (top right) WaveL2E thresholding. We evaluate both the WSC (bottom left) and the
partial coherence (bottom middle) results of the quarterly investment horizon by analyzing the
leading–lagging relationship (bottom right) of the nexus.

The next set of plots point out the partial wavelet coherence conditional on the market
(SPY ETF); for more details, see [15]. We wanted to eliminate the market effects on the water–
energy nexus and then evaluate the leading–lagging (bottom right) relationship for the
quarterly investment horizon (bottom left and center). The quarterly investment horizon
was identified because of the statistically significant co-movement during the 2014–2016 oil
glut (top right). The phase difference (bottom left) of our thresholded series does not seem
to have any significant leading–lagging relationship. The light purple and darker green
indicate that water is leading and the darker purple and lighter green indicate that energy
is leading (bottom right). However, as soon as we implement the partial wavelet coherence
on our thresholded series, we see significant leading–lagging relationships. Raath and
Ensor [19] pointed out the significance of water-leading energy during the 2014–2016 oil
glut, which is very clearly confirmed here using our WaveL2E thresholding method.

We point out in Figure 9 the plots of the estimates for (σ̂h, ŵh), where h = 22, a
fiscal month (top) on the XLE ETF. We added these here to show the flexibility of our
method and to visually demonstrate that a static weight or variance would not work for
the water–energy nexus.

In this figure, we also add the reconstructed price series and return series using
our WaveL2E threshold method. In the return plot (bottom right), we also include the
EWaveL2E estimate of ĝ(x) from Equation (12) using only the h = 22 estimates (σ̂h, ŵh).
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Figure 9. Analyzing and recovering the fiscal month, on the 22nd day; estimates for the WaveL2E and visualizing
the results of both the WaveL2E and the EWaveL2E after inversion and recovery of the estimated true time series.
Method executed on the XLE ETF.

5. Conclusions

In this paper, we present a method that denoises non-stationary time series by dynamic
multivariate complex wavelet thresholding. We demonstrate that our method performs best
among a broad class of methods for the type of series seen in finance. Our method performs
especially well in environments when there are inter-scale dependencies. Further, we are
able to capture not only the signal, but also an estimate of the variance for the additive noise
of a time series. Other objectives met in this manuscript include: (1) choosing a continuous
wavelet transform to increase interpretability while incorporating and adjusting the L2E
criterion to optimize a data-driven threshold; (2) increasing the dynamic adaptability by
generalizing our WaveL2E method; (3) describing how to implement these thresholds in
practice; and (4) developing a user-friendly R package, which implements the thresholds
introduced in this paper.

Our methodology is applied to a financial series, addressing the water–energy nexus [19].
By denoising the price series, using our methodology, we form a deeper understanding of
the relationship between the price series representing water and that representing energy.
These results would be difficult to discern without implementing our threshold. We
confirmed that the water–energy nexus depends on general market behavior. When the
market behavior is removed, we find that water prices lead energy prices at the quarterly
investment horizon during the 2014–2016 oil glut.

An added feature of our thresholding method is the estimation of the variance of
the additive noise at specific localized windows of time. These estimates can be used to
forecast the volatility series, work which will be further explored in future papers. Future
investigations also include revisiting wavelet estimation for temporal random fields, as
in [6].
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The following abbreviations are used in this manuscript:

CGW Global Water Fund
CWT Continuous Wavelet Transform
ETF Exchange Traded Fund
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Appendix A

Scott [16] proposed using the Integrated Square Error (ISE) criterion to minimize the
squared distance between two probability density curves using the L2 estimation criterion
(referred to as the L2E). The ISE can be expressed in terms of two curves, namely the
assumed parametric density f (x|θ) and the true but unknown density, h(x), from which
the i.i.d. sample is taken, and is given by:

ISE( f , h) ≡
∫ ∞

−∞

[
f (x|θ)− h(x)

]2 dx. (A1)

In this formulation, we allow f (x|θ) and h(x) to come from different parametric families.
In fact, this is the general expectation.

The L2E parameter estimate, θ̂, is found by minimizing an unbiased estimate of a
shifted version of ISE( f , h). Specifically, we consider the integrals in the curly brackets

θ̂ = argmin
θ

{∫ [
f (x|θ)− h(x)

]2dx
}

,

= argmin
θ

{∫ [
f (x|θ)2 − 2 f (x|θ)h(x) + h(x)2

]
dx
}

,

= argmin
θ

{∫
f (x|θ)2dx− 2 E f (X|θ)

}
,

(A2)

where X ∼ h(x) and the constant term
∫

h(x)2dx are dropped. The first term is computable
and does need not be estimated stochastically. For the second term, we substitute the
unbiased average based on our random sample to estimate E f (X|θ) as proposed by [16].
The resulting L2E criterion is:

https://github.com/kcraath/CoFESWaveResearch
https://github.com/kcraath/CoFESWave
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θ̂L2E = argmin
θ

{∫
f (x|θ)2dx− 2

n

n

∑
i=1

f (xi|θ)
}

, (A3)

which may be obtained using nonlinear optimization software.
If we assume that the univariate density f (x|θ) is Gaussian as in the additive noise

model, then h(x) in Equation (5) can be written as:

h(x) = wφ(x|0, σ2) + (1− w)g(x). (A4)

By replacing f (x|θ) with wφ(x|0, σ2), the partial L2E criterion becomes:

L2E(w, σ) =
w2

2σ
√

π
− 2w

n

n

∑
i=1

φ(xi|0, σ2). (A5)

Here, we have used the result for Gaussian densities in [29]:∫ ∞

−∞
φ(x|µ1, σ2

1 ) φ(x|µ2, σ2
2 ) dx = φ(0|µ1 − µ2, σ2

1 + σ2
2 ) ,

which also holds for multivariate densities with mean vectors µ1 and µ2 and covariance
matrices Σ1 and Σ2. Hence, Equation (A3) becomes

θ̂L2E = argmin
θ

{∫ [
wφ(x|0, σ2)

]2dx− 2
n

n

∑
i=1

[
wφ(xi|0, σ2)

]}

= argmin
θ

{
w2φ(0|0, 2σ2)dx− 2w

n

n

∑
i=1

φ(xi|0, σ2)

}

= argmin
θ

{
w2

2σ
√

π
− 2w

n

n

∑
i=1

φ(xi|0, σ2)

}
.

The resulting L2E criterion specified in Equation (A5) can be generalized to multivari-
ate mixtures. Assume that h(x) in Equation (5) can be written as:

h(x) = wφ(x|0, σ2 Id) + (1− w)g(x) ; (A6)

then

L2E(w, σ) =
w2

(2σ
√

π)d −
2w
n

n

∑
i=1

φ(xi|0, σ2 Id) , (A7)

which demonstrates Equation (6).
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