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Abstract: Neurostimulation can be used to modulate brain dynamics of patients with neuropsychi-
atric disorders to make abnormal neural oscillations restore to normal. The control schemes proposed
on the bases of neural computational models can predict the mechanism of neural oscillations induced
by neurostimulation, and then make clinical decisions that are suitable for the patient’s condition
to ensure better treatment outcomes. The present work proposes two closed-loop control schemes
based on the improved incremental proportional integral derivative (PID) algorithms to modulate
brain dynamics simulated by Wendling-type coupled neural mass models. The introduction of the
genetic algorithm (GA) in traditional incremental PID algorithm aims to overcome the disadvantage
that the selection of control parameters depends on the designer’s experience, so as to ensure control
accuracy. The introduction of the radial basis function (RBF) neural network aims to improve the
dynamic performance and stability of the control scheme by adaptively adjusting control parameters.
The simulation results show the high accuracy of the closed-loop control schemes based on GA-PID
and GA-RBF-PID algorithms for modulation of brain dynamics, and also confirm the superiority of
the scheme based on the GA-RBF-PID algorithm in terms of the dynamic performance and stability.
This research of making hypotheses and predictions according to model data is expected to improve
and perfect the equipment of early intervention and rehabilitation treatment for neuropsychiatric
disorders in the biomedical engineering field.

Keywords: GA-PID algorithm; GA-RBF-PID algorithm; modulation of brain dynamics; Wendling-
type coupled neural mass model; control accuracy; dynamic performance and stability

1. Introduction

As early as the 1970s, Wiener and Schadé emphasized the importance of establish-
ing mathematical models that are isomorphic to biological systems from the perspective
of information processing for the development of biomedical engineering [1]. The well-
established mathematical models for simulating different neural oscillations recorded by
electroencephalogram (EEG) help to better explain the brain functional states and the evolu-
tionary mechanisms of neuropsychiatric disorders [2,3], and then provide theoretical bases
for seeking modulation methods of abnormal neural oscillations [4,5]. Non-linear neural
mass models are commonly used models for simulating neural oscillations [6], in which the
changes of the excitatory gains have a significant influence on the dynamical characteristics
of the models, and these changes are usually used to simulate the generation of abnormal
neural oscillations. Research on the modulation of brain dynamics based on neural mass
models plays an important role in the field of biomedical engineering, which can provide
ideas and scientific bases for the optimization and innovation of early intervention and
rehabilitation treatment equipment for neuropsychiatric patients with abnormal neural
oscillations [7]. In addition to mathematical models, control algorithms also directly affect
the performance of control schemes.
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To ensure the performance of the brain dynamics modulation scheme, it is necessary
to comprehensively consider factors such as modulation target, energy consumption and
external interference to introduce different control algorithms. The algorithms commonly
used in the modern engineering control theory, such as PID [8], unscented Kalman filter
(UKF) [9], particle swarm optimization (PSO) [10], etc., have been extended to the field
of computational neuroscience. Su et al. proposed an adaptive feedback linearization
algorithm that enhanced the robustness to uncertain factors of system and outside world
for the highly non-linear computational model of Parkinson’s disease with unknown pa-
rameters [11]. The generalized predictive closed-loop control strategy put forward by Liu
et al. could generate adaptive stimulation waveforms with low energy expenditure without
requiring any particular knowledge of model’s physiological properties, which had poten-
tial to improve the therapeutic effect for Parkinson’s disease [12]. From the point of filtering,
a detection and closed-loop control strategy based on the UKF algorithm was proposed
for the neural mass model used to simulate epileptic rhythms [13]. On this foundation,
a fuzzy adaptive closed-loop control method based on the UKF algorithm was put forward,
which was used in the case of noise uncertainty [14]. Further, the UKF-based closed-loop
iterative learning control accelerated the convergence rate of control errors [15]. Shan et al.
developed a closed-loop control strategy based on the PSO algorithm for the neural mass
model [16], which significantly improved the estimation effect of unmeasurable parameters
and the efficiency of control compared with the UKF. For systems that do not consider
external interference factors, if there is a high demand for control accuracy, the PID-related
algorithms with the longest history, the widest application, and the strongest adaptability
are the optimal algorithms for designing brain dynamics modulation schemes. Gorzelic
et al. have introduced the PID algorithm into the closed-loop control of the computational
model of Parkinson’s disease dynamics because the algorithm has a simple control structure
and remarkable tracking performance for repetitive processes in nature [17]. Similarly,
proportional-integral and proportional-derivative algorithms are also commonly used for
the closed-loop control of computational models for neuropsychiatric disorders [18–20].
The traditional PID algorithm has two main drawbacks. First, the quality of PID parameters
directly determines the performance of the algorithm, however, the choice of PID parame-
ters largely depends on the designers’ experience. Second, the adaptability of the algorithm
is an important indicator to measure its performance, but online adaptive adjustment of
PID parameters is a difficult problem for the conventional PID control. For the PID control
in neuroscience, these problems also exist.

To overcome the above shortcomings, we introduce the RBF neural network [21]
and GA [22] to the incremental PID closed-loop feedback control scheme to modulate
the dynamics of a class of neural mass models. The purpose of introducing GA is to
determine (initial) values of PID parameters to ensure the control accuracy. For the sake of
reducing dependence of the incremental PID control on controlled model and improving the
dynamic performance and stability of the control method, a GA-RBF-PID algorithm based
control scheme is further proposed. This method reconstructs outputs of the controlled
Wendling-type coupled neural mass model by applying RBF neural network’s ability of
approximating arbitrary non-linear functions while automatically tuning and modifying
PID parameters online by applying RBF neural network’s self-learning ability. The present
work is expected to establish a bridge between clinical and fundamental theoretical research
on neuropsychiatric disorders.

2. Materials and Methods
2.1. Wendling-Type Coupled Neural Mass Model

Various mathematical models have been developed to simulate neural oscillation
activities to meet the theoretical research needs of the biomedical field. The increasingly
well-established neural mass models not only provide valuable means to explore mech-
anisms of rhythms underlying certain brain activities or phenomena, so as to describe
generation processes of neuropsychiatric disorders (such as epilepsy), but also use to verify
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the effectiveness of various EEG signal processing methods that are conducive to the anal-
ysis and understanding of real EEG data. In short, the neural mass model seems to be a
good compromise between the tractability and realizability of the modulation research of
brain dynamics [23].

Figure 1 shows the structure diagram of the Wendling-type coupled neural mass
model, where the integer N (N > 2) indicates the quantity of neural populations under
consideration, and superscripts l and m indicate the l-th and m-th populations, respectively.
Since the populations l and m are similar, only the population l is described in detail
here. The block diagram in Figure 1 describes the information flow among two subsets
of population l, and among coupled populations with population l. The subset of main
cells (the part within the red dashed box) consists of pyramidal cells, which receives both
excitatory and inhibitory feedback from the subset of interneurons (the part within the
blue dashed box) and a noise input pl(t). Here pl(t) globally denotes the average density
of afferent action potentials from neighboring or distant populations. It can be arbitrary
function including white noise. The subset of interneurons consists of a few pyramidal cells
and stellate or basket cells, which receives excitatory input only from the subset of main
cells. There are three main variables in population l, denoted by xl

1(t), xl
3(t) and xl

5(t), where
xl

1(t) is the output of the excitatory postsynaptic potential transfer function he2(t); xl
3(t) and

xl
5(t) are the outputs of the excitatory postsynaptic potential and inhibitory postsynaptic

potential transfer functions he1(t) and hi(t), respectively. In addition, a variable is closely
related to the population l, that is, the output of the excitatory postsynaptic potential
transfer function hd(t) denoted by xl

7(t), where hd(t) is used to model delays related to
connections from population l. The output yl(t) is used to simulate neural oscillations
recorded by EEG. The static non-linear function denoted by the symbol S(·) associates the
membrane potential level of neurons with the average pulse density of the potential fired
by these neurons. S(·) has a sigmoid form

S(v) = 2e0
1+er(v0−v) , (1)

where v, e0, v0, and r are parameters that determine its voltage sensitivity. The average
numbers of synaptic connections between main cells and interneurons are represented by
the connectivity constants c1–c4. The coupling strength Kml characterizes the degree of
dependence of population l on population m, and Kml > 0. The mathematical expression
of the l-th population in the Wendling-type coupled neural mass model has the form

ẋl(t) = Axl(t) + BS(Hxl(t)) + B1 pl(t) + D
N
∑

m=1,
m 6=l

Kml xm(t),

yl(t) = Cxl(t),

(2)

where xl(t) = [xl
1(t) xl

2(t) · · · xl
8(t)]

T is the state vector of the population under considera-
tion and xl

2(t), xl
4(t), xl

6(t), xl
8(t) are time derivatives of xl

1(t), xl
3(t), xl

5(t), xl
7(t), respectively;

xm(t) represents the state vector of the m-th population, and since the form of xm(t) is
similar to xl(t), it will not be repeated; constant matrices A, B, B1, H, D, and C with the
form of
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A = diag(A1, . . . , A4), Aj =

[
0 1
−µ2

j −2µj

]
, j = 1, 2, 3, 4,

µ1 = µ2 = a, µ3 = b, µ4 = ad,

B =

 0 θAa 0 0 0 0 0 θAad
0 0 0 θAac2 0 0 0 0
0 0 0 0 0 θBbc4 0 0

T

,

B1 =
[

0 0 0 θAa 0 0 0 0
]T,

H =

 0 0 1 0 −1 0 0 0
c1 0 0 0 0 0 0 0
c3 0 0 0 0 0 0 0

,

D =
[

0 0 0 1 0 0 0 0
]
,

C =
[

0 0 1 0 −1 0 0 0
]
.

For simplicity of writing, the superscript l is not add to parameters θA, θB, a, b, ad, c1–c4,
but these parameters may vary from one population to another. It has been confirmed
that certain kinds of neural mass models can generate neural oscillations reflecting normal
brain activities and neuropsychiatric disorders (such as temporal lobe seizure) [17,19].
Table 1 presents physiological meanings and standard values of all internal parameters in
the model [4]. The model can produce well-defined α-like oscillation with these standard
values. The α oscillation is considered as the EEG signal in resting state. Previous studies
have shown that increasing the excitatory gains of certain neural populations in the model
to deviate them from the standard value is a commonly used method for the neural mass
model to simulate abnormal neural oscillations under pathological conditions, and then
spikes may propagate from these populations to others under the effect of coupling, which
will make the situation worse. We introduce the Wendling-type coupled neural mass model
consisting of N identical neural populations on the Formula (2) base, which mathematical
expression is as follows

ẋ(t) = f (x(t), p(t)),
y(t) = g(x(t)),

(3)

where x(t) = [x1(t) x2(t) · · · xN(t)]T, y(t) = [y1(t) y2(t) · · · yN(t)]T, p(t) = [p1(t) p2(t)
· · · pN(t)]T, f (·) and g(·) are the input and output functions respectively.

Table 1. Physiological meanings and standard values of the model parameters.

Parameter Physiological Meaning Standard Value

θA, θB average gains of excitatory and inhibitory synaptic θA = 3.25 mV, θB = 22 mV
a, b membrane transfer and dendritic tree average time delay a = 100 s−1, b = 50 s−1

ad average contact time between neural populations ad = 33 s−1

c1, c2 average synaptic connections in the excitatory feedback loop c1 = 135, c2 = 108
c3, c4 average synaptic connections in the inhibitory feedback loop c3 = c4 = 33.75

e0 represents the maximum firing rate e0 = 2.5 s−1

r represents bending degree of the sigmoid function r = 0.56 mV−1

S(·) v0 is the postsynaptic potential corresponding to firing rate v0 = 6 mV
v represents the presynaptic average membrane potential no standard value
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Figure 1. Structure block diagram of the Wendling-type coupled neural mass model. (The part within
the red dashed box represents the subset of main cells. The part within the blue dashed box represents
the subset of interneurons).

2.2. Design of Closed-Loop Control Schemes for Brain Dynamic Modulation
2.2.1. Preliminary Knowledge

In the research of modern control system theory, in order to facilitate computer im-
plementation, it is usually necessary to discretize continuous systems and algorithms.
A typical class of continuous controlled non-linear systems, including the Wendling-type
coupled neural mass model (3) aforementioned, can be discretized into

x(k) = fd(x(k− 1), p(k− 1)) + Fu(k− 1),
yc(k) = gd(x(k)),

(4)

where k indicates the sampling time point; x(k) ∈ RNx is the state vector of the controlled
system, RNx indicates Nx—dimensional real column vector; yc(k) ∈ RNy is the controlled
output vector; p(k) ∈ RNp is the known internal input of the model; u(k) ∈ RNu represents
the external control input; the control input matrix F ∈ RNx×Nu , in which RNx×Nu represents
Nx × Nu—dimensional real matrix; fd(·) : RNx×Np → RNx and gd(·) : RNx → RNy can be
derived from the known continuous functions.

The control method based on the incremental PID algorithm commonly used for
regulating the dynamics of non-linear system has been widely used in the field of neuro-
engineering for modulating brain dynamics. The traditional incremental PID algorithm
performs proportional, integral, and differential operations on control errors, and linearly
combines them into changes in external control inputs. The control law is as follows:

u(k) = u(k− 1) + ∆u(k),
∆u(k) = Kpe2(k) + Kie1(k) + Kde3(k),

(5)

where ∆u(k) represents the variation of the external control input u(k); e1(k) = e(k),
e2(k) = e(k) − e(k − 1), e3(k) = e(k) − 2e(k − 1) + e(k − 2), in which e(k) indicates the
control error; Kp, Ki, Kd are the PID parameters to be set, Kp indicates the proportional
coefficient, Ki indicates the integral coefficient, and Kd is the differential coefficient. This
kind of PID control has two obvious shortcomings: the selection of PID parameters largely
depends on the designers’ experience, and the adaptive ability is poor. Therefore, this
section proposes two closed-loop control schemes based on improved incremental PID
algorithms, namely the GA-PID algorithm and the GA-RBF-PID algorithm, to modulate
the brain dynamics simulated by the Wendling-type coupled neural mass model.



Entropy 2023, 25, 1544 6 of 21

2.2.2. GA-PID Algorithm Based Closed-Loop Control Scheme

The GA-PID algorithm mainly utilizes the GA to determine control parameters of
the incremental PID algorithm in the brain dynamic modulation system, thereby ensuring
control accuracy. The basic structural framework of the whole control scheme is shown in
Figure 2, where r(k) indicates the expected output vector of the controlled Wendling-type
coupled neural mass model; yc(k) indicates the controlled output vector; the control error
vector e(k) = r(k)− yc(k); u(k) is the external control input; F is the control input matrix
composed only of 0 and 1, and its form determines the controlled neural populations.

Wendling-type coupled 

neural mass model

Incremental PID 

algorithm

� �

�

� �

� �� �

� �� �

+
−

� �� �

Genetic algorithm

Improved incremental 

PID algorithm

�

Figure 2. Structure diagram of the brain dynamic modulation system based on the GA-PID algorithm.

The basic steps of GA to solve the control parameters of the incremental PID algorithm
are as follows:

(1) Determine approximate ranges of the control parameters Kp, Ki and Kd respectively,
and then fix the coding length L of the individual chromosome to prepare for binary coding;

(2) Randomly generate binary coding chromosomes of Qm × 3 individuals, forming
the initial community P(1), where Qm denotes the population number, and each population
contains three individuals, namely Kp, Ki and Kd;

(3) The chromosome of each individual in the population is decoded into the corre-
sponding PID parameter. Here is an example to illustrate the decoding process of the PID
parameter: if the proportional coefficient decoded from the m-th (m = 1, 2, · · · , Qm) popu-
lation is represented by Km

p , and its value varies within the preset range [Kp min, Kp max]. As-
suming that the chromosome of this individual is coded as a binary string βLβL−1βL−2 · · ·
β2β1, then

Km
p = Kp min +

L
∑

j=1
2j−1β j

2L−1 (Kp max − Kp min);
(6)

(4) Compute the objective function

J1(i) =
n
∑

k=1
|e(k)|, (7)

where k is the sampling time point, n is the number of sampling times, i = 1, 2, · · · , Qi and
Qi represents the genetic algebra, and |·| is the absolute value symbol;

(5) The population P(i) is genetically manipulated using selection, crossover, and
mutation operators to generate the next generation population P(i + 1);

(6) Repeat steps (3) to (5) until the objective function converges or the GA parameters
reach the preset indexes. Select Kp, Ki and Kd from the n generation results that can achieve
or approach the minimum control error as the parameters of the incremental PID algorithm.
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2.2.3. GA-RBF-PID Algorithm Based Closed-Loop Control Scheme

The GA-RBF-PID algorithm mainly utilizes the GA to determine the initial values
of PID parameters in the brain dynamic modulation framework offline, thereby ensuring
the control accuracy, and utilizes the RBF neural network to adaptively adjust and modify
these three control parameters online, thereby improving the dynamic performance and
stability of the control system. The basic structural framework of the whole control scheme
is shown in Figure 3, where ŷc(k) indicates the estimated controlled output vector obtained
by the RBF neural network.

Incremental PID 

algorithm

� �

�

� �

� �� �

� �� �

− +

� �� �

Genetic 

algorithm

Improved incremental PID algorithm

RBF neural

network�

� �

�

� �

+
−

�

Wendling-type coupled 

neural mass model

Figure 3. Structure diagram of the brain dynamic modulation system based on the GA-RBF-PID
algorithm.

RBF-PID is a new control algorithm that integrates the control law of the incremental
PID algorithm into the RBF neural network, that is, the control law at the sampling time
point k shown in Equation (5) is integrated into the k-th group of sample data of the RBF
neural network. The specific approach is to use the external control input u(k) as one
of the input sample data in the k-th group of sample data of the RBF neural network,
and then use the Jacobian information provided by the RBF estimator to adjust Kp, Ki
and Kd in Equation (5) online, thereby achieving self-tuning of PID parameters. Figure 4
shows the basic structural diagram of the RBF neural network in Figure 3. It can be
seen that the RBF neural network is a three-layer forward network with a single hidden
layer, where each node of the input layer corresponds to an element of the input vector
xr(k) = [x1

1(k) x1
2(k) · · · x1

8(k) · · · xl
i(k) · · · u(k)]T, xl

i(k) is the i(i = 1, 2, · · · , 8)-th state
variable of the l(l = 1, 2, · · · , N)-th population in the Wendling-type coupled neural
mass model, N is the total number of neural populations, u(k) is the external control
input, then the number of input nodes is M = 8N + 1. For the purpose of easy rep-
resentation, let xr(k) = [x1(k) x2(k) · · · xm(k) · · · xM(k)]T, in which m = 1, 2, · · · , M.
Each hidden node of the hidden layer corresponds to an element of the radial vector
ξ(k) = [ξ1(k) ξ2(k) · · · ξH(k)]T, where subscript H is the number of hidden nodes, and the
Gaussian kernel radial basis activation function [24] corresponding to the j-th hidden node
can be expressed as

ξ j(k) = exp
[
−‖x(k)−ε j(k)‖2

2(θj(k))
2

]
, j = 1, 2, · · · , H, (8)

where ε j = [ε j1 ε j2 · · · ε jM]T and θj represent the center parameter vector and width pa-
rameter used to determine the radial action range of the activation function; ‖·‖ indicates
the Euclidean norm on the input space; the weight vector W(k) = [w1(k) w2(k) · · · wH(k)]
indicates the weight matrix from the hidden layer to the output layer, and wj(k) =

[w1j(k) w2j(k) · · · wNj(k)]T. The RBF neural network is used as an estimator to approxi-
mate the controlled output of the Wendling-type coupled neural mass model obtaining the
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estimated controlled output vector ŷc(k) = W(k)ξ(k) = [ŷ1
c (k) ŷ2

c (k) · · · ŷN
c (k)]T, and ŷ1

c (k)
corresponding to the l-th output node of the output layer is

ŷl
c(k) =

H

∑
j=1

wl j(k)ξ j(k). (9)
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Figure 4. Structure diagram of the RBF neural network.

Make the performance index of the RBF neural network a quadratic function

J2(k) = 1
2 (yc(k)− ŷc(k))

2. (10)

In order to reduce estimation errors, the gradient descent method is used to correct the
weight coefficient wl j, center parameter ε jm, and width parameter θj of the RBF neural
network. The specific correction formula is as follows

wl j(k) = wl j(k− 1) + ∆wl j(k) + α
(

wl j(k− 1)− wl j(k− 2)
)

,

∆wl j(k) = −η
∂J2(k)
∂wl j(k)

= −η
∂J2(k)
∂ŷl

c(k)
ŷl

c(k)
∂wl j(k)

= η
(

yl
c(k)− ŷl

c(k)
)

ξ j(k),

θj(k) = θj(k− 1) + ∆θj(k) + α
(
θj(k− 1)− θj(k− 2)

)
,

∆θj(k) = −η
∂J2(k)
∂θj(k)

= −η
∂J2(k)
∂ŷT

c (k)
ŷc(k)
∂θj(k)

= η(yc(k)− ŷc(k))
Twj(k)ξ j(k)

‖x(k)−ε j(k)‖2

(θj(k))
3 ,

ε jm(k) = ε jm(k− 1) + ∆ε jm(k) + α
(
ε jm(k− 1)− ε jm(k− 2)

)
,

∆ε jm(k) = −η
∂J2(k)

∂ε jm(k) = −η
∂J2(k)
∂ŷT

c (k)
ŷc(k)

∂ε jm(k) = η(yc(k)− ŷc(k))
Twj(k)ξ j(k)

xm(k)−ε jm(k)

(θj(k))
2 ,

(11)

where η represents the learning rate; α ∈ [0, 1) represents the inertia coefficient that is
conducive to accelerating the learning process.

The gradient descent method can also be used to correct the control parameters Kp, Ki
and Kd of the incremental PID algorithm

Kp(k) = Kp(k− 1) + ∆Kp(k), ∆Kp(k) = −ηp
∂J2(k)
∂Kp(k)

,

Ki(k) = Ki(k− 1) + ∆Ki(k), ∆Ki(k) = −ηi
∂J2(k)
∂Ki(k)

,

Kd(k) = Kd(k− 1) + ∆Kd(k), ∆Kd(k) = −ηd
∂J2(k)
∂Kd(k)

,

(12)

where ηp, ηi, and ηd are all the learning rates; Kp(k), Ki(k) and Kd(k) represent PID pa-
rameters at the sampling time point k. Since yc(k) is a function of u(k) and it is known
from Equation (5) that u(k) is a function of the parameters Kp(k), Ki(k) and Kd(k), then
according to the chain derivative rule
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∆Kp(k) = −ηp
∂J2(k)
∂yT

c (k)
∂yc(k)
∂u(k)

∂u(k)
∂Kp(k)

= −ηp(yc(k)− ŷc(k))
T ∂yc(k)

∂u(k) e2(k),

∆Ki(k) = −ηi
∂J2(k)
∂yT

c (k)
∂yc(k)
∂u(k)

∂u(k)
∂Ki(k)

= −ηi(yc(k)− ŷc(k))
T ∂yc(k)

∂u(k) e1(k),

∆Kd(k) = −ηd
∂J2(k)
∂yT

c (k)
∂yc(k)
∂u(k)

∂u(k)
∂Kd(k)

= −ηd(yc(k)− ŷc(k))
T ∂yc(k)

∂u(k) e3(k).

(13)

According to Equations (8) and (9), when ŷc(k) ≈ yc(k) after finite iterations of learning,
there exists

∂yc(k)
∂u(k) ≈

∂ŷc(k)
∂u(k) = −

H
∑

j=1
wj(k)ζ j(k)

u(k)−ε jM(k)

(σj(k))
2 . (14)

At this point, it means that the RBF neural network has completed the task of tuning control
parameters for the incremental PID algorithm [25].

The process of determining the initial values of control parameters in the RBF-PID
algorithm using GA is similar to the process of determining Kp, Ki and Kd in the incremental
PID algorithm using GA, and will not be repeated here.

2.3. Performance Metrics

We introduce the root mean square error (RMSE) [26] as a performance indicator to
compare the performance of different schemes in terms of control accuracy. The formula
for calculating the RMSE value of the controlled output is:

R(yc) =

√
1
n

n
∑

k=1
(r(k)− yc(k))

T(r(k)− yc(k)), (15)

where k indicates the sampling sequence number, and n indicates the number of sampling
times. The value of R(yc) enables us to weigh the error between the expected value and
controlled value from a numerical perspective, thus allowing us to more intuitively evaluate
the performance in terms of control accuracy of various control algorithms. The smaller the
value of RMSE, the higher the control accuracy, and R(yc) = 0 is an ideal case.

3. Results

The Wendling-type coupled neural mass model containing three populations is se-
lected as the controlled object to illustrate the effectiveness of the proposed control schemes,
and its mathematical expression is shown as Formula (3), where N = 3. We assume that
all the intrinsic parameters of the model maintain the standard values (as Table 1) except
for the excitatory gain θA. It should be noted here that if θA increases from the standard
value 3.25 mV to the value causing spikes in the population output, then the population is
called the hyperexcitable population. What we set here is that all the neural populations in
the model are hyperexcited and the local excitatory gain values are completely consistent.
The coupling strengths are set as K12 = K21 = K23 = K32 = K31 = K13 = 28. Each element
of the internal input vector p(t) is simulated by the Gaussian white noise with a mean
of 101 and a standard deviation of 35. We set the time step to 0.001 s. The initial value
of the state vector x(t) can be arbitrarily selected. David O. and Friston K. J. pointed out
that neural mass models can be numerically solved using the second-order Runge–Kutta
method, fourth-order Runge–Kutta method or second-order random Runge–Kutta method,
and there are no essential differences between the results obtained using these methods [2].
In each simulation described below, the fourth-order Runge–Kutta method is used to solve
Equation (3).

The simulation schematic diagram of the brain dynamic modulation system based
on the improved incremental PID algorithms is shown in Figure 5. In order to highlight
the differences between the two proposed control schemes, Figure 5b,c provide separate
schematic diagrams of the algorithm parts. In Figure 5a, state vector is x(k) ∈ R24; in-
ternal input vector is p(k) ∈ R3; external control input is u(k) ∈ R; controlled output
vector is y(k) ∈ R3; let the matrix G1 = [1 0 0], then feedback variable yb(k) ∈ R is the
first component of the controlled output vector yc(k), namely yb(k) = y1

c (k); r(k) ∈ R
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is the expected output; control error is e(k) = yd(k)− yb(k); considering that all popula-
tions in the Wendling-type coupled neural mass model are hyperexcited, let the matrix
F = [O1×3 1 O1×7 1 O1×7 1 O1×4]

T, where Om×n represents the zero matrix of m× n
dimension. In Figure 5b, Kp, Ki, and Kd are the control parameters to be determined in the
GA-PID algorithm; Z−1 represents the time delay. In Figure 5c, ŷb(k) is the estimated feed-
back variable; Kp(k), Ki(k), and Kd(k) are the control parameters to be determined in the
GA-RBF-PID algorithm; Kp(0), Ki(0), and Kd(0) represent the initial values of the PID pa-
rameters to be determined taking advantage of the GA; ∆Kp(0), ∆Ki(0), and ∆Kd(k) represent
the PID parameter variations to be determined taking advantage of the RBF neural network; let
G2 = [1 O1×23; 0 1 O1×22; O1×2 1 O1×21; O1×3 1 O1×20; O1×4 1 O1×19; O1×5 1 O1×18;
O1×6 1 O1×17; O1×7 1 O1×16], thus the k-th input sample data of the RBF neural network is
composed of the external control input u(k) and the state variables x1

1(k), x1
2(k), · · · , x1

8(k) of
the first population in the Wendling-type coupled neural mass model, namely xr(k) = [x1

1(k)
x1

2(k) · · · x1
8(k) u(k)]T. The controlled Wendling-type coupled neural mass model in

Figure 5a is shown in Equation (4).
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Figure 5. Simulation schematic diagram of the brain dynamic modulation system based on the
improved incremental PID algorithms. (a) The overall framework of the system. (b) GA-PID
algorithm. (c) GA-RBF-PID algorithm.
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3.1. Results of GA Optimization Control Parameters

In this subsection, GA is used to determine the initial values Kp(0), Ki(0), and Kd(0)
of the control parameters for the GA-RBF-PID algorithm, as well as the control parameters
Kp, Ki, and Kd for the GA-PID algorithm, in order to ensure the control accuracy of the
modulation schemes. The parameters of GA may affect the results of optimization in
varying degrees, the values of which are listed as follows:

Genetic algebra is 80,
Population size is 50,
Chromosome coding length is 20,
Adaptive generation gap is 0.95,
Crossover rate is 0.7,
Mutation rate is 0.01.

Figure 6 shows the optimal convergence curves of the GA objective function under
different control schemes when the excitatory gains in the Wendling-type coupled neural
mass model are all set to 3.5 mV. When the genetic algebra exceeds 40, for the brain dynamic
modulation system based on the GA-PID algorithm, the optimal convergence curve of the
GA objective function approximately converges to 0.11, as shown in Figure 6a; and for
the brain dynamic modulation system based on the GA-RBF-PID algorithm, the optimal
convergence curve of the GA objective function approximately converges to 0.07, as shown
in Figure 6b. It is not difficult to see that when the genetic algebra exceeds 40, the control
errors of these two schemes are already very close to the minimum values, and the potential
for further optimization is reduced; in addition, the convergence value of the GA objective
function is smaller in the GA-RBF-PID algorithm based control scheme, which can ensure
the smaller control error.
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t
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�
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e
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�

�
�

�
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(a) (b)

Figure 6. Optimal convergence curves of the GA objective function in different control schemes.
(a) The result of the control scheme based on the GA-PID algorithm. (b) The result of the control
scheme based on the GA-RBF-PID algorithm.

Under the action of GA, the optimization curves of the control parameters for the
GA-PID algorithm and the initial control parameters for the GA-RBF-PID algorithm are
shown in Figure 7, where Figure 7a shows the optimization results in the GA-PID algorithm,
and Figure 7b shows the optimization results in the GA-RBF-PID algorithm. Combining
Figure 6, it can be seen that selecting (initial) control parameters when the genetic algebra
exceeds 40 can better ensure the control accuracy of the proposed schemes. In the following
simulations, the control parameters for the GA-PID algorithm are taken as Kp = 4,501,999.99,
Ki = 2,029,999.77, Kd = 459,999.99; and the initial values of the control parameters for the GA-
RBF-PID algorithm are taken as Kp(0) = 9,494,942.85, Ki(0) = 5,999,712.96, Kd(0) = 1,499,968.47.
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Figure 7. Optimization curves of the (initial) control parameters under the action of GA. (a) Opti-
mization results of the control parameters in the GA-PID algorithm. (b) Optimization results of the
initial control parameters in the GA-RBF-PID algorithm.

3.2. Analysis of Brain Dynamic Modulation Results

This subsection aims to verify whether two closed-loop control schemes designed
based on the improved PID algorithms can achieve modulation target for abnormal brain
dynamics simulated by the Wendling-type coupled neural mass model, and evaluate the
performance of these two control schemes by comparing modulation effects and calculating
the RMSEs of controlled outputs. Firstly, a set of simulation experiments with the fixed
excitatory gains are used to evaluate the performance of the schemes in terms of control
accuracy. We then verify whether the RBF neural network can approximate the outputs of
the non-linear Wendling-type coupled neural mass model after finite iterations. Secondly,
we evaluate the dynamic performance and stability of the schemes using two sets of
simulation experiments with mutated excitatory gains. Only the simulation graphs of
the first population in the Wendling-type coupled neural mass model are given below,
because the results of populations 1, 2, and 3 are very similar.

3.2.1. The Simulation Experiments with the Fixed Excitatory Gains

The sampling time for this set of simulation experiments is set to 20 s. Modulation
results of different control schemes with the fixed excitatory gains are shown in Figure 8.
Figure 8a shows the output of the population when the excitatory gains of the three
hyperexcitatory neural populations in the model are all set to the constant of 3.5 mV.
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It can be seen that if control measures are not taken in time, the hyperexcitatory neural
population 1 will generate continuous high amplitude spikes that reflect the brain dynamics
under the background of onset of neuropsychiatric disorders. Figure 8b and Figure 8c
respectively show the brain dynamic modulation results of control schemes based on the
GA-PID and GA-RBF-PID algorithms, where the red line represents the expected output
r(t), namely α-like oscillation, which reflects the brain dynamics under the background
of normal brain activity; the blue line represents the controlled output y1

c (t) of the first
neural population; illustrations are locally enlarged images drawn for easy observation.
The blue lines in Figure 8b,c converge well to the red lines, indicating that the closed-loop
control schemes based on the GA-PID and GA-RBF-PID algorithms can achieve the target
of brain dynamic modulation, which demonstrate the effectiveness of these two schemes.
Furthermore, it is not difficult to see from the locally enlarged images that both control
schemes have high control accuracy. To more intuitively evaluate the performance of the
above two control schemes in terms of control accuracy, we calculate the RMSE value of
the output of population 1 within 20 s and derive R(y1

c )GA−RBF−PID = 2.0934× 10−9 mV,
R(y1

c )GA−PID = 2.7780× 10−5 mV. These results demonstrate the superiority of the closed-
loop control scheme based on the GA-RBF-PID algorithm in terms of control accuracy when
modulating brain dynamics simulated by the Wendling-type coupled neural mass model.
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Figure 8. Modulation results of different control schemes with the fixed excitatory gains. (a) Output
of the first neural population when the excitatory gain is 3.5 mV. (b) The modulation result of the
control scheme based on the GA-PID algorithm. (c) The modulation result of the control scheme
based on the GA-RBF-PID algorithm.



Entropy 2023, 25, 1544 14 of 21

Figure 9 shows the result of the RBF neural network estimating the dynamics of the
Wendling-type coupled neural mass model, where the red line represents the controlled
output y1

c (t) of the first neural population, namely the feedback variable yb(t); the blue line
represents the estimated feedback variable ŷb(t). It can be seen that the blue line in Figure 9
converges well to the red line, proving that the RBF neural network can accurately estimate
the output of the Wendling-type coupled neural mass model. Therefore, introducing the
RBF neural network into the design of brain dynamic modulation schemes is beneficial in
reducing the dependence of control schemes on accurate mathematical models.
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Figure 9. The estimation result of the controlled output based on the RBF neural network.

3.2.2. The Simulation Experiments with the Mutated Excitatory Gains

The sampling time for this set of simulation experiments is set to 10 s. The excitatory
gains of the three hyperexcitatory neural populations are all set to 3.25 mV during 0–2 s,
and mutate to 3.5 mV at 2 s, and keep 3.5 mV invariant during 2–8 s, then return to the
standard value of 3.25 mV at 8 s and maintain this value until the end of the simulation.
The external control is applied during 4–6 s and 7–10 s, respectively. Modulation results
of different control schemes with the mutated excitatory gains are shown in Figure 10,
where the pink line reflects the changes in excitatory gains, the red line represents the
expected output r(t); the blue line represents the controlled output y1

c (t) of the first neural
population; illustrations are locally enlarged images drawn for easy observation. Figure 10b
shows the brain dynamic modulation results of the closed-loop control scheme based
on the GA-PID algorithm. The blue line in the figure produces significant overshoots
(green dashed box circled part) at 4 s and 7 s when the sudden external control acts.
Furthermore, from the locally enlarged image, it can be seen that there is a significant
oscillation process before the blue line converges to the red line and the adjustment time
is approximately 0.04 s. Figure 10c shows the modulation results obtained by applying
the closed-loop control scheme based on the GA-RBF-PID algorithm. The blue line in the
figure did not produce significant overshoots throughout the entire modulation process.
Furthermore, from the local enlarged image, it can be seen that there are no significant
oscillations at 4 s and 7 s when the external control suddenly acts, and the adjustment
time is less than 0.01 s. The results show that, compared with the closed-loop control
scheme based on the GA-PID algorithm, the scheme based on the GA-RBF-PID algorithm
has the advantages of small overshoot and short adjustment time when modulating brain
dynamics simulated by the Wendling-type coupled neural mass model, which proves the
superiority of the scheme based on the GA-RBF-PID algorithm in terms of stability and
dynamic performance. In view of the sudden and delayed nature of the neuropsychiatric
disorders, the simulation experiments making the Wendling-type coupled neural mass
model with mutated excitatory gains (which can more reasonably simulate the onset
mechanism of the neuropsychiatric disorders) as the controlled object are more instructive
for the optimization and innovation of brain dynamic modulation technologies.
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Figure 10. Modulation results of different control schemes with the mutated excitatory gains.
(a) Changes in the excitatory gain. (b) The modulation result of the control scheme based on the GA-
PID algorithm. (c) The modulation result of the control scheme based on the GA-RBF-PID algorithm.

In order to avoid accidental conclusions and make them more convincing, we add a set
of experiments using the δ-like oscillation as the expected output. The delta-like oscillation
is considered as the EEG signal when adults are in the sleep state. Liu et al. suggested that
the Wendling-type coupled neural mass model can also produce the delta-like oscillation
when the internal parameters take the following values [27]

θA = 2 mV, θB = 15 mV, a = b = 20 s−1 , ad = 33 s−1,
c1 = 135, c2 = 108, c3 = c4 = 33.75, e0 = 2.5 s−1, v0 = 6 mV, r = 0.56 mV−1,

and each element of the internal input vector p(t) is simulated by the Gaussian white
noise with a mean of 220 and a standard deviation of 22. The sampling time for this set of
simulation experiments is set to 10 s. The number of populations is also N = 3, and the
coupling strength is still 28. The excitatory gains of the populations are all set to 2 mV
during 0–2 s, mutate to 3.5 mV at 2 s, and keep 3.5 mV invariant during 2–8 s, then return
to 2 mV at 8 s and maintain this value until the end of the simulation. The external control
is also applied during 4–6 s and 7–10 s, respectively. Modulation results are shown in
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Figure 11, where the pink line in Figure 11a reflects the changes in excitatory gains, the red
line represents the expected output r(t), and the blue line represents the controlled output
y1

c (t) of the first neural population. The illustrations are locally enlarged images drawn for
easy observation. Figure 11b shows the brain dynamic modulation results of the GA-PID
algorithm based closed-loop control scheme. The blue line also generates overshoots (green
dashed box circled part) at 4 s and 7 s. In addition, the locally enlarged images show
the significant oscillation process before the blue line converges to the red line, and the
adjustment time is approximately 0.035 s. Figure 11c shows the modulation results obtained
by applying the GA-RBF-PID algorithm based closed-loop control scheme. It can be seen
that the blue line did not produce significant overshoots. In addition, the locally enlarged
images show that there are no significant oscillations at 4 s and 7 s when the external control
suddenly acts, and the adjustment time is less than 0.025 s. That is to say, experiments using
the δ-like oscillation and the α-like oscillation as expected outputs have similar results.
This set of experiments further proves the superiority of the GA-RBF-PID algorithm based
scheme in terms of stability and dynamic performance.
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Figure 11. Modulation results of different control schemes with the mutated excitatory gains.
(a) Changes in the excitatory gain. (b) The modulation result of the control scheme based on the GA-
PID algorithm. (c) The modulation result of the control scheme based on the GA-RBF-PID algorithm.
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4. Discussion

Neural oscillations are physiological indicators that can reflect the characteristics of
the brain functional states, and their generation is the core of brain dynamic behaviors [28].
More and more experimental and clinical data show that abnormal neural oscillations may
be the root of the occurrence and development of a variety of neuropsychiatric disorders
(also known as brain diseases) [29]. Appropriate neurostimulation can be used to modulate
brain dynamics of patients with neuropsychiatric disorders to transfer abnormal neural
oscillations to normal [30]. Neurostimulation is one of the most promising means to pre-
vent and treat neuropsychiatric disorders in the medical field [31]. Given the significant
individual differences and the rapid and complex process of brain dynamic changes in
patients with neuropsychiatric disorders, it may be necessary to develop the optimal neu-
rostimulation parameters (including stimulation intensity, frequency, etc.) through the
vast amount of experiments. However, the limitations of understanding for the dynamic
mechanisms of neural oscillations, as well as the immaturity of the medical technology
and experimental conditions, may lead to irreversible brain damage and secondary in-
jury in the direct animal and clinical trials. Computational neuroscience can analyze the
general principles of brain operations from the computational perspective [32], which is
beneficial for better understanding the physiological state of brain function as well as the
generation and evolution mechanism of brain dysfunction. Moreover, the vast amount of
experimental and clinical data is a result of the diverse nature of the brain neural system,
underscoring the important role of computational neural research in the development of
brain science. Previous studies have shown that control schemes developed on the basis
of computational neural models can simulate changes in brain dynamics under external
stimulation [33]. Making assumptions and predictions based on the obtained simulation
results can help form new theoretical achievements and guide the future development
direction of the “brain project”. We design brain dynamic modulation schemes on the basis
of the neural mass model aiming to provide ideas and scientific basis for the optimization
and innovation of the brain dynamic modulation technologies. The neural mass model
with mutated excitatory gains considers the sudden and delayed nature of neuropsychi-
atric disorders, which can more reasonably simulate the pathogenesis of neuropsychiatric
disorders. The simulation experiments making the model with mutated excitatory gains as
the control object have more guiding significance for the development and improvement of
early intervention and rehabilitation treatment technologies for neuropsychiatric disorders.

The mathematical model that can accurately describe the actual system serves as a
bridge between clinical and fundamental theoretical research in biomedical fields [34].
In the past few decades, two kinds of complementary mathematical models have been
developed to simulate brain dynamics [35,36]. Compared with the neuron model that
describes the activity of brain neurons at the cellular level, the neural mass model that
describes the activity of brain neuron populations at the cellular set level are both simple
and more physiologically meaningful, balancing the tractability and realism, which is more
conducive to a deeper insight into the generation and evolution mechanisms of neural
oscillations. Like the vast majority of existing research results, this paper considers the
neural mass model that contains a limited number of populations with regular connections
between them. In fact, it is difficult for such models to fully describe the inherent complexity
and high variability of the brain system in structure. However, the dynamics and emergence
characteristics of the brain are closely related to the topological structure of the brain
system [37]. Eguíluz et al. used the functional magnetic resonance imaging technology
to extract functional connections in relevant brain regions when the subjects perform
different tasks, and found that the connections were “scale-free” and had “small-world”
characteristics [38]. The research by the Stam’s team has proven that the “small-world”
is the optimal connection mode for the brain’s functional network, and the disruption
of this mode is the foundation for the onset of schizophrenia [39]. They also pointed
out that the general feature of Alzheimer’s disease patients is the loss of “small-world”
features in the brain functional network [40]. Ponten et al. confirmed that the brain
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functional connectivity structure of epileptic patients exhibited significant randomization
characteristics compared to normal individuals during onset [41]. Establishing network
models of neural populations with the help of the tools from complex dynamic network
theory or graph theory is more in line with the intricate characteristics of the brain system.
Therefore, one of our future research directions is to use the proposed control schemes to
modulate brain dynamics simulated by neural population network models with topological
structures such as “nearest-neighbor”, “scale-free”, “small-world”, “random”, etc.

From the perspective of control theory, the design of control algorithms is another
important aspect in solving the modulation problem of brain dynamics. The global opti-
mization ability of the GA to determine the (initial) values of control parameters can ensure
control accuracy, while the self-learning ability of the RBF neural network to adaptively
adjust and modify control parameters online can improve the stability and dynamic per-
formance of the control system. This paper proposes closed-loop control schemes based
on the GA-PID and GA-RBF-PID algorithms to modulate the brain dynamics simulated
by the Wendling-type coupled neural mass model. The introduction of the GA overcomes
the difficulty of selecting control parameters for traditional incremental PID algorithm.
Additionally, the introduction of the RBF neural network further enhances the adaptability
of the algorithm. The simulation results demonstrate that both schemes can closely track
the expected α-like and δ-like oscillations, and the closed-loop control scheme based on
the GA-RBF-PID algorithm outperforms the scheme based on the GA-PID algorithm in
terms of control accuracy, stability, and dynamic performance. In fact, it is possible to
consider replacing GA algorithm with optimization algorithms such as simulated anneal-
ing (SA) and PSO. Similarly, it is possible to consider using algorithms that can achieve
online adjustment, such as backpropagation (BP) algorithm, to replace RBF algorithm.
However, so far, our understanding of similar algorithms is relatively limited. We will
attempt to use other algorithms to further optimize the control scheme based on this work,
striving to design a brain dynamics closed-loop modulation strategy with superior perfor-
mance. The potential benefits of applying closed-loop control in brain dynamic modulation
strategies include ensuring therapeutic effectiveness, improving response by providing
intermittent or minimal stimulation, minimizing side effects, minimizing damage, minimiz-
ing power consumption, and extending the battery life of implanted devices [5]. The basic
requirement for achieving brain dynamic modulation through the PID control is that the
feedback signals used to construct the control law should accurately reflect the functional
state of the brain tissue. However, the neural oscillations recorded by technologies such
as EEG, magnetoencephalogram, functional magnetic resonance imaging, and local field
potential may become inaccurate due to amplifier noise, as well as uncertain factors such
as electrode resistance and capacitance in recording devices, leading to unexpected control
behavior in the brain dynamic modulation system [42]. For the neural mass models whose
dynamics are affected by measurement noise, if the demand for the control accuracy is not
so high and the main modulation target is to suppress spikes, various non-linear Kalman
filter (such as UKF, cubature Kalman filter, etc.) algorithms are the preferred algorithms
for designing modulation schemes of brain dynamics [13,14]. Another important feature
of non-linear Kalman filter algorithms is to identify unknown parameters of the model
by combining it with the augmented state vector method. Previous studies have shown
that certain brain regions become hyperexcitatory when their excitatory level exceed the
self-regulation range of the brain system, leading to abnormal neural oscillations [43]. If not
controlled in a timely manner, abnormal neural oscillations may spread to other regions
through functional connections, which lead to the onset of neuropsychiatric disorders.
That is to say, hyperexcitatory brain regions may be the source of lesions for neuropsy-
chiatric disorders. The recognition of hyperexcitatory brain regions helps to locate the
source of lesions, which is an important step in suppressing the onset of neuropsychiatric
disorders and reducing brain damage. At present, the common method for simulating the
onset mechanism of such neuropsychiatric disorders is to increase the excitatory gains of
populations in neural mass models [43]. Identifying unknown excitatory gains in neural
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mass models is of great significance for the prevention and treatment of neuropsychiatric
disorders. Moreover, existing research has confirmed that in some cases, the goal of brain
dynamic modulation can be achieved by controlling only the hyperexcitatory neural popu-
lations [13]. From the perspective of reducing the cost of control and easy implementation
of control, it is equally significant to find the hyperexcitatory neural populations in advance.
Therefore, our another future research direction is to use the control scheme based on the
improved non-linear Kalman filter algorithms to regulate the brain dynamics simulated
by neural population network models with parameter uncertainty and output affected by
measurement noise.

5. Conclusions

This paper proposes the closed-loop control frameworks based on the improved
incremental PID algorithms to modulate brain dynamics simulated by the Wendling-type
coupled neural mass model. The introduction of GA overcomes the disadvantage that
the selection of control parameters for traditional incremental PID algorithm depends on
the designer’s experience, and thus ensures the high control accuracy of the modulation
schemes. RBF neural networks can approximate the dynamics of the non-linear neural mass
models to improve the adaptability of the modulation schemes. The simulation results not
only confirm the effectiveness of the proposed schemes, but also indicate that the closed-
loop control scheme based on the GA-RBF-PID algorithm outperforms the scheme based
on the GA-PID algorithm in terms of control accuracy—especially stability and dynamic
performance. We hope to demonstrate the modulation schemes proposed in existing and
future studies in real EEG data in the near future.
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