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Abstract: Ecosystem modeling is a complex and multidisciplinary modeling problem which emerged
in the 1950s. It takes advantage of the computational turn in sciences to better understand anthro-
pogenic impacts and improve ecosystem management. For that purpose, ecosystem simulation
models based on difference or differential equations were built. These models were relevant for
studying dynamical phenomena and still are. However, they face important limitations in data-poor
situations. As a response, several formal and non-formal qualitative dynamical modeling approaches
were independently developed to overcome some limitations of the existing methods. Qualitative
approaches allow studying qualitative dynamics as relevant abstractions of those provided by quan-
titative models (e.g., response to press perturbations). Each modeling framework can be viewed as
a different assemblage of properties (e.g., determinism, stochasticity or synchronous update of variable
values) designed to satisfy some scientific objectives. Based on four stated objectives commonly found
in complex environmental sciences ((1) grasping qualitative dynamics, (2) making as few assumptions
as possible about parameter values, (3) being explanatory and (4) being predictive), our objectives were
guided by the wish to model complex and multidisciplinary issues commonly found in ecosystem mod-
eling. We then discussed the relevance of existing modeling approaches and proposed the ecological
discrete-event networks (EDEN) modeling framework for this purpose. The EDEN models propose
a qualitative, discrete-event, partially synchronous and possibilistic view of ecosystem dynamics. We
discussed each of these properties through ecological examples and existing analysis techniques for such
models and showed how relevant they are for environmental science studies.

Keywords: qualitative models; social ecological modeling; discrete-event models; history of
modeling; state transition graphs

1. Introduction

Ecosystem ecology emerged in the 1950s–1960s in the context of the growing popular
and political awareness of radioactive pollution and land degradation [1]. New method-
ologies appeared during this period, for instance the use of radioactive tracers to study
material flows. The 1950s–1960s also correspond to the computational turn [2], during
which computer simulations and analysis of complex models became possible. The ability
to understand ecosystems with integrated equation systems became possible at that time,
as more variables and processes connecting them could be taken into account. Computers
allowed growing early models into more realistic numerical representations and dynamics.
Ecosystem models were introduced for simulation and systems analysis on a multidisciplinary
basis [3], as any social-ecological system involves a wide range of domains. Most of them were
quantitative and were mostly used for designing appropriate management policies (e.g., [4,5]).
However, these quantitative models required precise information on the shape and intensity
(i.e., parameters) of ecological interactions, which are often costly to obtain, thus making cali-
bration challenging [6]. Moreover, they are often unable to incorporate expert knowledge and
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direct observations, which are a frequent source of qualitative information in social-ecological
systems [7]. For example, a concrete study in dendrochronology requires a detailed and
complicated calibration, still subject to equifinality (similar outputs for distinct parameter
sets) and instability [8]. Consequently, alternative avenues such as qualitative models [9]
were soon investigated.

Qualitative ecological models emerged as a complementary approach to quantitative
models [10], aiming to describe coarse-grained ecosystem dynamics. Qualitative models may
be appropriate when quantitative information on parameters and variables are insufficient
and/or when the modeling objectives do not require a quantitative response. As qualitative
model outputs are relatively independent from parameter values, their results are thus less
precise yet more general [11]. Qualitative models accept broader inputs, and thus they can
make use of both expert and scientific knowledge, resulting in more robust outputs. Since the
1980s, several qualitative frameworks have been developed, such as loop analysis [9], qualitative
reasoning models [12], fuzzy models [13] or discrete-event models [14,15]. Qualitative models
aim to address several issues, such as which information is required to disambiguate model
predictions [16] or how a system can achieve qualitative stability [17].

Models are described both by their phenomena of interest and by their mathemat-
ical formalization, the choice of the latter often resulting from the former. For instance,
the nitrogen cycle is generally studied quantitatively and modeled by a biogeochemical
model expressed as a set of differential equations. Alternatively, assessing the (qualita-
tive) response sign (+, −, 0) of a resident species to an invasion can be achieved through
qualitative methods such as loop analysis. Mathematical properties can be combined in a
multitude of ways in order to design a model, resulting in different perspectives on system
dynamics. The modeling process thus includes preliminarily choosing the best combination
of properties for the desired objectives.

In Section 2 of this article, we provide a non-exhaustive historical overview of dynami-
cal ecosystem models, with an emphasis on qualitative models, and discuss their respective
merits and limitations. Then, in Section 3, we isolate the most salient model properties
and discuss their relevance for (1) grasping (at least qualitative) system dynamics while
(2) keeping the model parsimonious, (3) explanatory and (4) predictive. In Section 4, we
propose the ecological discrete-event network (EDEN) framework for modeling ecosys-
tem dynamics while meeting simultaneously these objectives. While other qualitative
approaches sometimes address some of these objectives separately, using the discrete-event
and asynchronous update mode in EDEN allows for providing multi-objective yet sim-
ple qualitative models. Finally, we discuss the general relevance of qualitative modeling
approaches for studying ecosystems.

2. Overview of Ecosystem Ecology and Dynamical Modeling Approaches

The term “ecosystem ecology” was coined in the 1950s, continuing major modeling
breakthroughs in life sciences in the early XXth century [18]. This sub-field of ecology
predominantly originated in the USA through the work—among others—of E.P. Odum [19].
Inspired by dynamical systems theory [20], ecosystem ecology mostly aimed to understand
fluxes of radioactive material in ecosystems using concepts and techniques from early
biogeochemistry [21,22]. Tracing the radionuclides from their emission sources to each
compartment (e.g., plants, rivers or soil) helped to reveal material flows in ecosystems [23].

Although dynamical modeling was already well established in ecology, it was mainly
used in population ecology to model the growth of single [24–28] and interacting popu-
lations [29,30]. However, ecosystem ecology benefited from the development of compu-
tational modeling [1,31], which enabled the simulation of the dynamics of complex and
larger ecosystems.

2.1. Compartment Modeling

A compartment model [3,32] generally consists of (1) variables representing com-
partments, (2) equations representing flows between compartments and (3) parameters
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representing the intensity of these flows [33] (Figure 1). These models are mostly formal-
ized as ordinary differential or difference equations (e.g., [34]). To account for uncertainty,
stochastic parameters or events can also be included (e.g., [35–37]).

Compartment models were at the core of systems ecology, which was the meeting
point between ecosystem ecology and simulation models (Figure 1). Systems ecology was
strongly underpinned by a holistic philosophy [38,39]. Following Clements’ ideas from the
early XXth century [40], it emphasizes the irreducible complexity and the self-regulating
nature of ecosystems and emerges from their internal relations [41,42]. Drawing upon
emerging simulation techniques, systems ecologists proposed the “total-system modeling”
approach which aimed to include “abiotic, producer, consumer, decomposer and nutrient
subsystems [in order to] assure that the modeling effort [plays] the integrative role delegated
to it” ([43], p. 2). This approach was central to the Biome studies investigating the response
of biomass to changes in external conditions [44]. Today, this integrative approach is
still highly promoted in ecosystem modeling, although with different formalisms such as
individual-based models (e.g., [45,46]). These models allowed researchers to predict the
nutrient–productivity relationships in macrophyte populations [47] or the impact of habitat
fragmentation on larger animals [48]. However, as pointed by Jørgensen [49], technical
limitations greatly limit data collection and thus the estimation of precise parameter values
that are required for making reliable predictions. Additionally, while parameters generally
remain constant during simulations, real systems actually display variable parameter values
(i.e., biological plasticity and those where Jørgensen [49] calls for structural dynamics). In
addition, such multiple, non-linear differential equations often exhibit sensitive dependence to
initial conditions and to multiple feedback, thus leading to so-called chaotic behaviors.

Mineral (soil)Atmosphere

Available nutrientsOrganic matter

Biosphere(a)

(b)

Figure 1. Compartment model of a terrestrial ecosystem. (a): Ecosystem compartments linked through
matter and energy fluxes represented by arrows. Each compartment may be split into several sub-
compartments (e.g., organic matter can be split into living and dead organic matter). The dotted box
represents ecosystem boundaries, through which the ecosystem is also linked to the whole biosphere
through biotic and abiotic processes. Adapted from [50]. (b): A system of ordinary differential equations
(ODEs) of n variables (xk)k≤n for k ∈ {1, . . . , n} and n2 + 2n parameters. With fki and fjk describing
incoming (from i to k) and outgoing (from k to j) fluxes within the ecosystem, respectively, and Eke and Eek
describing incoming and outgoing environmental exchanges, respectively [51].

One way to cope with such structural dynamics is the application of thermodynamic
principles to ecology [52]. This holistic approach was developed in the 1950s–1980s and
proposed general predictions about ecosystem development [53,54]. This directional de-
velopment is driven by goal functions (or orientors), which tend to be maximized or
minimized over time [55]. These include emergy (i.e., content of solar energy equivalent in
matter [56]) and exergy (i.e., a system’s deviation from thermodynamical equilibrium [57]).
Self-organization processes such as ecosystem development have been explained by goal
function maximization [54]. Such studies consists in identifying measurable state variables
that may follow extremal principles supposedly justifying the system behavior. The first
thermodynamical principles in ecology were proposed in the 1920s [58], and most of their
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theoretical foundations come from the thermodynamics of open systems (i.e., systems
exchanging matter and energy with their environment) far from equilibrium [52,59]. While
these ideas have undergone numerous developments and unification since the 1970s [60],
they remain poorly used for applied issues [61].

2.2. Qualitative Modeling Approaches

Qualitative models rely on the abstraction of quantitative phenomena by focusing on
qualitative changes in system state or in the sign of variables’ derivatives. This abstraction
generally aims to account for the lack of precise measurements and/or to propose a
complementary way of interpreting phenomena. In contrast to quantitative models, they
do not necessarily rely on numeric inputs and mostly use relational (e.g., >, < or =), set (e.g.,
inclusion or exclusion) or logical (and, or, not) operations. Despite their recent rise with
the computational turn in ecological modeling, their history goes back to the late XIXth
century, with the work of Lorenzo Camerano.

2.2.1. Camerano’s “Reaction Networks”

Lorenzo Camerano is an Italian entomologist of the XIXth century, mostly known
for his seminal representation of an ecological community as an interaction network [62].
The dynamical model provided alongside this network has been overlooked, although
it is probably one of the first dynamical trophic models in the history of ecology [63].
This qualitative model of trophic cascades consists of variables representing species (or
functional groups) and interactions between these variables (noted by an arrow→). For
example, if a species A feeds upon a species B and B feeds upon C, we have:

A→ B = B− and C+

where = states the result of the interaction and − (resp. +) a negative (resp. positive)
effect on a population growth rate. The decrease in B is instantaneously associated with an
increase in C (i.e., its resource).

This model is qualitative because it focuses on the increase or decrease in a population’s
growth rate without quantifying it. Ecological interactions are split into separate rules,
which also likely makes this model the first rule-based model in ecology. Since any cause
is followed by its immediate and non-random effects, this model is deterministic (i.e., the
future is fully predictable given an initial condition). This is further confirmed by the
figures depicting non-branching trajectories and the main text (“a reaction which [. . .]
bring[s] about certain determinate changes”). Camerano informally generalizes cascading
effects using a deterministic mechanical analogy based on sound vibrations. Unfortunately,
the work of Camerano was quickly forgotten. It was rediscovered one century later [62] and
had no known impact on ecology. However it highlights the early need by some naturalists
for qualitative models as a theory-building tool.

2.2.2. Loop Analysis

Almost one century after Camerano’s model, Levins [9] proposed a qualitative anal-
ysis of ecological interaction graphs (Figure 2a), called loop analysis. It aims to predict
the consequences of press perturbations [64] in an ecological system. Levins proposed
loop analysis mainly as complementary to total-system models [10], the latter promoting
precision and realism at the cost of generality [11]. This technique emerged in economics in
the 1920s [65] but has been extended to address ecological issues [16,66].

Loop analysis is applied to signed directed graphs (digraphs). In these graphs, nodes
represent ecosystem components (generally species), and edges represent interactions.
Additionally, edges are directed and have a positive (symbolized by→) or negative (sym-
bolized by () sign representing the effect of interactions. These graphs are built from the
community matrix (representing the constant interaction signs) derived from the Jacobian
matrix of a system of differential equations near equilibrium (Figure 2b). Loop analysis
assesses how the effects of an external press perturbation (affecting growth rates positively
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or negatively) are mediated through an ecological network. In particular, it aims to predict
whether a change in the growth rate of a variable has a positive (+), negative (−) or neutral
effect (0) on the equilibrium abundance of each variable [67] (Figure 2c). More detail on
calculations can be found in [68]. Loop analysis relies on a particular epistemology seeking
to deduce rigorous predictions in spite of limited information on parameter values and
response forms [69]. The resulting predictions are thus robust to quantitative variations in
parameter values in simple systems.

Figure 2. Loop analysis of a signed digraph. (a) A signed directed graph (digraph) representing
the interactions of the vegetation–hare–predator interaction network. Reciprocal interactions are
merged into a single bidirectional edge. (b) Community matrix whose elements are the sign of the
corresponding pairwise interaction represented in (a). (c) Effect of an increased growth rate of each
variable on others variables. Adapted from [70,71].

A well-known property of signed digraphs is ambiguity (i.e., the indeterminate re-
sponse of a variable to a press perturbation), which can only be resolved by considering
the parameter values. This property helps ecologists by pinpointing the additional data
required to disambiguate the model predictions [69,72]. Ambiguity can be circumvented
by keeping the network structure constant and randomly drawing interaction parameters
and running each resulting quantitative model independently. This so-called ensemble
ecosystem modeling procedure generates a set of ecosystem models whose outputs are
then filtered and analyzed [73].

Using loop analysis, [74] identified keystone species in marine ecosystems and [75]
proposed management actions to preserve kelp populations. However, the fact that the
applicability of loop analysis is limited to the local neighborhood of a point equilibrium
has at least two consequences. First, the system has to have a reachable equilibrium, which
is not guaranteed. Second, the sign of interactions can only be constant, thus restricting
the analysis to linear and monotonic interactions [69], although non-monotonic effects are
known to play an important role in ecosystem dynamics and stability [76].

2.2.3. Qualitative Reasoning

Qualitative reasoning emerged in the 1970s and is an area of artificial intelligence
designed to model qualitatively the continuous behavior of a system. It emerged in
the 1970s as a means to model physical systems based on qualitative information about
system interactions and variables. Predictions about system dynamics are thus possible
even when information is scarce or non-numerical. Qualitative reasoning has been used
in ecology since the 1990s [77] and since the 2000s for ecosystem issues [78]. Contrary
to loop analysis, these models are generally associated with a simulation engine, with
QSIM [79] and Garp3 [80] being the most used in ecology. QSIM simulates a system
of qualitative differential equations (i.e., qualitative abstractions of ordinary differential
equations (ODEs)). On the other hand, Garp3 aims to represent expert knowledge by
building model fragments and assembling them to compute the whole system dynamics.
Like signed digraphs used in loop analysis, these models are based on a set of qualitative
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variables, whose interactions are signed, unweighted and non-probabilistic. Each variable
is described by its magnitude (e.g., zero, low, normal, maximum) and its direction (i.e.,
increasing, stable or decreasing). As in loop analysis, ambiguity (i.e., indeterminacy of
change) may occur. Every ambiguous situation leads to alternative trajectories, one for each
possible resolution of the ambiguity. The resulting dynamics are thus non-deterministic.

Qualitative reasoning has been used to model Brazilian savanna (cerrado) dynamics [78],
avian communities’ changes in response to farming practices [81] and the impact of Paleozoic
land plant evolution on the carbon cycle [82]. QSIM guarantees that each simulated trajectory
will be observed in the corresponding ODE [79]. However, the main limitation to qualitative
simulations is that they may produce spurious behaviors, that is, trajectories predicted by the
qualitative model but not predicted by any corresponding ODE.

2.2.4. Models Based on States and Transitions

Since the early days of ecology, dynamics have been represented as sequences of discrete
states and transitions, such as vegetation succession diagrams (e.g., [40,83,84]). These diagrams
are conceptual models representing temporal changes in vegetation composition as a directed
graph [85]. These changes in vegetation state are generally considered reversible but can also
include irreversible transitions (e.g., [83] showing that bad management induces “more or
less permanent deterioration of the soil”, inducing irreversible vegetation transitions). These
diagrams have largely been used for illustrating the Clementsian succession theory, which
states that vegetation, if left undisturbed for a sufficiently long time, develops predictably
through vegetation phases towards a fixed state called climax [40]. These concepts were the
basis for rangeland management from the 1910s to the 1990s [86–88]. However, some rangeland
ecologists were questioning traditional ideas about vegetation succession, asserting that range-
lands can undergo irreversible transitions preventing the return to a climax vegetation, thus
contradicting the Clementsian theory. In this context, [89] developed a non-formal modeling
approach called state-and-transition models (STMs) to account for (i) the existence of multiple
pathways between vegetation states and (ii) irreversible transitions in rangeland states, and
(iii) to gather expert knowledge and serve as a tool for decision-making [90].

Like succession diagrams, STMs are directed graphs whose nodes and edges represent
ecosystem states and transitions, respectively (Figure 3), which are both derived from direct
observations. They are generally used as dynamical databases for rangeland management,
not based on time but on events. Note that similar graphs representing states and transitions
were anecdotally used in the 1970s under the term “behavior graph” [3] or “replacement
sequence” [91] where, in the latter, transitions have specific time durations. While succession
diagrams and STMs are not formal models, several authors have proposed using Markov chains
for modeling vegetation succession [92,93] and rangeland dynamics [94].

Central STM concepts have been well defined by [90]: (1) A state is “a recognizable, re-
sistant and resilient complex of two components, the soil base and the vegetation structure”;
(2) A transition is “a trajectory of system change away from the current stable state that is
triggered by natural events, management actions, or both”; (3) Reversible transitions occur
within states, which may consist in several community phases (e.g., reversible changes in
plant species composition); (4) Irreversible transitions (at least, in time scales relevant to
management) occur between states.
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Figure 3. State-and-Transition Model. Boxes inside each state correspond to community phases
linked through community shifts. While community pathways may not be explicitly represented (as is
the case here), community phases within one state should always be mutually reachable. Additionally,
a shift between two community phases is generally considered bidirectional. Transitions (arrows) are
considered irreversible unless substantial management efforts are engaged. Adapted from [95].

As in qualitative reasoning models, any state in a STM may have several outgoing non-
probabilistic transitions, i.e., they represent all possible states and transitions. They are generally
built upon observations and thus cannot predict novel ecosystem structures [96,97]. This
limitation led scientists to combine them with mathematical tools such as dynamical Bayesian
networks [98] or Markov chains [94].

Each modeling framework emphasizes new aspects of a system and thus widens
the range of questions that can be addressed. Each of them simultaneously imposes
methodological and practical limitations. On the one hand, methodological limitations
over-determine both the systems or phenomena that can be modeled. They originate
from the methodology or the mathematical tools employed to model the system. For
instance, STMs cannot be used to predict unobserved transitions or loop analysis cannot
be applied to non-equilibrium systems. On the other hand, practical limitations generally
stem from the relationships between the data and the model (e.g., limiting data availability).
For instance, insufficient data may impede quantitative and robust parameterization of
compartment models. In ecosystem models such as the dendrochronological study previously
cited, the fine tuning of the tree growth module clearly shows limitations in terms of calibration,
of computation time required, of uncertainty and, ultimately, of choices in representing the
phenomenon [8]. A qualitative model would have been less precise, but much more accurate,
in computing the effects of the driving factors. The choice of model properties can contribute
to circumvent some practical limitations. For instance, stochasticity or qualitative variables are
a privileged way to cope with the lack of data. Models can thus be viewed as assemblages
of properties specifically designed to address specific questions. Therefore, understanding
the limitations of each model property would strongly help modelers in their choice between
alternative methods (or help them to design new ones) to better tackle (ecological) questions.

3. Ecosystem Models’ Properties and Their Limitations

Dynamical ecosystem models seek to predict and/or explain ecosystem trajectories,
either by reproducing some of their internal interactions and external influences (process-
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based approach, as in most compartmental models), or by reproducing portions of the
observed phenomena (phenomenological approach, as in state-and-transition models).
Depending on their objectives, these models improve our understanding and/or provide
solutions to applied issues. These objectives are generally reflected in their mathematical
properties. For instance, loop analysis aims to assess the direction of change of an equilib-
rium population size to a press perturbation and thus only focuses on the interaction signs.
Therefore, the formalism and properties used to design a model often result (at least partly)
from a motivated choice.

We now summarize our present scientific objectives. Our modeling framework is
aimed at:

1. Grasping the qualitative dynamics of the system (i.e., not requiring any quantitative
values, based on state and transitions or on state variable variations);

2. Making as few assumptions as possible about interactions (on parameters and/or
functional form);

3. Being explanatory in a general sense, i.e., answering to why-questions [99]; and
4. Being predictive, i.e., forecasting the future state of a system before the system reaches

it [100].

Based on these objectives, we will discuss the benefits and limitations of general model
properties. Therefore, this should not be seen as a critique per se of each property, but only a
study with respect to the aforementioned objectives. Further (Section 4), we will introduce
the EDEN framework and show how it helps circumventing such limitations by combining
qualitative and discrete-event properties with an asynchronous update mode.

3.1. Quantitative or Qualitative Variables?

Quantitative or semi-quantitative models such as compartmental models generally
involve differential/difference equations. They provide precise and unambiguous pre-
dictions that can (in principle) be readily measured [66]. One strategy is to “sacrifice
generality” [67] and greatly detail interactions in the model. However, information about
processes is often partial and thus ecological parameter estimations remain limited [6,66].
This issue is generally addressed by a strategy of simplification, reducing the model size
(i.e., the number of variables and parameters) in order to reduce the number of required
measurements (the “sacrificing realism” strategy [67]).

Reducing the model size is only one of the possible simplifications. An alternative
strategy to the previously mentioned ones is to simplify the variables’ behavior through a
qualitative approach. Instead of focusing on their precise values, the emphasis can be put
on crisp (e.g., qualitative reasoning) or overlapping (e.g., fuzzy models) intervals or on
their signs of variation (as in Camerano model or loop analysis). In this way, qualitative
approaches provide a complementary way to see system dynamics by forcing a focus on
drastic changes in the studied system. Some other attempts in systems biology such as
auto-catalytic networks and studies in chemical organization theory display clear comple-
mentarities with the EDEN framework [101]. Such approaches in systems biology focus on
the co-existence of species in a similar and often qualitative way.

Moreover, much ecological knowledge is qualitative [102] and is held by ecosystem
stakeholders [103]. Taking into account this qualitative information makes model building
easier and provides general results [11]. Also, some ecological questions do not necessarily
require quantitative information, such as the identification of keystone species [74].

Therefore, objectives (1) and (2) suggest adopting a qualitative approach. Note, how-
ever, that the predictive power of some qualitative models (such as loop analysis) generally
decreases as the number of variables increases due to higher indeterminacy in model
responses [16], as these models become useless with more than ten or twelve variables.
This will be addressed in Section 4.2.
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3.2. How Changes Occur over Time: The Variables Update Mode

In most dynamical models, the changes in variable values at a time t depend on the
system state at time t − 1. Hence, at each time step, all possible changes are executed
simultaneously, i.e., all variables are updated synchronously. Such a synchronous update
mode is appropriate in quantitative models but becomes problematic when variable values
represent intervals such as “low”, “medium”, and “high”. This implicitly assumes that
all qualitative changes (e.g., shifts from “low” to “medium”) are equally fast, which is a
strong assumption for social, biological and ecological processes. These major changes
happen at regular time steps, as if the same “global clock” was driving the behavior of each
ecosystem component.

Conversely, it has been argued that ecosystems are distributed [41]. It means that
each ecosystem component does not respond in a synchronized way with others but
rather responds at its own speed. This implies that responses to a given stimulus may be
delayed between components due to their mutual independence or to different reactivity.
Synchronous qualitative dynamical models may fail to predict the qualitative behavior of
a system (Section 4.5), even though the model accurately represents interactions between
variables (thus increasing the risk of false negatives). Therefore, in line with objective (2),
Section 4.5 will demonstrate the inadequacy of the synchronous update mode in a case
study and will propose using a non-synchronous alternative.

3.3. Deterministic or Not Deterministic?

Determinism is a property commonly found in historical (ecological) models [30,104].
In a deterministic model, initial conditions and the model structure are sufficient to predict
the (unique possible) future. However, as knowledge about the system is often limited,
including a certain amount of noise likely better reflects our ignorance and the intrinsic
variability in interaction intensities. For instance, dispersion of individuals cannot be pre-
cisely predicted and is thus represented as single stochastic events or as a fixed dispersion
rate representing the mean number of individuals leaving the system. Such stochastic
events may have tremendous consequences on system dynamics and induce, e.g., priority
effects [105] and alternative stable states [106,107]. Stochastic disturbances may also lead
an ecosystem towards alternative thermodynamical trajectories [52]. Although determin-
ism can be relevant for specific issues, objective (2) requires the explicit incorporation of
uncertainty as random parameters, as a set of probabilistic transitions (e.g., Markov chains),
or implicitly accounting for it (as in states-and-transition models).

3.4. Uncertainty as Stochasticity

Ecological dynamics are influenced by events (e.g., birth, storms, predation or disper-
sal) which can usually not be precisely identified and represented. In this case, a stochastic
model can be convenient to account for such events. Stochastic models represent sys-
tem dynamics as a set of probabilistic trajectories (sequences of discrete transitions). In
particular, they can be used to predict the probability for a system to reach a given state
after a given time or to take a given trajectory. Stochastic models compute the temporal
evolution of a system based on its (past or current) state and the probability for a system
to shift from one state to the other (called transition probability). This is typically what
Markov chains do. Considering probabilistic changes is undeniably a more parsimonious
approach and requires less information than a precise deterministic description. However,
estimating transition probabilities [108] remains costly and more adapted to well-studied
systems. Additionally, transition probabilities may also change over time, which requires
even more information about the system. Therefore, when measurements are scarce, setting
probabilities represents an assumption which can be avoided, thus not satisfying objec-
tive (2). Consequently, in Section 4, we will propose an alternative approach based on a
non-probabilistic non-determinism called possibilism [15].
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3.5. Predictive Capacity

Ecosystem dynamics can be represented through formal and non-formal models. Non-
formal dynamical models such as succession diagrams [40], replacement sequences [91]
or state-and-transition models [89] are well suited for ordering qualitative knowledge
about the dynamics of a specific system. They are intuitive, which makes them practical,
e.g., for decision support [96]. They represent all possible states and transitions according
to observations, and thus they provide an exhaustive visualization of system dynamics,
while explicitly representing ecological events. However, as these models are limited to
observed ecosystem states, they are not predictive [100]. Moreover, their size is constrained
by the fact that they are usually hand made and visually interpreted. Although they
provide a valuable representation of available knowledge about system dynamics, their
inability to infer ecosystem states with no historical analogue limits their applicability in a
context of a changing environment due, for example, to climate forces or anthropogenic
disturbances. As a consequence, they do not satisfy objective (4), and we will thus adopt a
formal approach.

3.6. From Properties to an Innovative Formalism

All the aforementioned properties may be assembled in various ways (Figure 4). Mod-
eling formalisms are thus composite objects that inherit the limitations of their constituents.
As each specific assemblage is designed to address specific questions, we can now discuss
the relevance of existing formalisms regarding the four objectives.

1. The ability to grasp the qualitative dynamics does not discard any formalism, as
both quantitative and qualitative models can provide insights about the qualitative
dynamics. However, loop analysis is restricted to equilibrium systems, which can
hardly be known a priori and may be inappropriate for non-equilibrium systems
commonly found in ecology and environmental sciences.

2. As we aim to make as few assumptions as possible about parameters, we will discard
quantitative formalisms for they impose strong constraints on data requirements (e.g.,
fixed or variable interaction coefficients, knowledge of functional forms) for building
models. Estimating transition probabilities for Markov models also requires sufficient
amounts of data, which are not always available.

3. All formalisms can provide some form of explanation. However, some ecosystem
models may act as black boxes and thus prevent a detailed and meaningful analysis. In
contrast, models like state-and-transition models can enable tracking causal pathways
leading to a particular outcome.

4. Predictive capacity refers to the ability to forecast the future state of a system to some
specific level of accuracy using a computational or mathematical model [100]. In this
regard, non-formal models such as state-and-transition models are not predictive
as they rely only on observed states and transitions between them and do not infer
unobserved states.

Building on the vast literature and a long tradition in systems biology starting with [109,110],
the aforementioned limitations of current formalisms led us to develop an innovative
dynamical modeling framework in ecology called ecological discrete-event networks (EDEN)
and freely available (https://github.com/fpom/ecco, accessed on 15 September 2023).

https://github.com/fpom/ecco
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Figure 4. Assemblages of properties of ecosystem dynamical models. Note that some model types
may have undefined/unapplicable properties. For instance, despite their non-deterministic nature,
the properties ”synchronous" or ”non-synchronous” are not rigorously applicable to STMs.

4. The Ecological Discrete-Event Networks (EDEN) Modeling Framework
4.1. A Brief Overview of the EDEN Framework

Before discussing the major properties of the EDEN framework in detail, we first il-
lustrate them through a simple community model of species extinctions—or community
disassembly—induced by trophic and competitive interactions ([111], submitted) (Figure 5).
It is derived from experiments on protist communities in which basal species are fed with
bacteria [107]. While ecological interactions (Figure 5a) are the driver of change, the model
focuses on qualitative changes induced by these interactions (in accordance with objective (1)).
In the EDEN framework, these qualitative changes are called events. These events are species
extinctions (named by their initials) and are summarized as a set of if-then rules (Figure 5b).
Starting from the {APT} state, the asynchronous execution (i.e., one by one) of these rules
results in several alternative trajectories. Due to various factors (e.g., stochasticity, population
sizes or interaction strength), these trajectories may have different probabilities of occurrence.
However, the EDEN framework is possibilistic (i.e., non-probabilistic and non-deterministic)
and thus aims to account for all possible alternative trajectories, irrespective of their probabili-
ties and duration [15]. We will show that these three model properties (i.e., an event-based,
asynchronous and possibilistic approach) contribute to satisfy objective (2). Computed dy-
namics are represented as a state-transition graph (STG, not to be confused with STMs,
Section 2.2.4), representing cascading extinction events (Figure 5c). In this STG, nodes and
edges represent states and transitions, respectively. The model predicts (objective (4)) three
alternative trajectories with distinct extinction sequences, thus providing a historical ex-
planation (objective (3)) for the two distinct stable states {T} and {∅}. The corresponding
explanation is: “the extinction of P is a necessary but not sufficient condition for {T} to
persist”. These results will be discussed in more detail in Section 4.4.
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Figure 5. Discrete-event model of community disassembly. (a): Interaction graph of three protist
species: Amoeba proteus (A), Paramecium caudatum (P) and Tetrahymena pyriformis (T); edges represent
directed negative interactions. (b): Rule set describing species extinctions and their conditions. These
extinctions result from the following interactions: A eats and depends on P; A eats T; and P competes
(unidirectionally) with T. (c): The state-transition graph resulting from all possible rule executions
from the initial state {APT}. State (nodes) labels indicate which species are present, while transition
(edges) labels indicate which rules can be executed for each transition. Note that one transition can
result from several alternative rule executions (as in the transition from {APT} to {AP}).

4.2. A Qualitative Perspective on Ecological Components

Ecosystems are continuously reshaping under the influence of internal and exter-
nal factors. These changes do not manifest as jumps, but rather as more or less abrupt
continuous variations. However, modeling such continuous phenomena often requires
difficult parameter estimation, which is generally out of reach given technical and financial
limitations. Biologists faced the same issue when they first aimed to model the dynamics
of regulatory networks. They circumvented this limitation by abstracting gene expression
to a switch-like behavior in which genes are either expressed (ON, 1) or not (OFF, 0) [112].
This marked the beginning of logical modeling in biology, the most famous example being
Boolean networks [110]. Although this “logical caricature” [113] may seem excessively sim-
ple, it proved surprisingly insightful in theoretical (e.g., [110]) and applied cases [114]. In
particular, it appeared to closely match the nonlinear nature of gene expression [115]. These
simplified yet qualitatively valid and robust models enabled studying larger regulatory
networks exhaustively without resorting to numerical simulations. However, the use of
logical models did not percolate to ecology and to most environmental sciences. The first
attempt was a Boolean predator–prey model proposed by [116] in 1979. He showed that
the Boolean model displays the same cyclical behavior as the continuous model, while a
slightly refined model displays the same stable states and cyclic attractor. More recently, a
qualitative approach was adopted through the use of timed automata for addressing land
use changes, coral reefs dynamics (e.g., [117]. This early attempt is promising for designing
relevant abstractions of more complex quantitative models, yet with much lower data
requirements. The qualitative approach in EDEN wagers on the decades-long use of qualitative
models in systems biology, and it already provides valid and insightful approximations of the
continuous behavior of ecological systems (objective (1)).
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4.3. Discrete Events as the Basic Unit of Change

The EDEN modeling framework is not time-driven (i.e., no global clock is driving
system changes) but event-driven, and thus belongs to discrete-event models [118]. In
such models, changes happen at possibly irregular time intervals. A transition occurs
when a variable crosses a threshold and thus becomes functionally present or absent,
or functionally active/inactive. The functional presence of a variable corresponds to its
ability to cause or prevent qualitative changes in other variables (Figure 5a). We will
illustrate this phenomenon using a simple ecological process. In this case, a threshold
delineates the range of values above which the variable (here soil moisture) becomes
functional (induces seed germination). Hence, the emergence of seedlings resulting from
seed germination is a discrete event, also called a transition. While the EDEN framework
can also include multiple thresholds (multivalued framework, Figure 5b), we will mostly
focus on the Boolean framework where only one threshold is considered, for the sake of
simplicity. In the Boolean representation, when moisture is above (+) (resp. below, (−))
this “functionality threshold”, it is said to be “present” (resp. “absent”). The transition from
a low to high germination rate is represented as an if-then rule expressing the following
sentence: “If soil moisture is high enough (M+), then seedlings may develop (S+)”, in
which the word “enough” indicates the moisture threshold below which germination
cannot occur (here, the base water potential; [119]), and the word ”may” indicates that
the transition may not occur, even if soil moisture is sufficiently high (e.g., if the soil is
below the base temperature; [119]). Formally, the system dynamics can be formalized with
the rules:

M+→ S+

M− → S−

Note that Figure 6 implies that if soil moisture is insufficient, the reverse transition may
occur. A rule consists of a left-hand side (called a condition, here M+) and a right-hand
side (called a realization, here S+), with an arrow between them (noted→) representing
the event (here, an effective germination). The condition as well as the realization of a rule
can include one (as in the example) or several variables. Due to their high simplicity, such
qualitative rules can be easily derived from any knowledge source (e.g., experts, obser-
vations or experimental data), while providing a highly general, yet realistic description
of the transition considered. In the EDEN approach, we assume that such a functionality
threshold exists for any interaction, such that the Boolean abstraction is always valid (i.e.,
captures the qualitative properties of the phenomenon of interest, [116]). The threshold
value is unknown a priori (Figure 6a). This is an advantage as it allows building a model
with highly limited knowledge about the system under study. Indeed, ecological thresh-
old values are costly to measure and are often highly variable in time and space, thus
hampering any threshold estimation for most ecological interactions [120,121].

However, variables are not equally sensitive to a given input. Consider now two plant
species (with their respective seedlings S1 and S2) with specific soil moisture requirements
for germination. If one seeks a more detailed representation, we can substitute the previous
model for a multivalued one. In this case, we use four different rules associated with three
different soil moisture thresholds (0, 1 and 2) (Figure 6b):

M ≥ 1→ S1+

M ≥ 2→ S2+

M < 1→ S1−

M < 2→ S2−

In the Boolean framework, as we ignore quantitative differences, if S1 (i.e., the species with
the lowest moisture requirement) can germinate, then S2 can too (Figure 6b). Thus, we have:
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M+→ S1+

M+→ S2+

M− → S1−

M− → S2−

Figure 6. Threshold-based quantization of continuous dynamics. (a): Curves representing the in-
teraction between soil moisture M and seedling density S (and corresponding to the rules M+→ S+
and M− → S−). The sigmoid curve (dotted line) illustrates one possible monotonically increasing
function linking the two variables. The continuous line corresponds to its step-function (Boolean) ap-
proximation. For the sake of representation, the threshold between M− and M+ is clearly positioned
but may be more fuzzy in reality. (b): Comparison between the Boolean and multivalued representa-
tions of interactions. Sigmoid curves represent the effect of soil moisture on the germination of two
species S1 and S2. In the Boolean abstraction (+ and − intervals on x-axis), there is no difference
between specific thresholds. Therefore, if moisture is sufficient for one species, then it is sufficient for
all. Inspired from [109].

However, the way rules are executed is not yet specified. When moisture is sufficient
(M+), are rules executed simultaneously or separately? This choice is likely to strongly
impact the modeled dynamics, and should thus be carefully considered. In the example,
if rules are executed simultaneously (i.e., synchronously), the Boolean description can
miss important trajectories. For instance, soil moisture may be sufficient for S1 and S2 to
germinate, but hidden variables such as temperature may prevent or delay the germination
of one species, thus inducing a non-synchronous response between S1 and S2. So, how
can we represent all qualitatively realistic trajectories, accounting for the effect of hidden
variables, while avoiding adding quantitative information or other variables?
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4.4. Accounting for Uncertainty in the Event Timing: The Asynchronous Update Mode

In a given state of an ecological system, several events may occur (for instance, when
soil is moist, several plants may germinate). How does the model manage these concur-
rent events? This question is related to the way variables change at each computational
step, called the update mode [122]. As mentioned in Section 3.2, variables can be updated
synchronously, which is the case in most ecological models. It is justified in a continuous
time perspective where process rates can be adjusted by parameters (e.g., in differential
equations), but becomes problematic in a qualitative perspective. We illustrate here the
limits of the synchronous update mode using the APT model discussed in Section 4. When
rules of the APT model (Figure 5b) are executed synchronously (Figure 7a), the dynamics
are deterministic and the {APT} state reaches only one stable state (∅). However another
end state, {T}, was observed experimentally (see Appendix 1 in [107]). In this case, either
the model structure (i.e., interactions between variables) is wrong, or the way events are
scheduled is inappropriate for the studied phenomenon.

We test the second hypothesis by relaxing all assumptions about the timing of ex-
tinctions (determined by interaction strength and population sizes, which are generally
uncertain), and execute rules asynchronously, i.e., one by one (Figures 5c and 7b). As
each rule changes the state of only one variable, this is similar to the fully asynchronous
mode used in Boolean networks [109]. In this asynchronous update mode, transitions are
not driven by a global clock synchronizing them, but rather have their own timing. The
asynchronous model not only predicts two stable states and four transient states, which
are all observed experimentally, but also all observed transitions ([111], submitted). Note,
however, that some synchronous Boolean networks also proved insightful for some eco-
logical phenomena (e.g., [14]). Additionally, synchronizing specific events can be relevant
as it may more closely match available knowledge. Therefore, in order to make the for-
malism more flexible for users and in accordance with objective (2), we adopted a partially
synchronous update mode, in which a rule can update several variables simultaneously
(not shown here, but see [15]), while rules are still executed one by one. This is similar to
semi-synchronic Boolean networks used in [123].

Figure 7. Comparison of trajectories generated by synchronous and asynchronous update modes
derived from the APT model described in Figure 6. (a) In the synchronous update mode, all valid
transitions are fired simultaneously. For instance, in the {APT} state, rules R1, R2 and R3 are satisfied
(see Figure 6b for rule definitions) and are thus executed simultaneously. The resulting dynamics are
thus deterministic and necessarily end up in the empty state ∅. (b) In contrast, the asynchronous
update mode used in EDEN opens an alternative trajectory from the {APT} state by separately firing,
on the one hand R2 or R3, and on the other hand R1, possibly leading to the alternative stable state
{T} observed in [107] experiments.
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4.5. Possibilism as an Innovative Approach to Non-Determinism

Assuming that ecological systems are non-deterministic, the trajectory they take de-
pends on several factors, such as event timing and interaction strengths. Generally, only
a few alternative trajectories will be frequently observed, thus motivating a probabilistic
approach. However, rare events critically contribute to history in ecological and biolog-
ical dynamics [124,125], thus making the exhaustive set of trajectories highly relevant,
whatever their probabilities [126–128]. Therefore, we adopt a possibilistic perspective, in
which all the possible trajectories are computed, that is, all changes compatible with the
predefined variables and rules, regardless of probabilities. This perspective combines with
the asynchronous update mode, which usually opens several alternative trajectories (as
in Figure 7b). It allows assessing all the far-reaching consequences of the occurrence or
non-occurrence of a given event (e.g., management action or natural event). Possibilism
has been widely used in systems biology to study the transient and asymptotic behaviors
of regulatory networks in response to various environmental stimuli [129]. It has also
been used to disentangle the complex sequences of events leading to a particular outcome,
namely a causality analysis, based on counterfactual reasoning [130], which may be useful
for ecosystem management and decision support [131]. Note, however, that possibilism is
only relevant for a coarse-grain system description. Indeed, a possibilistic description of
the behavior of each individual in a population would lead to a huge and inextricable set
of trajectories that would provide little insights, if any.

Following our review of ecosystem model types (Section 2), we developed the EDEN
framework to achieve our stated objectives (Section 3) by combining the model properties
we presented in this section. The qualitative approach implies that only major changes
will be considered, while the discrete-event framework implies that these changes may
eventually occur at irregular time intervals, following the various threshold crossings.
Additionally, the asynchronous occurrences of events open alternative trajectories corre-
sponding to contrasted event sequences, which are computed in a possibilistic way (i.e.,
exhaustively). The EDEN framework has already succeeded in representing and model-
ing realistic social-ecological systems and their dynamics in specific case studies. EDEN
models have already helped in understanding terrestrial temperate [132], tropical [133,134]
and aquatic ([111], submitted) ecosystems, either for applied [133,134] or theoretical ob-
jectives [15]. In each of these case studies, the ecosystem is represented as an interaction
network, then handled by the EDEN rules formalizing the way this network could change
over time (see pre-mentioned references for detailed modeling steps).

4.6. The State-Transition Graph as the Assemblage of Model Properties

As in vegetation succession diagrams [83], state-and-transition models [89,90], qualita-
tive reasoning [78], community assembly models [106,135,136] or timed-automata [137],
the EDEN framework represents ecological dynamics as a state-transition graph (STG).

The topology of this graph provides valuable information about ecological dynam-
ics [15,106,136,138]. An STG generally includes three main topological structures (also
called graph components), namely, strongly connected components, stable states and
basins [118,133]:

• A strongly connected component (SCC) is a set of mutually reachable states, i.e., any
system change in it is reversible. It can be cyclic (only one trajectory, e.g., yellow states,
Figure 8a) or complex (several trajectories, e.g., green states, Figure 8a), highlighting
the presence of one or several feedback loops, respectively. Cyclic SCCs are discrete
analogues of limit cycles [139] and have been used in community assembly to define
cyclic changes in species community composition [106,136]. On the other hand, complex
SCCs have been observed in cell differentiation [138], rangeland dynamics [90,140] and
geomorphology [141], and have been predicted theoretically [118]. In addition, this concept
is crucial in state-and-transition models for defining the concept of “state”, which is “a
sustained equilibrium that is expressed by a specific suite of vegetative communities” [90].
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• A stable state or deadlock is a single state with no successor (Figure 8, dark blue state).
These have been interpreted as final phenotypes in cell differentiation trajectories [138]
or non-invadable communities in community assembly experiments [142].

• Finally, basins are defined as sets of states which (1) are not part of an SCC or stable
state and (2) all lead to the same SCCs or stable states (Figure 8, orange and non-
terminal blue states). Although they do not have well-known empirical counterparts,
a recent model based on protist community disassembly experiments [107] confirmed
the relevance of such structures, suggesting their role as sets of transient states with
indeterminate fate.

There is no mathematical limit to the size of STGs; EDEN model STGs sometimes grow
up to thousands or billions of states (e.g., [132,133]). Automatic analyses (summarized in [143])
are thus required to identify relevant information. They include (but are not restricted to) STG
aggregations and model-checking [134,144]. STG aggregation is related to the identification of
transient and persistent sets of states and consists in merging states according to their neigh-
boring relations [145,146]. On the other hand, model-checking refers to the formal verification
of dynamical properties in the set of computed system trajectories. It is beyond the scope of
this paper to provide an exhaustive list of such techniques, so we will briefly survey the main
analysis techniques.

The main STG aggregation aims to summarize the STG by merging its topological com-
ponents (i.e., SCCs, stable states and basins), thus forming a hierarchical transition graph ([145],
Figure 8b). In this aggregated graph, we observe a transition between two components (for
example, between green and blue components, Figure 7b) only if there is a transition between
at least two states belonging to either of these components (Figure 8a). Nodes of the hierarchical
transition graph correspond to transient (basins) and persistent behaviors (SCCs and stable
states), while transitions represent the irreversible changes. Note that the similarity between
the definition of SCCs and “states” in the state-and-transition modeling framework make the
hierarchical transition graph comparable with a state-and-transition model.

Figure 8. Illustration of topological structures in a state-transition graph and its compression in
a hierarchical transition graph. (a) State-transition graph (STG). Each node and edge is a state and
a transition, respectively. Node colors indicate which topological structure a state belongs to. For
instance, all yellow states belong to the same SCC. Note that the light blue states represent a set
of states necessarily ending in a stable state and thus represent its (strong) basin. (b) Hierarchical
transition graph corresponding to the STG in (a). Node colors thus match those of (a). Each node is a
topological structure of the STG, and each transition is necessarily irreversible.

On the other hand, model-checking is a verification method which automatically
proves if a given state-transition graph satisfies a dynamical property, usually expressed as
a temporal logic formula [144]. However, the mathematical formalism used for expressing
dynamical properties is usually difficult to master for ecologists and biologists. There-
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fore, pre-established properties (called query patterns) already exist in biology [129] and
ecology [117,134]. These query patterns enable asking questions such as:

• Is an ecosystem collapse avoidable?
• Is a productive ecosystem state reachable and stable (e.g., included in an SCC)?
• Is this productive state always preceded at some time by, say, a disturbance or a

specific process (rule)?

While temporal logic has mostly been used in systems biology, seminal applications
can be found in agricultural sciences [147,148] or ecosystem management [117,134].

5. Discussion and Conclusions

All (social-) ecological systems are complex systems requiring inter- and often multi-
disciplinary approaches, which modeling may undeniably help understanding and predict-
ing. Dynamical ecosystem models aim at predicting temporal changes in ecosystem state
variable values induced by internal system structure and/or external influences. So far,
ecosystem modeling has mostly adopted quantitative methods, often based on differential
equations. However, depending on the objectives, quantitative information may be unnec-
essary, e.g., the search for keystone species [74], study of vegetation successions [149] or
qualitative response of ecological communities to press perturbations [150]. Additionally,
parameter values are often imprecisely known and may change over time, thus reducing
confidence in some model results.

In this regard, qualitative models represent an alternative in data-poor situations.
Although less precise, they are no less rigorous and often rely on fewer assumptions, thus
increasing the generality of model predictions. They are not meant to replace quantitative
models in all situations, but can prove useful in the early steps of the modeling process for
generating and rejecting qualitative hypotheses. As they sometimes display ambiguous
predictions, they can also inform ecologists about which processes require quantitative
information to provide unambiguous qualitative predictions and which do not. Even
in data-rich situations, qualitative models may provide a relevant alternative for under-
standing the (social-ecological) system functioning, for example, by revealing its long-term
dynamics [133,134]. In such a context, qualitative models may also provide intuitive and
user-friendly tools, as they may formalize expert knowledge and everyday narratives.

We have listed some of the major properties of each modeling method, illustrated
in complex ecosystem ecology, and discussed their limitations according to some specific
objectives. We expected ecosystem models to (1) grasp the qualitative dynamics of the
system of interest, (2) make as few assumptions as possible about interaction parameters
and spatial structures, (3) be explanatory and (4) predictive. We have shown that there
is a long tradition of qualitative approaches in ecology, dating back to [63], followed
by [11,40,89], to name a few. In particular, after others (e.g., [14,147]), we propose the
EDEN modeling approach, which considers discrete events as the basic units of change in
qualitative dynamics. An event is a change in system state defined as the threshold crossing
which delimits different ecological functions of a variable.

We also highlighted some of the assumptions implied by a deterministic view (at
least) in qualitative models. As illustrated in Figure 7 from the rule set in Figure 5b,
synchronous qualitative models assume equally fast processes, which often is a too strong
assumption and can lead to the rejection of a model that would be accurate if asynchronous.
As a consequence, we suggest considering the asynchronous update mode as a realistic
alternative for qualitative models. Note, however, that determinism still enables the
prediction of important phenomena such as trophic cascades [63]. Probabilistic models also
face limitations due to necessary assumptions. Indeed, a probability distribution needs to
be chosen for any stochastic process, and every choice of distribution needs to be justified,
thus requiring much information. When such information is unavailable or insufficient,
we propose possibilistic non-determinism as a valuable alternative. It infers all possible
alternative trajectories given a set of premises (rules or equations). However, the number
of possible computed states grows exponentially with the number of involved variables or
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variable values, thus making model computation, analysis and intelligibility challenging.
Therefore, possibilism does not prevent modelers from keeping models simple. Although
we already applied the EDEN framework to some concrete needs, a remaining issue is to
demonstrate its relevance to most environmental sciences.

We think qualitative models raise important methodological questions in ecological
modeling. In particular, the prevalence of quantitative models, in spite of the poor quanti-
tative information, suggests a confusion between precision and accuracy. For instance, the
APT model (Figure 5) is imprecise (i.e., no numerical values of population size are given),
but is simultaneously highly accurate since all predicted states and transitions are actually
observed [107]. This does not discard quantitative models as relevant tools for explaining
complementary aspects of ecological dynamics. It is common to find aspects of ecological
phenomena whose explanation requires the use of multiple models (what [151] calls model
pluralism). Model pluralism is a fact in ecology and should be maintained and promoted.
By offering various mathematical expressions to ecological situations, it widens the range
of ecological questions one can ask to a particular system and thus helps formulating
and testing new ideas. Another remaining issue in this regard is to adequately couple
quantitative and qualitative models, in a way exploiting the most relevant properties of
each framework for addressing specific scientific questions.

In this respect, systems biology can be a great source of inspiration for ecology. Its
constant dialog with computer sciences contributed to its current spectrum of qualitative-
to-quantitative formalisms, from the Boolean to multivalued, hybrid and fully continuous
methods [152,153]. There is a continuous effort to bridge gaps between (and not necessarily
unify) existing methods, which is of great interest for explaining natural phenomena. As
Levins [11] puts it, talking about qualitative models: “general models are necessary but
not sufficient for understanding nature. For understanding is not achieved by generality
alone, but by a relation between the general and the particular”. Mathematical connections
between, on the one hand, differential equations and, on the other hand, loop analysis [69],
logical models [154,155] or qualitative reasoning models [79] have already been demon-
strated. Therefore, if each qualitative model is proved to be a relevant abstraction of specific
aspects of quantitative models, it is possible to draw relevant conclusions with much less
information. This is encouraging as modelers can lean on this pluralism for building more
robust explanations of natural phenomena.
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