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Abstract: The introduction of sparse code multiple access (SCMA) is driven by the high expectations
for future cellular systems. In traditional SCMA receivers, the message passing algorithm (MPA) is
commonly employed for received-signal decoding. However, the high computational complexity
of the MPA falls short in meeting the low latency requirements of modern communications. Deep
learning (DL) has been proven to be applicable in the field of signal detection with low computational
complexity and low bit error rate (BER). To enhance the decoding performance of SCMA systems, we
present a novel approach that replaces the complex operation of separating codewords of individual
sub-users from overlapping codewords using classifying images and is suitable for efficient handling
by lightweight graph neural networks. The eigenvalues of training images contain crucial information,
such as the amplitude and phase of received signals, as well as channel characteristics. Simulation
results show that our proposed scheme has better BER performance and lower computational
complexity than other previous SCMA decoding strategies.

Keywords: sparse code multiple access (SCMA); deep learning (DL); signal detection; bit error
rate (BER)

1. Introduction
1.1. Background

In the thriving era of 5G wireless communication, the pursuit of high spectrum
efficiency, massive connectivity, and low latency has intensified significantly. Orthogonal
multiple access (OMA) demonstrates high performance during 3G and 4G communication,
which is attributed to its straightforward and effective system architecture. However, in
scenarios with massive connectivity, the requirement for the orthogonality of user carrier
frequencies by OMA-based systems somewhat exacerbates the shortage in the spectrum.
Therefore, it is challenging to achieve 5G’s high communication requirements by solely
depending on OMA. Non-orthogonal multiple access (NOMA) [1] has, consequently,
steadily evolved, which can be classified into two categories: power-domain NOMA, which
achieves spectrum resource multiplexing by judiciously allocating power, and code-domain
NOMA, which realizes the sharing of all wireless resources by assigning non-orthogonal
extension codes to each user and identifying them with a low-complexity scheme. Among
the various code-domain schemes of NOMA, sparse code multiple access (SCMA) [2],
with a high overload capacity and interference resistance, stands out. SCMA allows
multiple users to broadcast concurrently on the same time–frequency resources, relieving
the increasing strain of spectrum limitations and enhancing the channel capacity in 5G
wireless communication.
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1.2. Related Work and Motivation

Each user in the SCMA system is assigned a unique known codebook, in which the
information bits are multiplied by the mapping matrix and mapped into multi-dimensional
codewords [2]. Therefore, the design of the codebook is a crucial factor that directly
influences the performance of SCMA systems. The authors of [3] introduced the first
codebook for SCMA, which laid the theoretical foundation for subsequent SCMA code-
book designs. Improvements were made to the codebook design in [4], and a temporary
codebook that can be automatically updated with reverse derivation was developed in [5].
Ref. [6] proposed a method named simplified decomposition of the superposed constella-
tion (S-DCSC), which gained lager superposed symbols in the receiver than other codebook
design schemes. The codebook design techniques are continually evolving to facilitate a
more effective SCMA system.

The receiver design also plays an essential role in SCMA performance. The same
time–frequency resources can be shared by multiple users in an SCMA system. As a result,
it requires a more complex receiver design than an OMA-based system. The traditional
decoding method for SCMA relies on the message passing algorithm (MPA) [7], which
has a high computational complexity. Ref. [8] removed the exponential operations in the
message updates in order to lower the computational complexity; however, this had a major
negative impact on the bit error rate (BER) performance. Ref. [9] proposed a shuffled MPA
(SMPA) that employs a different message updating approach, reducing the computational
complexity and concurrently improving the BER performance. Based on the works of [9],
a low-complexity MPA algorithm (TB-RMPA) was proposed in [10]. TB-RMPA further
decreased the computational complexity, but showed a minor decline in terms of the BER
performance. Although these MPA-based derivative algorithms have improved the strategy
of message iteration, they still require a considerable number of cyclic iterations, which
struggle to meet the low latency requirements of the decoder.

Deep learning (DL) technology is a revolutionary technique with versatile applications
across various fields. Although the process of DL-based model training can be time-
consuming, the achieved high efficiency and low complexity after training, along with its
strong recognition and classification capabilities, make it highly suitable for signal detection
systems [11].

It has been shown that the processing of complex received-signal classification in
SCMA systems is compatible with powerful deep neural networks (DNNs) [12], leading
to the growing popularity of DL-based SCMA decoding techniques. Compared with the
approach in [13], which integrated MPA logic into a DNN, both [14,15] forwent MPA logic
altogether in the decoder and instead focused on optimizing the DNN structure and select-
ing appropriate functions. Building upon the work of [15], Ref. [16] explored incorporating
prior knowledge migration before decoding, resulting in enhanced performance. However,
the aforementioned techniques may not fully utilize the potential of DNNs’ capability for
feature extraction in data categorization tasks.

In this paper, our main emphasis is on enhancing the performance of SCMA decoders.
For a downlink SCMA system with J independent users, M different kinds of transmission
symbols (e.g., 0, 1, . . . , M− 1), and K orthogonal resource elements (REs), we propose a
novel decoding scheme based on a lightweight graph neural network (GNN) with high
efficiency and accuracy. The proposed decoding scheme converts the complex process of
signal detection from received overlapping codewords that are affected by noise and fading
into an easily implemented image classification procedure. The lightweight architecture
of MobileNet [17] facilitates its deployment on mobile devices. Additionally, MobileNet’s
design makes it simple to expand to various widths and depths, catering to varying
computational resources and accuracy requirements. Therefore, a modified MobileNet
model was adopted as the classification network.

1.3. Contributions

The main contributions of this paper are summarized as follows.
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• We raise the idea of sub-coordinate systems, which make it possible to map infor-
mation from received signals and transmission channels into a K-Polygon diagram.
The differences in types of K-Polygon diagrams can be ultimately attributed to the
differences in the corresponding transmission symbol combinations, enabling the
replacement of the MPA in SCMA decoding with image classification technology.

• We propose the concept of a dynamic dataset with automatic labeling, which can gen-
erate the enormous K-Polygon diagrams needed for training. This method avoids the
necessity for offline dataset hand labeling, which, to some extent, reduces the training
time of the model, facilitating its faster deployment in new channel environments.

• Compared to other SCMA decoders, our decoder has better BER performance and
lower computational complexity, offering a novel perspective for achieving signal
detection tasks by directly classifying the generated K-Polygon diagrams.

1.4. Organization

The remainder of this paper is organized as follows. Section 2 introduces the downlink
SCMA system model. Section 3 describes our decoding scheme for tackling signal detection
tasks through the image classification process in detail. Section 4 presents and evaluates
the simulation results. Finally, Section 5 draws the conclusions.

2. SCMA System

We consider a downlink SCMA system with J independent users and K orthogonal
REs (overloading factor λ = J/K > 1). The quantities of orthogonal REs occupied by a
user and neighbors on an orthogonal RE are Nr and Nu, respectively. The definitions of
the parameters in the downlink SCMA system mentioned in this paper are presented in
Table 1.

Table 1. The parameters in the downlink SCMA system.

Parameter Definition

J Number of independent users
K Number of orthogonal resource elements
M Size of codebook
λ Overloading factor
Nr Number of orthogonal resource elements occupied by a user
Nu Number of neighbors on an orthogonal resource element

The transmitter encodes the log2(M) data bits of user j and maps them to a
K-dimensional sparse codeword, xj. The K-dimensional non-sparse overlaid codeword
is then broadcast over K REs after the K-dimensional sparse codewords of J users are
multiplexed.

At the transmitter, the transmitted signal r can be represented as follows:

r =
J

∑
j=1

xj, (1)

where xj =
(

xj1, xj2, . . . , xjK
)T is the codeword in the codebook Cj with size M of user j,

and Cj is derived from the total codebook C =
{
Cj, 1 ≤ j ≤ J

}
constructed based on a

multi-dimensional constellation.
At the receiver, the signal received by the user j can be expressed as follows:

yj = diag
(
hj
)
r + nj, (2)

where hj =
(
hj1, hj2, . . . , hjK

)T is the channel vector between the transmitter and the user

j, and nj =
(
nj1, nj2, . . . , njK

)T is the additive white Gaussian noise (AWGN) with zero
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mean and variance σ2. For the downlink Rayleigh fading channel, hjk experienced by the
transmitted signal on the k-th RE is the radial component of the sum of two Gaussian
distributed random variables, whereas for the AWGN channel, hjk is constant. A basic
downlink SCMA system model is presented in Figure 1, where J = 6, K = 4, and M = 4.

01 01 10

jn
RE 1

RE 2

RE 3

RE 4

Codebook 2 Codebook 3Codebook 1 Codebook 5 Codebook 6Codebook 4

00 00 11

jy

jh

Figure 1. A basic downlink SCMA system model.

3. Our Proposed Method

The objective of the downlink SCMA system receivers is to precisely reconstruct the
log2(M) data bits of each of the J users from the received signal yj at the K REs, which is
defined in Equation (2). The non-orthogonality between user carrier frequencies makes the
design of SCMA system receivers more challenging compared with OMA-based systems.
At the same time, noise interference and unstable channel characteristics in the wireless
channel furtsher increase the difficulty of designing receivers with excellent performance
for SCMA systems. In order to improve the downlink SCMA systems’ decoding perfor-
mance, we propose a novel image-classification-based decoding strategy that allows image
classification technology to take the role of the MPA in SCMA receivers to accomplish
signal detection tasks.

In this section, we provide a detailed introduction to the algorithm design of the
proposed K-Polygon diagram classification decoder (KDCD). We take into account both the
effect of the AWGN and the downlink Rayleigh fading channel on signal transmission. A
modified MobileNet model is adopted as the classification network. With the exception of
the first layer of the convolutional layers, which is a fully convolutional layer, all remaining
convolutional layers in the classification network are depthwise separable convolutional
layers. Figure 2 depicts the difference between depthwise separable convolutional layers
and standard convolutional layers [17]. The network parameters are learned from a large
amount of training data. In order to transform the intricate process of classifying received
overlapping codewords disrupted by noise and fading into an image classification task and
obtain sufficient K-Polygon diagrams for training, we originally propose the concepts of
sub-coordinate systems and dynamic datasets with automatic labeling.
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Figure 2. Left: Standard convolutional layer with BatchNorm and ReLU. Right: Depthwise separable
convolutions with depthwise and pointwise layers followed by NatchNorm and ReLU.

3.1. Sub-Coordinate System

The realization of the sub-coordinate system is accomplished in the PyTorch environ-
ment, utilizing the matplotlib module [18]. First, we establish K virtual sub-coordinate
systems in the planar rectangular coordinate system. After that, K points are obtained by
mapping the K components of the received signal yj, both real and imaginary (e.g., Re

(
yjk

)
and Im

(
yjk

)
, respectively, represent the real and imaginary parts of yjk, which is the k-th

component of the received signal yj), into the K sub-coordinate systems, respectively, which
can be expressed as (

SXk , SYk

)
=
(

Re
(

yjk

)
, Im

(
yjk

))
, (3)

where
(
SXk , SYk

)
is the point’s coordinate in the k-th sub-coordinate system.

Following that, by establishing a transformation function that express the spatial
relationship between each sub-coordinate system and the planar rectangular coordinate
system, we can compute the precise coordinates of the K points in the planar rectangular
coordinate system, which can be expressed as

(Xk, Yk) =
(

A · SXk + XOk , A · SYk + YOk

)
, (4)

where (Xk, Yk) represents the coordinate of the k-th point in the original planar rectangular
coordinate system, A denotes the ratio of the unit distance within the k-th sub-coordinate
system to that of the original planar rectangular coordinate system, and

(
XOk , YOk

)
is the

coordinate of the origin of the k-th sub-coordinate system in the original plane rectangular
coordinate system.

Next, for a receiver with perfect channel state information (CSI), during the single
communication process, the channel vector hj is calculated instantaneously in real-time to
evaluate the characteristics of the wireless channel [16]. Floating-point numbers in the 0 to
1 range may be converted to color values using the matplotlib.colors module and colormap
class [18]. The following setting is made to the floating-point number that corresponds to
the color value of the k-th point:
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sig

∣∣∣hjk

∣∣∣ · Im
(

hjk

)
Re
(

hjk

)
, (5)

where
∣∣∣hjk

∣∣∣ represents the magnitude of hjk; Re
(

hjk

)
and Im

(
hjk

)
, respectively, represent

the real and imaginary parts of hjk; and sig(·) refers to the sigmoid activation function.
Finally, by not displaying the plane rectangular coordinate system and sequentially

connecting the K points, with the connecting lines during this process set to black, we
obtain a closed the K-Polygon diagram for training as shown in Figure 3. It is worth noting
that, during the process of handling the output of K-Polygon diagram, we output only
the region of the image corresponding to the x-axis range [−2s : +2s] and the y-axis range
[−2s : +2s]. This operation eliminates excessive white space around the output K-Polygon
diagram, thereby facilitating enhanced quantization precision. The output format of the
K-Polygon diagram is set as a grayscale image with dimensions of 56 × 56, where “56 × 56”
specifies the size of the image in terms of width and height in pixels.

The aforementioned illustrates how a specific K-Polygon diagram is generated. There
are a total of MJ different types of K-Polygon diagrams, which correspond to the MJ types
of input symbol combinations, when J users are taken into account, each having M kinds
of transmission symbols.

Sub-coordinate system mapping effectively avoids the mutual interference between
coordinate points caused by directly mapping the received signal components to the plane
rectangular coordinate system, and further distinguishes the feature-point distribution
of different types of K-Polygon diagrams. In addition to the above, the connecting lines
in the K-Polygon diagram provide extra exploitable features, which are beneficial for the
image classification.

MobileNet

1p

2p

4096p

3jy

4jy

    1 1Re , Imj jy y    2 2Re , Imj jy y

    3 3Re , Imj jy y     4 4Re , Imj jy y

Received 
signal

2jy
1jy

Figure 3. Architecture of our proposed KDCD when J = 6 and K = 4.

3.2. Dynamic Dataset with Automatic Labeling

To enhance the network’s fitting effect, we first generate a large number of random
input symbol combinations for the SCMA system and obtain the received signal set re-
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quired for generating adequate K-Polygon diagrams for training. It is worth noting that
weak signals caused by very low values of Eb/N0 (energy per bit to noise power spectral
density ratio), as well as overfitting caused by excessively high values of Eb/N0, may both
negatively impact the BER performance of the decoder. Therefore, in every communication
process, the noise n should be randomly generated within an appropriate range of Eb/N0
values. To determine the optimal Eb/N0 values for the received signal set, we test the
following scenarios in this paper.

• S1: We choose some lower values, i.e., Eb/N0 ∈ [2 : 2 : 6] dB.
• S2: We choose some higher values, i.e., Eb/N0 ∈ [18 : 2 : 20] dB.
• S3: We train the model with a wide range of values, i.e., Eb/N0 ∈ [0 : 2 : 20] dB.
• S4: By removing the lower and higher values, we train the model using

Eb/N0 ∈ [8 : 2 : 16] dB.

In the PyTorch environment, a significant number of cycles are typically specified
to ensure that the entire image training set is traversed during each iteration of training.
However, in our scheme, the image batch used in each training cycle is pre-generated on-the-
fly by the corresponding component in the received signal set and shares a storage tensor.

We then develop the idea of automatically tagging K-Polygon diagrams. The input
symbol combination corresponding to the K-Polygon diagram should be processed as a J-bit
M-ary number which equals a decimal number. The label for the K-Polygon diagram should
have the same size as the output of the KDCD and be represented as a one-hot tensor [19],
where the element indexed by this decimal number is assigned as one individually. Thus,
the operation of automatically tagging K-Polygon diagrams can be expressed as

d =
J

∑
j=1

mj MJ−j,

b[d] = 1,
(6)

where d denotes the decimal number, mj is the input symbol of the j-th user, and b denotes
the one-hot label. Since the entire K-Polygon diagram dataset is not present at any given
time and the labeling process is automatic, we refer to the dataset used for training as the
dynamic dataset with automatic labeling.

Dynamic dataset with automatic labeling circumvents the need for manual labeling
of offline datasets, streamlining the process of creating complete K-Polygon diagram
datasets and ultimately reducing the time and resource expenses associated with pre-
training models.

3.3. Model Optimization

To classify a K-Polygon diagram and predict the log2(M) data bits for each inde-
pendent user, we train the network model parameters by minimizing the following
loss function:

L(p, b) = −
MJ

∑
i=1

bi log(pi), (7)

where the function L(·) is the well-known cross-entropy loss, p = [p1, . . . , pMJ ]
T is the

output of MobileNet’s fully connected layer, and b is the K-Polygon diagram’s one-hot label
of the same size as p (e.g., the corresponding input symbol combination of b = [1, 0, . . . , 0]T

is [0, 0, . . . , 0]T).

3.4. Model Configuration

Although the proposed decoding scheme can be applied to larger SCMA systems, it
is important to note that the design of codebooks for such systems is beyond the scope
of our study. Additionally, channel estimation is not the primary focus of this research.
Therefore, in this paper, we consider a basic downlink SCMA system model with J = 6, K = 4,
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M = 4 and, perfect CSI, which is consistent with the settings in [15,16]. The A and
(
XOk , YOk

)
in Equation (4) and the s, which governs the range of diagram output, are set as

A = 1,

(
XOk , YOk

)
=


(+s,+s), k = 1
(−s,+s), k = 2
(−s,−s), k = 3
(+s,−s), k = 4

,

s = 5.

(8)

The colormap, designated as “gray”, is set to determine the functional relationship
between the floating-point number and color value of K points in the K-Polygon diagram.
The classification network utilizes a modified MobileNet model, with the comprehensive
structure illustrated in Table 2.

Table 2. Structure of modified version of the MobileNet model.

Type/Stride Filter Shape Input Size

Conv/s2 3 × 3 × 1 × 8 56 × 56 × 1

Conv1 dw/s1 3 × 3 × 8 dw 28 × 28 × 8

Conv1/s1 1 × 1 × 8 × 8 28 × 28 × 8

Conv2 dw/s2 3 × 3 × 8 dw 28 × 28 × 8

Conv2/s1 1 × 1 × 8 × 16 14 × 14 × 8

Conv3 dw/s1 3 × 3 × 16 dw 14 × 14 × 16

Conv3/s1 1 × 1 × 16 × 16 14 × 14 × 16

Conv4 dw/s2 3 × 3 × 16 dw 14 × 14 × 16

Conv4/s1 1 × 1 × 16 × 56 7 × 7 × 16

Avg Pool/s1 Pool 7 × 7 7 × 7 × 56

FC/s1 56 × 4096 1 × 1 × 56

Softmax/s1 Classifier 1 × 1 × 4096

4. Simulation and Evaluation

The methods being compared in this study are all based on the basic downlink SCMA
system model, with J = 6, K = 4, M = 4, and perfect CSI. The components of the channel
vector hj are modeled as independently and identically distributed complex Gaussian
random variables with zero mean and unit variance. And each method uses the same
codebook, provided by [20]. The whole received signal set has 2 million random samples.
In order to minimize the loss function in Equation (7), we adopt an adaptive motion
estimation (ADAM) optimizer [21], in which the learning rate is set as 0.002. The batch size
of K-Polygon diagrams supplied into the classification network per cycle is set as 64.

4.1. Choice of Eb/N0 Values

Figure 4 shows the BER performance of the KDCD over the AWGN and downlink
Rayleigh fading channel after it was trained using each of the aforementioned scenarios. The
simulation findings show that BER performances vary under different training scenarios.
The reasons for this are as follows.

• S1: The chosen Eb/N0 values for training are very low, resulting in excessive noise
interference in signal transmission, and thereby reducing the effectiveness of training.

• S2: The network model is overfitted as a result of the Eb/N0 values being chosen
as excessively high, which decreases the BER performance of the KDCD at low
Eb/N0 values.
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• S3: It is not able to prevent the detrimental effects of very low and excessively high
Eb/N0 values on training, which leads to a suboptimal BER performance, even though
a wide range of Eb/N0 values are chosen for training.

• S4: The best BER performance is achieved by choosing the appropriate range of Eb/N0
values that prevents overfitting in the network model and enhances training efficacy.

When compared with the other scenarios, S4 is the optimum training strategy. There-
fore, the noise n for training is randomly generated with different values of Eb/N0: 8, 10,
12, 14, and 16 in the rest of this work.

6 8 1 0 1 2 1 4 1 6 1 8 2 0
1 0 � � �

1 0 � 


1 0 � 	

1 0 � �

1 0 � �

1 0 � �

1 0 � �

1 0 � �

1 0 � �

1 0 � �

BE
R

E b / N 0 [ d B ]

 K D C D - S 1 - R a y l e i g h  f a d i n g
 K D C D - S 2 - R a y l e i g h  f a d i n g
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 K D C D - S 4 - A W G N

Figure 4. The impact of the choice of Eb/N0 values for training on the BER over AWGN and downlink
Rayleigh fading channel in our decoder.

4.2. BER Comparison

Figures 5 and 6 compare the BER performance of our KDCD with different SCMA de-
coders, including a TB-RMPA [10], and deep learning decoder (DLD) [15], over the AWGN
and downlink Rayleigh fading channel, respectively. According to Figure 5, Our KDCD
consistently outperforms the deep learning decoder for the AWGN channel (DLD-A) [15]
and TB-RMPA across different Eb/N0 values. It is noteworthy that when the value of
Eb/N0 exceeds 10 dB, as Eb/N0 increases, the BER performance of the KDCD becomes
more significant. In addition, as shown in Figure 6, our KDCD also exhibits better BER
performance than the TB-RMPA and deep learning decoder for the downlink Rayleigh
fading channel (DLD-R) [15]. Based on this analysis, the explanations for the superior
decoding performance of our proposed KDCD in various channel environments compared
with other decoders are as follows.

• Compared with the conventional decoding algorithm (TB-RMPA): Our KDCD can
directly utilize the effective information of the received signals and channel charac-
teristics to accomplish the decoding operations. However, the TB-RMPA relies on a
large number of iterations. During every iteration, both valid and invalid information
participate in the information exchange between resource nodes and user nodes, which
reduces the effectiveness of message updates. In addition, our KDKD provides extra
exploitable features (the features of connecting lines in the K-Polygon diagram), which
facilitate the image classification.

• In contrast to previous DL-based decoders (DLDs): Our KDCD allows the neural
network to leverage more features. Moreover, our KDCD can directly accomplish the
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signal detection tasks with image classification, fully utilizing the potential of neural
networks’ capability for feature extraction.

6 8 1 0 1 2 1 4 1 6 1 8 2 0
1 0 � � �

1 0 � 
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1 0 � �

1 0 � �

BE
R

E b / N 0 [ d B ]

 T B - R M P A
 D L D - A
 K D C D

Figure 5. BER comparison of TB-RMPA, DLD-A, and KDCD over AWGN channel.
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Figure 6. BER comparison of TB-RMPA, DLD-R, and KDCD over downlink Rayleigh fading channel.

It should be noted that MobileNet performs much better than it did in the ImageNet
competition [22]. This improvement is due to the appropriate selection of Eb/N0 values for
training, which prevents the received signal y from being significantly affected by AWGN,
leading to a high degree of similarity in the distribution of feature points on quadrilateral
diagrams of the same type, which is beneficial for the image classification.

However, our KDCD shares the same communication limitations as those in [15,16].
Since channel estimation is not our main focus, our KDCD requires the strong assumption
of perfect CSI. Additionally, our KDCD only contributes to the decoding of downlink SCMA
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systems, lacking the ability for integrated encoding and decoding, and thus requiring a
well-configured codebook at the transmitter.

4.3. Complexity Analysis

The computational complexity of the generation of the K-Polygon diagram can be
considered negligible compared with the computational complexity of the convolutional
computation. In the c-th depthwise separable convolution layer, K2

c , Ic, Oc, and D2
c represent

the depthwise convolution kernel size, input channel number, output channel number,
and output image size, respectively. In the fully convolutional layer, K2

C, IC, OC, and D2
C,

respectively, denote the convolution kernel size, input channel number, output channel
number, and output image size. NF and NO represent the number of neurons in the fully
connected layer and the output layer, respectively. Taking into account the impact of stride,
the number of Multiply–Accumulate (MAC) operations of our KDCD is as follows:

MAC =
4

∑
c=1

(
K2

c IcD2
c + IcOcD2

c

)
+ K2

C ICOCD2
C + NF NO. (9)

The comparison between the KDCD, learning-aided SCMA (D-SCMA) [12], and DLD-
R [15] on computational complexity is shown in Table 3. Compared with D-SCMA and
DLD-R, our KDCD achieves reductions of 29.4% and 24.9%, respectively, in terms of
the number of MAC operations. In addition, to demonstrate the effective reduction in
communication latency achieved by our KDCD, Figure 7 compares the decoding time of
different decoders in a more intuitive manner. As shown in Figure 7, our KDCD possesses
the lowest communication latency, aligning with the low latency requirement of 5G wireless
communication. This can be attributed to the fact that, compared with other decoders, our
KDCD does not require iterations for message updates. Furthermore, our KDCD employs
the modified MobileNet model with a lightweight structure as the classification network,
which is highly efficient and precise.

Table 3. MAC operations of SCMA decoders.

KDCD DLD-R D-SCMA

MAC 561,008 747,008 794,694

1 0 � �

1 0 � �

1 0 � �

1 0 � �

Se
c.

 K D C D
 D L D - R
 D - S C M A
 T B - R M P A

Figure 7. Computation time of SCMA decoders.
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5. Conclusions

We have successfully offered a novel approach for achieving signal detection tasks
in SCMA receivers by transforming the intricate processes of classifying overlapping
codewords disrupted by noise and fading into the image classification processes. We
have raised the concepts of sub-coordinate systems and dynamic datasets with automatic
labeling, which enable us to construct enough quadrilateral diagrams for network training.
Our KDCD has demonstrated superior performance in terms of BER performance and
computational complexity compared with other previous SCMA decoders. We will conduct
further research to strive to eliminate the communication limitations of our KDCD.
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