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Abstract: This study investigated how a physical robot can adapt goal-directed actions in dynamically
changing environments, in real-time, using an active inference-based approach with incremental
learning from human tutoring examples. Using our active inference-based model, while good
generalization can be achieved with appropriate parameters, when faced with sudden, large changes
in the environment, a human may have to intervene to correct actions of the robot in order to reach
the goal, as a caregiver might guide the hands of a child performing an unfamiliar task. In order
for the robot to learn from the human tutor, we propose a new scheme to accomplish incremental
learning from these proprioceptive–exteroceptive experiences combined with mental rehearsal of
past experiences. Our experimental results demonstrate that using only a few tutoring examples,
the robot using our model was able to significantly improve its performance on new tasks without
catastrophic forgetting of previously learned tasks.

Keywords: incremental learning; free energy principle, active inference; goal-directed action planning

1. Introduction

Active inference (AIF) has steadily gained prominence as a theory of cognition that
can be used as a framework to design artificial agents. Typically, brain-inspired models are
based on the so-called forward model, which predicts the sensory state after an action is
executed [1,2]. This can be extended to goal-directed behavior by providing a preferred
(goal) sensory state as the distal (end) step, and then inferring the optimal sequence of
actions under some constraint, such as minimum travel time. On the other hand, AIF
agents, through application of the free-energy principle [3] and Bayes theorem, infer actions
that minimize Bayesian surprise. This induces agents to act so as to remain in a limited set
of preferred states [4], and has also been extended into goal-directed behavior by providing
a preferred sensory state and finding an optimal action policy that minimizes expected free
energy in the future by policy rollout [5,6].

Our previous work [7] expanded the aforementioned goal-directed AIF scheme by
applying the concept of teleology, an idea that originated in ancient Greece with Plato
and Aristotle. Under a teleological framework, phenomena appear not via their causes,
but by their end results. That is, actions are always taken in order to achieve a goal or
purpose; thus, actions can be explained by specifying the state of the environment or the
event to which the actions are directed [8]. Although teleology has been dismissed as a
scientific means of explaining physical phenomena, the idea of teleology can be used to
model goal-directed action generation. Under such a framework, goal-directed actions
can be characterized by three elements: (1) a goal, (2) actions to achieve that goal, and
(3) physical constraints on actions [9]. It follows that when two of the these three elements
are available, the final element can be inferred. Csibra et al. [9] showed that this inference
apparently occurs in human infants, and our work also shows similar inference behavior in
robot experiments.
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On a similar bio-inspired basis, there is growing interest in employing incremental
learning for artificial agents [10]. Incremental learning, also known as continual or life-
long learning, is regarded as an essential part of the developmental process of natural
intelligence [11]. Traditionally, all training data necessary for learning a task are prepared
before a training phase, after which testing with novel data can be conducted. In this
case, a new network is trained if a new task is to be learned. While this may be sufficient
for simple, static systems, in a dynamic environment with changing tasks, this approach
rapidly becomes impractical. Additionally, as neural networks and datasets become larger,
it is far more efficient to reuse an existing trained network and to extend its capabilities
than to restart from scratch.

One phenomenon that all incremental learning techniques encounter is that of catas-
trophic forgetting, in which sequential learning of new concepts leads to a sudden loss of
knowledge of previously learned concepts [12,13]. In general, during incremental learn-
ing, it is desirable to keep previously learned knowledge while adding new knowledge.
While several approaches address this issue, our proposed scheme uses a form of mental
rehearsal [13,14] using sequences generated by the trained neural network prior to incre-
mental learning. This approach has been documented as directly impacting acquisition and
retention of motor skills in humans [15], and has also been successfully applied to artificial
agents using recurrent neural networks [16].

This study demonstrates how a physical humanoid robot generating goal-directed
action plans can learn to dynamically adapt to changing situations by incremental learning
from a small number of human-tutored examples. To achieve this, we leveraged our
previously proposed model of goal-directed action planning based on active inference
and teleology (T-GLean) [7]. This model applies the free-energy principle and uses the
predictive coding-inspired variational recurrent neural network (PV-RNN) [17] to generate
output in the continuous domain. A robot controller converts predicted proprioceptive
states into robot joint angles and drives the robot joints appropriately. At the same time,
sensor data containing exteroception of the object’s position and proprioception are fed
back to the network. A human experimenter serves both to introduce interference into
the robot task and also to tutor the robot in how to complete the task when the robot does
not respond appropriately. The robot uses these tutored examples together with a sample
of generated plans as a mental rehearsal and conducts additional training in an offline
incremental learning phase. Details of our model and incremental learning scheme are
given in Section 3.

Our proposed scheme is evaluated in Section 4 with a series of experiments demon-
strating the construction of a functional incremental learning model using a humanoid
robot. Experiment 1 utilized training data of the basic task, wherein the robot picks up
an object placed within a workspace and places it at a selected goal position, and trains
networks with different network parameters in order to establish a baseline from which
to conduct incremental learning. Task performance is evaluated using the displacement
of the final object position from the actual goal position when evaluated on untrained
object-goal position combinations. In Experiment 2, we introduced deliberate interference
while the robot is executing its plan, either by physically moving the object or changing
the goal position. Since PV-RNN is able to adapt to certain changes in the environment
at the start of plan generation, we examined how much adaptation is possible without
additional learning. Finally, in Experiment 3, we provided the network with several human-
tutored examples in order to accomplish the tasks in the case of interference. In this case,
the human experimenter grasped the robot’s arms and physically guided its movements
in order to pick up the object and move it to the goal. After two rounds of incremental
learning, we evaluated not only its performance on new tasks, but also its performance on
previously learned tasks to confirm that task performance on previously learned tasks had
not degraded.
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2. Related Studies

Many brain-inspired models that generate goal-directed action plans have been pro-
posed in the literature. Figure 1 illustrates three approaches, the forward model, the active
inference model, and our previously proposed GLean model [7].

(a) (b)

(c)

Figure 1. Models for generating goal-directed behaviors. (a) Forward model using latent variables,
(b) active inference model using probabilistic latent variables, and (c) goal-directed latent variable
inference (GLean). Here, errors between the sensory predictions and the observations are denoted
by et.

These approaches are based on the forward model predict sensory outcomes of each
action [1,2,18]. Generally, an action plan (policy) consists of multiple future steps of propri-
oception, i.e., joint angles, and predicted observed states, such as the position of a robot
in coordinate space. In a goal-directed problem, such as robot navigation, the agent has a
goal image (sensory state) and will attempt to match its observations of the environment to
that goal image by generating actions. The forward dynamics model and the kinematic
model cascaded in time are depicted in Figure 1a. In this graphical representation, at, dt,
and x̄t denote the action, deterministic latent variable, and sensory prediction at time step
t, respectively. x̂T represents the sensory goal image at the distal step T. After the network
is trained, by minimizing the error between the predicted sensory state and goal image
at T, an optimal sequence of actions can be inferred using the forward model, given a
constraint such as minimal motor torque, as well as motor torque input at each time step.
This allows the forward model to efficiently generate long-horizon plans, as opposed to
traditional control approaches such as model predictive control (MPC) that become compu-
tationally intractable beyond short time horizons [19]. Murata et al. [20] demonstrated a
scheme using long short-term memory (LSTM) networks and convolutional variational
autoencoders to map goal images to visuomotor predictions to allow a robot to operate
in collaboration with a human by observing the human changing the environment. We
used a similar approach [21] and, in the current study, we expand the scenario such that
the human experimenter can both interfere with the robot’s task as well as physically guide
it in order to reach the goal.
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Goal-directed planning to reach preferred sensory states can be formulated using
the framework of active inference [22–24], based on the free-energy principle [3]. By
implementing active inference using a deep or recurrent neural network, so-called deep
active inference agents can exhibit goal-directed behavior by defining a preferred sensory
state or latent state [25,26]. Active inference has previously been applied to robot motor
control [27], action planning [28,29], and goal inference [30]. Figure 1b depicts an active
inference-based approach incorporating a Bayesian perspective. In this representation,
the probabilistic latent variables z0:T (with the notation 0:T representing a sequence from
time step 0 to T) and an action policy a0:T can be inferred by minimizing the expected free
energy. In order to find the optimal policy, a Markov chain Monte-Carlo (MCMC) sampling
technique in the action space can be applied or, if searching in latent space with discrete
actions, a more efficient Monte-Carlo Tree Search (MCTS) can be applied [29].

Gai f =
T

∑
t>tc

−Eq(zt ,xt |π)

 log p(zt|xt)− log q(zt|π)︸ ︷︷ ︸
epistemic value

+ log p(xt)︸ ︷︷ ︸
extrinsic value

 (1)

As shown in Equation (1), minimizing the expected free energy G maximizes the
so-called epistemic and extrinsic values. The epistemic value represents the expected
information gain with predicted outcomes or, in other words, the expected decrease in
uncertainty with regard to the hidden state inferred from the sensory observation. The
extrinsic value represents to what extent expected sensory outcomes in the generated plan
are consistent with preferred outcomes. Here, π is an action policy, p(zt|xt) is the posterior
distribution, q(zt|π) is the approximate posterior predictive distribution, p(xt) is sensory
evidence, and tc is the current time step. The resulting optimal policy can then be used in
order to generate actions that move the agent [5,6,28]. For example, Dreamer [31] is a model-
based reinforcement learning agent that can learn a world model and can generate action
plans by “imagination” in the latent space, which is similar in concept to our planning
approach. The development of our approach and its key features are as follows.

Matsumoto and Tani [21] proposed a variation of the active inference approach to
goal-directed action plan generation, goal-directed latent variable inference (GLean), which
was implemented using the PV-RNN network architecture employing the free-energy
principle. Under this model, an optimal goal-directed plan is obtained by inferring the
lower-dimensional probabilistic latent space, rather than higher dimensional action space.
This approach has been implemented previously using a deterministic multi-layered RNN
for hierarchical action planning [32], and is also analogous to sub-goal embedding in latent
space using model-based reinforcement learning [33]. The graphical model of the scheme
is depicted in Figure 1c, wherein the proprioception x̄p

t and the exteroception x̄e
t at each

time step t are predicted by the learned generative model using the probabilistic latent
variable zt and deterministic latent variable dt. For a given preferred goal x̂T represented
by an exteroceptive state at the distal step T, a proprioceptive–exteroceptive sequence to
reach this goal state is found by inferring an optimal sequence of the posterior predictive
distribution of the latent variables q(z1:T |x̂T) by means of minimizing the expected free
energy Gglean as shown in Equation (2).

Gglean = −Eq(zT |x̂T)

[
log p(xT |dT)

]︸ ︷︷ ︸
goal error

+
T

∑
t=tc

DKL
[
q(zt|x̂T)‖p(zt|dt−1)

]
︸ ︷︷ ︸

complexity

(2)

The GLean model was further developed in our previous study [7] into the T-GLean
model, which learned a separate preferred goal state in continuous space for which a
preferred goal can be given as a target, rather than by minimizing the error between an
observation and a preferred sensory state, as in previous active inference-based approaches.
This was demonstrated in our previous study, where our model not only generated a
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sequence of actions for a given goal, but also predicted what the goal should be based
on the actions it observes. In a normal situation, the error between prediction and reality
is small and the actions are sufficient to reach the goal, but as we explore in this study,
in some cases this error rises, and this can have a significant impact on future predicted
actions and goals.

Another aspect of active inference that has gained attention recently is demonstrating
agents’ understanding and explaining their actions [34]. In our study, and others, such
as [20], the agent is expected to implicitly understand what the human user wishes to
accomplish from a combination of the provided goal and sensory inputs, and then to
express this understanding as a series of actions, as well as by inferring the goal state.
In a future study, we are considering a more explicit way for the agent to express its
understanding of its environment, such as by using a language model.

Incremental learning, also known as continual learning, is part of a broad family
of learning techniques including transfer learning and lifelong learning. Fundamentally,
the goal of incremental learning is to efficiently gain new knowledge without losing old
knowledge, the so-called catastrophic forgetting problem [12,13]. Incremental learning
can be considered in three types of problem domains [35]: (1) task incremental, in which
a task identifier is provided in both training and test time, (2) domain incremental, in
which a task identifier is provided during training, but is not inferred at test time, and
(3) class incremental, in which a task identifier must be inferred at test time. In this study,
we focus on task-incremental learning, with the task being typical actions required for
the robot to complete its objective of carrying an object to a goal position. In the field of
machine learning, incremental learning has been extensively explored, both with traditional
ML methods such as support vector machines [36] and with neural networks. Tani [16]
applied incremental learning to robot navigation, using a “hippocampal database” in
order to store generated output from the neural network to combine with new learning
examples. This kind of mental simulation or rehearsal is considered vital in acquiring and
retaining motor skills in humans [15] and effective for avoiding the catastrophic forgetting
of knowledge during sequential learning [14]. In this study, we apply a mental rehearsal
scheme combined with a small number of human tutoring examples to achieve incremental
learning of new tasks.

Generally, incremental learning can be categorized into one of three approaches [37]:
(1) replay, in which samples of previous training sequences are retained and reused,
(2) regularization, which limits the flexibility of the neural network in learning new tasks,
and (3) parameter isolation, which segments the neural network and prevents previously
learned network weights from changing. A replay-based approach is the simplest, in which
samples of training data used to train a network are retained for subsequent incremental
learning, allowing the network to relearn past tasks. While simple, replay-based methods
have a major disadvantage in that storing old training data is not always possible in the
real-world, and can significantly increase the memory demands of training [38].

Regularization-based methods attempt to limit changes to the learned weights when
learning new tasks, in order to preserve knowledge of previously learned tasks. Fine-tuning,
where a trained neural network is re-trained on new data, but with a reduced learning rate
to reduce the rate of change in the weights, could be considered the simplest realization of
this approach. Other methods add a regularization term to the loss function that increases
the cost of changing previously learned weights [39,40]. Perhaps the most well-known
method within this family of methods is Learning without Forgetting (LwF) [41], which
uses knowledge distillation loss [42] between the previous and incrementally trained model.
An issue with this approach is that a balance must be empirically determined between
retaining previous task knowledge and acquiring new knowledge. Finally, parameter isola-
tion approaches typically learn an additional weight mask or sub-network per task [43–45].
While such approaches can be effective, they generally limit the number of tasks that can be
learned, dividing network resources in a predefined manner or requiring additional param-
eters per new task. Under this categorization, our proposed approach is closest to LwF and
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similar regularization methods, leveraging the architecture of PV-RNN for regularization
and using mental simulation to avoid the disadvantages of replay-based approaches.

3. Methodology

In this section, we first review our T-GLean model for goal-directed plan generation
and the PV-RNN architecture it is built upon, focusing on the most pertinent parts of the
model. Following this, we describe our approach to incremental learning, with particular
attention to how catastrophic forgetting and learning efficiency are managed. Details
of how we conducted incremental learning in this study are presented in the following
Section 4.

3.1. Model Overview

As noted previously, this study builds upon our proposed T-GLean model [7], which
was an extension of our previous GLean model [21] with a teleology-inspired goal repre-
sentation. While this study focuses on the incremental learning framework, the differences
in the model architecture employed in this study compared to the model described in [7]
are summarized as follows:

1. Output layer connections: in our previous study a single output layer concate-
nated all output dimensions, but in this study we employ separate output layers
for more flexibility;

2. Output layer type: our previous studies employed a variation of softmax output, but in
this study we employ a Gaussian output model for proprioception, exteroception
and goals, with associated changes in the free energy computation as described in
Equation (12);

3. Hyperparameter settings: in addition to adjusting hyperparameters for the task
undertaken, we can now adjust the meta-prior value independently for past and
future windows, as shown in Experiment 2.

Our model utilizes the PV-RNN architecture, which leverages the idea that multiple
timescale RNNs [46] can enable development of a functional hierarchy from training data.

In this study, the objective of the robot is to move the red colored object in the
workspace to the goal position. Our model operates in continuous space, generating
four outputs at each time step: proprioception, exteroception, goal position, and distal step
probability. In our current model, these are separate output layers, and it cannot be as-
sumed that the outputs are correlated. A graphical representation of this model is shown in
Figure 2, with a two layer PV-RNN unrolled in time. The preferred goal position ĝ is given
as a scalar value representing the coordinate of the goal position. Actions that the robot
should execute in order to move the object to the goal depend not only on the positions of
the object and goal, but also on the state of the robot itself. In addition, as can happen in the
real world, in our experiments, the task can change while the robot is executing its plan.

By giving a preferred goal at each time step, the posterior predictive distribution q
can be updated in order to minimize the divergence between the preferred goal and the
predicted goal at each time step. This update of the posterior predictive distribution at each
time step is accomplished using backpropagation through time (BPTT) [47]. By sampling
the posterior predictive distribution through the deterministic latent variable, the pre-
dicted proprioceptive and exteroceptive trajectory leading to the goal is generated. This
proprioceptive–exteroceptive trajectory is the goal-directed plan which is executed one step
at a time by the robot.
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Figure 2. Graphical description of the network architecture used in this study. The highlighted
regions, labelled L1 and L2, represent the two layers of the network.

This scheme is different from a conventional active inference-based goal-directed
planning scheme, such as in [6], in which the expected free energy is computed for every
possible policy by means of policy rollout. The optimal policy, which has the lowest ex-
pected free energy, can then be selected to generate actions to reach the goal. In contrast,
in our proposed model, optimization to minimize the expected free energy is conducted
in the space of the posterior predictive distribution. Once the optimal approximate poste-
rior distribution at each time step is determined, the corresponding proprioception and
exteroception at each step are determined by mapping through the deterministic latent
variable. Under the AIF framework, the robot controller takes the predicted proprioception
as an action policy, converting it into optimal motor control sequences and commanding
the robot to move appropriately.

Each layer, indexed by l, contains the probabilistic latent variable z and deterministic
latent variable d. At each time step t, zp

l,t is sampled from the prior distribution, and zq
l,t from

the approximate posterior distribution for the past and the posterior predictive distribution
for the future, as well as the deterministic latent variable dl,t. The output of the bottom
layer is connected to four output layers: proprioception x̄p

t , exteroception x̄e
t , expected goal

ḡt, and distal step probability s̄t.
The preferred goal ĝt is given at all time steps as a target, and can change if the goal

changes. The observed proprioception xp
t and exteroception xe

t are computed from robot
sensor data and used as targets for error minimization. Another key development from
our previous implementation of this model is in computation of the output. The predicted
output of proprioception, exteroception, and goal are computed as a Gaussian distribution.
In practice, the robot controller only uses the mean value; however, by modeling typical
fluctuations experienced by physical motors and sensors in the output layer, only large
errors caused by deliberate deviations should backpropagate to the PV-RNN layers. We
note that due to this change, network parameters and free energy values shown in this
current study cannot be compared to those in our previous studies. We discuss the Gaussian
output scheme further in the following subsection.

Finally, the distal step probability st is a softmax encoding with two dimensions
representing the probability of the robot having reached the goal. During training, these
are known and given as [0.0, 1.0] before reaching the goal and [1.0, 0.0] after reaching it.
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For details on the softmax computation, please refer to [7]. Note that in order to avoid
overcrowding the figures, st is omitted from graphical representations of the network.

3.2. Learning

The forward computation of PV-RNN is given in Equation (3), which is based on
the formula of the continuous-time recurrent neural network (CTRNN) [48,49]. Multiple-
timescale RNN (MTRNN) [46] uses multiple layers of CTRNN with different time constants
assigned to each layer, building a hierarchical structure. Generally, we assume that higher
layers of the network have longer time constants.

hl,t =

(
1− 1

τl

)
hl,t−1 +

1
τl

(
Wl,l

d,ddl,t−1 + Wl,l
z,dzl,t + Wl+1,l

d,d dl+1,t

)
,

dl,t = tanh(hl,t),

dl,0 = 0.

(3)

τl is the time constant of layer l. The internal state of each RNN unit hl,t at time step
t and level l is computed as a sum of the connectivity weight multiplication of zl,t, hl,t−1,
and hl+1,t (if l is not the top layer). The connectivity weight matrix W is indexed from layer
to layer and from unit to unit. For brevity, bias terms have been omitted.

PV-RNN further builds on MTRNN with probabilistic latent variables z, which follow
Gaussian distributions. Each sample of the prior distribution zp

t for layer l is computed as
shown in Equation (4). For brevity, a single sequence is assumed.

µ
p
l,t =

{
0, if t = 1
tanh(Wl,l

d,zµp dl,t−1), otherwise

σ
p
l,t =

{
1, if t = 1
exp(Wl,l

d,zσp dl,t−1), otherwise

zp
l,t = µ

p
l,t + σ

p
l,t � ε.

(4)

ε is a random noise sample such that ε ∼ N (0, I). � represents the element-wise
product operation.

Similarly, each sample of the approximate posterior distribution zq
t is computed as

shown in Equation (5), where A is a learned variable that is used to compute the mean and
standard deviation of zq

t at each step in a sequence.

µ
q
l,t = tanh(Aµ

l,t),

σ
q
l,t = exp(Aσ

l,t),

zq
l,t = µ

q
l,t + σ

q
l,t � ε.

(5)

To compute the output at each time step t, we assume that proprioception, exterocep-
tion, and goal follow a Gaussian distribution, in which the mean µo

t and standard deviation
σo

t are mapped from the bottom layer of the network, as in Equation (6).

µo
t = tanh(uo

t ),

σo
t = exp(so

t ),

uo
t = Wo

µd1,t,

so
t = Wo

σd1,t.

(6)

Since this network minimizes free energy as its loss function, we will review the free
energy formulation of our model. This is a modification of our previous formulation [7],
with the previously mentioned Gaussian output layer. In the following explanation, for sim-
plicity, we assume there is a single layer PV-RNN only.
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During learning, the evidence free energy shown in Equation (7) is minimized by
iteratively updating the approximate posterior of z, as well as the learned parameters W at
each time step for all training sequences. The delta error between the generated output and
the training output target, along with the Kullback–Leibler (KL) divergence between the
approximate posterior and prior, is backpropagated from the end of the training sequence
to the first time step. The parameters of the network are updated in the direction of
minimizing this delta error using the Adam optimizer [50].

F(x, ĝ, ŝ, z) =
T

∑
t=1

(
w · DKL

[
q(zt|xt:T , ĝt:T , ŝt:T)‖p(zt|dt−1)

]︸ ︷︷ ︸
complexity

− Eq(zt |xt:T ,ĝt:T ,ŝt:T)

[
log p(xt, ĝt, ŝt|dt)︸ ︷︷ ︸

accuracy

])
.

(7)

x, ĝ, and ŝ are the observed sensory states, preferred goal, and distal step probability,
respectively. Free energy is modified by inclusion of the meta-prior w, which weights the
complexity term. w is a hyperparameter that affects the degree of regularization, similar to
β in variational autoencoders [51]. Since we are dealing with sequences of actions, the free
energy is a summation over all time steps in the sequence.

The first term, complexity, is computed as the KL divergence between the approximate
posterior and prior distributions. This can be expressed as follows:

DKL
[
q(zt|xt:T , ĝt:T , ŝt:T)‖p(zt|dt−1)

]
=
∫ ∞

−∞
q(zt|xt:T , ĝt:T , ŝt:T) log

q(zt|xt:T , ĝt:T , ŝt:T)

p(zt|dt−1)
dzt (8)

Given µ and σ for both prior p and posterior q distributions from Equations (4) and (5),
respectively, p(zt|dt−1) and q(zt|xt:T , ĝt:T , ŝt:T) can be expressed as follows:

p(zt|dt−1) =
1√

2π(σ
p
t )

2
exp

[
− 1

2

(
zt − µ

p
t

σ
p
t

)2]
,

q(zt|xt:T , ĝt:T , ŝt:T) =
1√

2π(σ
q
t )

2
exp

[
− 1

2

(
zt − µ

q
t

σ
q
t

)2]
.

(9)

Thus, continuing from Equation (8), complexity can be analytically computed as:

DKL

[
log

σ
p
t

σ
q
t
+

(µ
q
t − µ

p
t )

2 + (σ
q
t )

2

2(σp
t )

2
− 1

2

]
. (10)

For brevity, a single z-unit consisting of a (µ, σ) pair is assumed.
To compute the second term, accuracy, we first consider the log-likelihood for the

network output as follows:

log p(xt|dt) = log
1√

2πσo
t

exp

{
− 1

2

(
xt − µo

t
σo

t

)2}
∝ −1

2

(
xt − µo

t
σo

t

)2

− log σo
t . (11)

(µo, σo) represents the mean and standard deviation of the output Gaussian, and x̄
is a sample such that x̄t ∼ N (x̄t|dt; µo

t , σo
t ). Again, for brevity, only a single output x̄ is

considered here.
The accuracy term in the lower bound can be expressed as follows:

Eq(zt |xt:T)
[log P(x̄t|dt)] ∝ Eq(zt |xt:T)

[
− 1

2

(
x̄t − µo

t
σo

t

)2

− log σo
t

]
. (12)
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Finally, maximizing the term in Equation (12) corresponds to minimizing the following,
where the log-likelihood inside the expectation is analytically computed as follows:

1
2

(
x̄t − µo

t
σo

t

)2

+ log σo
t . (13)

In Section 4, for simpler visualization, we opt to remap the output of Equation (13)
from [−∞, ∞] to [0, ∞] using the softplus function f (x) = log(1 + exp(x)).

3.3. Plan Generation

An important feature of the T-GLean model and a key difference between it and
conventional AIF-based schemes is that the expected goal state ḡt is generated at every time
step, and is independent of the sensory state at the distal step. Intuitively, this means that
at every time step, the agent predicts the goal state that the on-going action sequence will
eventually achieve. This not only allows the network to infer a goal state, but is also flexible
in allowing the goal state to change continuously and does not require a fixed distal step.

In T-GLean, generation and backpropagation are performed in a planning window of
length win. In the planning window, there is a past window of length winp and a future
window of length win f . In the past window, evidence free energy is minimized by updating
the approximate posterior at each time step such that the latent variables result in an
output close to the observed sensory sequence. In the future window, the error between
the preferred goal and the expected goal output is minimized for all steps in the future
window by optimizing the approximate posterior predictive distribution iteratively, which
is accomplished by minimizing the expected free energy. This scheme is referred to as online
error regression [52], and is analogous to methods described in [6,53]. This occurs in
an online manner, with the robot controller executing each step of the current predicted
proprioception at regular time steps. To avoid confusion between time steps in context of
the network and the robot, we refer to time steps experienced by the robot as sensorimotor
time steps.

In this current implementation, the length of the planning window is fixed, while the
past window starts at length 1 and is allowed to grow to half the length of the planning
window. The current time step tc is one step ahead of the end of the past window. At the
next sensorimotor time step, sensory information at tc becomes part of the past window,
and tc moves forward one step, shrinking the future window. Once the past window is
filled, the entire planning window slides one step to the right, discarding the oldest entry
in the past window. This scheme is shown graphically in Figure 3.

Figure 3. The network during planning with a planning window spanning from tc−winp to tc +win f .
Red lines indicate error backpropagation.
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During plan generation, the network minimizes the plan free energy Fplan by optimiz-
ing the approximate posterior distribution in the past window and posterior predictive
distribution in the future window. The goal error is backpropagated from the end of the
planning window at tc + win f , while the sensory error is backpropagated from tc − 1 until
the beginning of the planning window at tc − winp. This delta error is propagated to zq,
which is then updated in the direction of minimizing the delta error and the KL divergence
between approximate posterior and prior. Forward computation and error regression are
repeated for a fixed number of iterations, such that an updated plan can be generated in a
timely manner. In this study, we target a 10-Hz update rate; thus, forward and backward
computation should be completed within approximately 100 ms.

The plan free energy Fplan, as shown in Equation (14), consists of the sum of the
evidence free energy Fe in the past window and the expected free energy G in the fu-
ture window.

Fe(x, ĝ, z) =
t=tc

∑
t=tc−winp

(
wp · DKL

[
q(zt|xt:tc , ĝt:tc)‖p(zt|dt−1)

]
− Eq(zt |xt:tc ,ĝt:tc )

[
log p(xt, ĝt|dt)

])
,

G(ĝ, z) =
t=tc+win f

∑
t=tc

(
w f · DKL

[
q(zt|ĝt:tc+win f )‖p(zt|dt−1)

]
− Eq(zt |ĝt:tc+win f )

[
log p(ĝt|dt)

])
,

Fplan = Fe + G.

(14)

The meta-prior w is a hyperparameter that adjusts the degree of regulation for the
complexity term, i.e., the divergence between the approximate posterior and prior. The
expected free energy G shown in Equation (1) and our formulation of expected free energy
in Equation (14) differ significantly. This is because the conventional AIF-based approach
in Equation (1) is calculated for a given policy, whereas there is no policy search in our
approach since the proprioceptive sequence is determined from the optimized posterior
predictive distribution, as described previously.

3.4. Incremental Learning

In order to implement incremental learning with our model, we consider two key
factors mentioned previously, that is, how to learn new tasks efficiently, and how to avoid
the problem of catastrophic forgetting. Before closing this current section, we describe our
approach to incremental learning.

The approach we take in this current study follows from earlier work by Tani and
Yamamoto [54], as well as some aspects from the Learning without Forgetting method [41].
After completing the initial training, as described in the previous section, the robot is
tested with various untrained conditions. While it is expected that the robot can complete
the trained task, what happens when the robot is presented with a sudden change in its
situation? As can be deduced from Equation (14), in such a situation, the free energy of the
system increases suddenly. The manner of the increase in free energy depends on how the
robot’s situation has changed. If the sensorimotor observations no longer align with the
expected exteroception image (such as when the object moves in a way that is unexpected)
as inferred from past evidence and trained prior probability, then the evidence free energy
Fe rises. If the preferred goal to be reached is suddenly changed, while the robot is still
executing actions that will result in reaching the previous goal, then the expected free
energy G rises. In either case, as the robot is moving, the network has limited opportunity
to optimize the approximate posterior distribution to minimize the free energy. By design
of PV-RNN, the meta-prior w determines how far the approximate posterior can deviate
from the trained prior, and it is possible that a solution that reduces free energy overall by
either allowing the KL-divergence between the approximate posterior and trained prior to
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rise, or by ignoring the deviation between observations and the expected proprioceptive–
exteroceptive or goal states. In our following experiments, we first isolate the effects of this
behavior before determining the impact of incremental learning.

In this study, the robot is operating in real-time with a human experimenter, whose role
is not only to set up tasks for the robot, but also to intervene in case the robot deviates from
what the experimenter judges to be expected behavior. For example, if the object the robot
is moving to grasp is moved, but the robot does not respond adequately, the robot may fail
to grasp the object correctly. In this case, the human experimenter physically guides the
robot’s arms toward the new object position, ensuring that it is grasped, and then allows
the robot to continue to move to the goal. The robot can then save this new proprioceptive–
exteroceptive sequence for incremental learning, which we refer to as a tutoring example.
This is analogous to a caregiver guiding a child’s hands, with multi-modal information
facilitating kinaesthetic learning of proprioceptive–exteroceptive states.

The author of the current study was the sole human experimenter, as required for
development and testing in the following experiments. For efficiency, and since human
supervision may be limited in real-world conditions, in this study, only a small number of
such tutoring examples are created for each new task in which the robot shows reduced
task performance. This approach is analogous to few-shot learning, which has also been
applied in teaching robots by imitation [55]. These new tutoring examples are combined
with rehearsal data to build a dataset for incremental learning. Whereas in experimental
conditions, rehearsal data could be sampled from previous training data, this may be
unrealistic in the real world. Instead, we generate rehearsal data using the prior distribution
mapped through the deterministic latent variable as in Equation (4). This is also shown
graphically in Figure 4.

Figure 4. Generation using the prior distribution. Note that no backpropagation occurs in this case.

Additionally, in this study, it is assumed that learning phases are distinct, that is,
split between initial learning, testing, and incremental learning. During initial learning,
the network learns a task (which we refer to as the basic task) from the full training dataset.
Thereafter, in the test phase, the network is exposed to the basic task, as well as a new
task, A. Human tutoring should result in recording of new tutoring examples when task
A is introduced. During the incremental learning phase, the network combines tutoring
examples with generated rehearsal data and begins the optimization process as in initial
training. At the start of this phase, the previously learned approximate posterior distri-
bution is reset, while the remaining learned parameters are left intact. Once incremental
learning is complete, testing can be conducted again, repeating the incremental learning of
another new task. The balance of new tutoring sequences and mental rehearsal sequences
are important factors regulating how a few tutoring sequences can be used to acquire new
tasks while mitigating catastrophic forgetting. To control the so-called concept drift [56], it
is assumed that the task space expands gradually. That is, each new task is related to the
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previous task, such that the old network can still attempt to complete the new task. Un-
der this scheme, more variation from the basic task can be learned over several incremental
learning sessions, such as action sequences that are significantly longer than previously
learned sequences.

4. Experiments

In order to demonstrate our proposed model, we conducted three experiments explor-
ing different aspects of the model and incremental learning scheme. All three experiments
were conducted using a humanoid robot, Torobo, a research humanoid robot manufactured
by Tokyo Robotics Inc. with 16 degrees of freedom, torque-sensing back-drivable motors,
and a stereo camera. The robot is connected to a controller that manages the torque and
current levels of each motor. The controller receives joint angles at approximately 100 ms
intervals from the predicted proprioception output of our model, which is implemented
using LibPvrnn, a custom C++ library that implements PV-RNN. The source code for a
development version of LibPvrnn that was used in this study is provided, together with
the training data.

The robot was set up facing a platform with a workspace of approximately 36 cm × 36 cm,
with the goal area defined as the top 12 cm of the workspace (see Figure 5). In each experi-
ment, the objective of the robot is to pick up a red object approximately 11 cm in diameter
from an arbitrary position in the workspace, and to place it at a specified goal position
ĝ. The robot starts at a home position, before moving to grasp the object with both end
effectors, lift it up, move it to the goal position, then set it down on the surface.

In this study, in order to simplify processing, full pixel data from the cameras are not
used. Rather, an object tracking program takes images from the head-mounted camera
and calculates two neck joint angles such that head of the robot always follows the object.
From the position of the head, the object’s current position ((x, y) coordinates) in the
workspace can then be calculated, and this coordinate is used as exteroception. The goal
coordinate ĝ is also given as a scalar value [0, 1] corresponding to the position of the goal
along the width of the goal area.

We note that due to application of object tracking in order to reduce computational
workload, except at certain points such as when the robot grasps the object on the workspace
surface, our experimental setup can be described as a fully observable Markov Decision
Process (MDP). However, as our model employs an RNN architecture that can learn hidden
environment states from past observations, we believe our scheme can be applied to more
complex partially observable MDP (POMDP) problems as well.

Figure 5. The experimental setup used in this study.

In Experiment 1, we first conducted initial training of the basic task, which consists of
picking up the object and placing it at the goal position. This training was performed on
several networks with several different meta-prior settings. In order to quantify the robot’s
performance on the task, we measured the goal displacement, that is, the distance between
the preferred goal set by the experimenter and the final position of the object after the robot
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moves it. This measurement was performed programmatically using a camera mounted
above the workspace that independently tracks the object, and compares it to ĝ mapped to
the workspace.

In Experiment 2, we introduced two new conditions that suddenly change the task
while the robot was already executing a plan. In the first case, the object was moved by
the experimenter just before the robot grasped it (referred to as task A), and in the second
case, the goal was changed after the object was placed at the original goal (referred to as
task B). In this experiment, we altered the meta-prior at test time, in order to evaluate how
much task performance is affected by adjusting the regulation strength of the adaptation
parameters alone.

Finally, in Experiment 3, we conducted incremental learning of task A followed by task
B using tutoring examples, followed by testing of both new task acquisition and catastrophic
forgetting of previous tasks. We also quantified the amount of human intervention that
was required for the robot to complete the new task before and after incremental learning
by measuring the additional force exerted on the robot’s joints by the experimenter.

In these experiments, we trained multiple networks using parameters shown in Table 1.
Parameters that are changed in each experiment are noted in the respective subsections.

Table 1. PV-RNN parameters for used for all experiments. Rd and Rz refer to the number of
deterministic (d) units and probabilistic (z) units, respectively. wt=1 refers to the meta-prior setting at
the first time step, which is set independently of the regular meta-prior w.

Layer l Rd Rz τ wt=1

1 50 5 2 1.0
2 20 2 8 1.0

Before commencing each trial, the experimenter places the test object at a predefined
position on the workspace, and sets the preferred goal position ĝ. Then, the error regression
process is started. The tested object–goal position combinations should not be in the
training or tutoring samples. The robot moves while the plan continually updates, until the
distal step probability at the current time step st exceeds a threshold, or a time limit is
reached, at which point the robot stops moving and the trial ends. The experimenter can
also override the distal step and either continue the trial (such as when tutoring the robot)
or terminate the trial (such as when the robot comes into contact with the platform). This is
repeated multiple times, with different untrained positions and goals, until the experiment
is concluded.

4.1. Experiment 1: Initial Learning

In this experiment, we first established baseline performance from which we can
compare the performance of later experiments. A well-trained network can generalize
unlearned parameters, such as unlearned object positions, from a limited number of training
samples, while also showing stable motion through habituated regions of each trajectory.
For the basic task, we prepared 120 training samples in which the robot picked up the
object and placed it at the specified goal position. These training samples were generated
programmatically and then executed on the robot to record joint angle trajectories.

From our preliminary study, we determined that the meta-prior setting, particularly
of the bottom layer, is important in generating network output. We theorize that since the
bottom layer is situated between the output and the top layer, not only does its learned
distribution directly impact the output, it also regulates how much error flows up to the
top layer during backpropagation.

Thus, in order to evaluate the impact of the meta-prior setting, we prepared three
configurations, with the top layer meta-prior fixed at wl=2 = 1.0 and the bottom layer
meta-prior set as wl=1 = 0.1, 1.0, and 10.0, respectively. We represent this as a ratio between
top and bottom meta-priors; for example, 1:10 represents a network with wl=2 = 1.0 and
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wl=1 = 10.0. From Equation (7), it can be hypothesized that smaller values of w may lead
to improved generalization at the cost of increased noise, whereas larger values of w may
generate more stable, habituated patterns at the cost of reduced generalization. In this
experiment, w values used in training are also carried over to plan generation, with past wp
and future w f meta-prior values also set to the same w value. It follows that the meta-prior
may have a similar effect as in training, with larger w values leading to an increased chance
of following the trained prior over adapting the approximate posterior to sensorimotor
observations, and vice versa for smaller w values.

In order to efficiently collect statistics with a stochastic network architecture in a fair
manner, we employed the following procedure:

1. Train 10 randomly initialized networks for each parameter set;
2. Sort the resulting networks by the loss at the end of training;
3. Discard the top three and bottom three networks, leaving four networks to test.

This procedure allowed us to train many networks with different random seeds, while
rejecting any significantly overfitted or underfitted networks. It was important to undertake
this filtering, as poorly trained networks can cause the robot to move in unpredictable
and unsafe ways. At the same time, we avoid cherry-picking trained networks by test
performance, as only the loss after training was considered. Each network was trained
for 100,000 epochs, with the Adam optimizer parameters α = 0.001, β1 = 0.9, β2 = 0.999.
After the aforementioned procedure, we tested 12 trained networks with five test cases
each, for a total of 60 trials. During online plan generation, the number of error regression
iterations per robot sensorimotor step was set to 100 and α = 0.1. The planning window
length was 360 time steps, with the past window length starting at 1 and increasing until
180 time steps.

As mentioned previously, in order to evaluate the task performance of each network,
we measured the distance between the center of the object and ĝ as goal displacement,
with lower displacement corresponding to better task performance. Figure 6 shows a
sequence of frames from a video recorded from the overhead camera, overlaid with object
position history, predicted exteroception x̄e, and goal position ĝ. A video with examples
recorded from this series of experiments is available at https://youtu.be/lk-u6kuOfL8
(accessed on 3 September 2023).

Figure 6. A sequence of three images showing an example of the robot completing the task. Each
frame is overlaid with the past object positions in blue and the network predicted exteroception in
cyan. The initial position and goal position are also labeled.

Each network was tested with five untrained test cases, with results collated and
averaged in Figure 7. The networks with w ratio 1:0.1 (i.e., bottom layer wl=1 = 0.1)
performed significantly more poorly than the other two configurations. This was due
to an inability of the 1:0.1 network to generate a stable future trajectory, indicating an
inadequately trained prior distribution.

https://youtu.be/lk-u6kuOfL8


Entropy 2023, 25, 1506 16 of 34

Figure 7. Goal displacement for the three tested meta-prior ratios. Each result is an average over
20 trials, with the standard deviation indicated by the error bars.

An example of this is shown in Figure 8a,b, which plot trajectories of one of the robot’s
head joints while controlled by the 1:0.1 and 1:1 networks, respectively, for the same object
and goal positions. As the robot’s head is constantly tracking the object independently of
the network, while still being influenced by the rest of the robot’s movements, it is a good
representation of the consistency and stability of the plan generation.

Networks with a w ratio of 1:1 output a tight bundle of trajectories, indicating learning
of habituated motions, while the end point of each trajectory is also approximately the
same with some variation in the length of trajectories. On the other hand, networks with a
w ratio of 1:0.1 showed noticeably more variation in the output joint trajectory, as well as
the end point and length of the trajectory, despite undertaking the same task with the same
positions as the 1:1 networks.

Comparing networks with w ratios of 1:1 and 1:10, while the task performance is simi-
lar, the 1:1 networks tend to slightly outperform the 1:10 networks. We observed that this
occurred largely because the 1:10 networks occasionally ignored sensorimotor observations
and preferred goals. An example of this is shown in Figure 8c, which demonstrates that
under the same conditions as the 1:1 networks, while 1:10 networks generated trajectories
that were consistently shorter and stable, there were notable deviations from the tight
bundle of trajectories shown by the 1:1 networks. In these cases, the robot either pushed
the object to a preconceived grasping point, or moved the object to a completely different
goal position from the preferred goal.

Finally, even in the best case, some goal displacement is measured. Apart from normal
fluctuations in the stochastic network, the majority of this displacement comes from the
scale of ĝ not corresponding exactly to the goal area in the camera image. As can be seen in
the image sequence in Figure 6, even though the network controlled the robot to place the
object in line with its predicted exteroception, that position did not line up with ĝ. This
offset was consistent, and did not influence subsequent results.

From the aforementioned results, it was surmised that the 1:1 networks, i.e., w = 1
for both layers, presented the best task performance in the basic task. These networks
were carried forward to the subsequent experiments. We also examined how the latent
states represent variation in task trajectories with regard to different initial object and goal
positions in Appendix A.
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(a)

(b)

(c)

Figure 8. Recorded trajectories of the robot head joint angle as it tracks the object while executing the
goal-directed plan. Each line represents one network. (b) Networks with w ratio 1:1, (a) networks
with w ratio 1:0.1, and (c) networks with w ratio 1:10.

4.2. Experiment 2: Task Interference

In the previous experiment, we tested the robot with the same task as in training,
with different object and goal positions to establish sufficient generalization and stability.
However, in this experiment, we introduced a change in the robot’s task by means of human
interference. The experimenter either moved the object just before the robot grasped it
(task A) or the preferred goal ĝ was changed after the robot placed the object at the
previously specified goal position (task B). Subsequently, we refer to these tasks collectively
as interference tasks, and these tasks were not present in the initial learning dataset. In this
context, the task was independent of the objective of the robot, which always remained
the same: to move the object to the goal position. In this study, the task undertaken by the
robot comprised typical actions that the robot had to take in order to accomplish the goal.
The task of picking up the object and placing it at the goal position, even if the positions
change, are fundamentally the same set of actions, i.e., the same task. By requiring the
robot to take a different series of actions, we changed the task.

In this experiment, initial conditions (object and goal positions) of each trial were
identical to the previous experiment, and the four trained networks with w ratio 1:1 were
used. In order to evaluate the degree of adaptation that is possible by PV-RNN without
incremental learning, we modified the w values during plan generation. Table 2 shows
the w values used in this experiment. In this table and subsequently, wp refers to the
w value used in the past window, w f refers to the w value used in the future window,
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and wt refers to the w value used during training, i.e., wt = 1.0. The effect of this was
expected to be similar to that of w in the the previous experiment, with wp affecting
adaptation to sensorimotor observations, while w f should affect how strongly the preferred
goal influences generation, compared to the learned prior. Each of the trained networks
was tested in each w configuration on the five test cases, with the two aforementioned
interference tasks, for a total of 100 trials per task.

Table 2. Meta-prior w combinations tested in Experiment 2. wp is the w value used within the
past window, and w f is the w value used in the future window. The setting string is the label each
combination of wp and w f is given in subsequent results. Both PV-RNN layers use the same w values.

Setting wp w f

Wp = Wf = Wt 1.0 1.0
Wp = 0.2 Wt, Wf = Wt 0.2 1.0
Wp = 5 Wt, Wf = Wt 5.0 1.0
Wp = Wt, Wf = 0.2 Wt 1.0 0.2
Wp = Wt, Wf =5 Wt 1.0 5.0

4.2.1. Experiment 2A: Object Moved before Grasp

In this experiment, at a fixed time step t = 15 an audio cue signaled the experimenter
to move the object to a predefined position. The objective of moving the object at this time
step was to have the object position change suddenly, immediately before the object should
have been grasped, thereby necessitating corrective action. This predefined position was
different in each case. The goal position ĝ remained unchanged. It was expected that the
robot would experience a rapid change in exteroception, leading to increased evidence
free energy. As the plan was updated, the free energy should decrease. The difference
between this new task and the basic task with no interference was relatively small. It was
hypothesized that with a lower meta-prior, the network may be able to better adapt its
approximate posterior to match its sensorimotor observations, even it if deviated from its
learned prior.

The result is shown in Figure 9. First, despite the relatively small change introduced
by task A, overall task performance dropped significantly, with a goal displacement of
approximately 300% of the baseline case. Second, changing the meta-prior setting in
either the past or future window did not have a significant impact on task performance.
Although the case in which the future meta-prior was reduced resulted in slightly better
task performance, and cases in which the meta-prior was increased performed worse,
the effect size was too small to be conclusive.

To investigate further, we examined the change in free energy of the networks under-
taking the basic task, task A and task B. The basic case in Figure 10a shows the expected
pattern of initially high free energy until the network situates itself, followed by a rapid
drop to a low level of free energy. However, considering the free energy plot of a network
undertaking task A (Figure 10b), there are two points that contributed to the reduced
task performance.

First, we observed a noticeable delay from moving the object until the plan was
updated. This was reflected as a lag in the increase in evidence free energy. Although the
signal to move the object was given at t = 15, human reaction time and the time to move
the object to the new position added approximately 10 sensorimotor time steps until the
object was in the new position. There was also additional delay from the object tracker
controlling the robot head which moves to follow the object. As the object was moved just
before the robot expected to grasp it, the robot occasionally pushed the object inadvertently
during the delay which, in turn, further altered the exteroception.
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Figure 9. Relative goal displacement for five combinations of meta-priors in Table 2 for the robot
undertaking interference task A. Relative goal displacement is relative to the same test cases with-
out interference.

(a)

(b)

Figure 10. Examples of change in evidence free energy (orange line) and expected free energy (green
line) during online plan generation. In each case, free energy was high until the network situated
itself with the sensorimotor observations. (a) During a basic task (no interference). (b) During task A,
with the period of time the object was moved by the experimenter marked in a black box; note the
delay and slow rise in evidence FE due to the time taken for the exteroception to catch up to the new
object position.

Following this delay in recognition of the new object position, the robot sometimes
inadvertently grasped the object incorrectly, often using the edge of its end effectors instead
of grasping the object firmly in the center. This problem was exacerbated in cases in which
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the robot was already touching the object before the plan could be updated. This caused
the robot to inadvertently drop or misplace the object. An example of these issues can
be seen in the image sequence in Figure 11. Thus, despite the trained networks being
able to adapt to untrained object positions at the onset of planning, task performance is
significantly impacted if the object is suddenly moved just before the robot reaches the
expected object position.

Figure 11. A sequence of three images showing an example of the robot undertaking the interference
task A. Note that the predicted exteroception in cyan does not update immediately once the object is
moved. The result is that the robot inadvertently pushed the object and grasped it incorrectly (with
the edges of the end effector instead of at the center).

4.2.2. Experiment 2B: Goal Moved after Object Placed

In this experiment, at a fixed time step t = 140 the goal position ĝ was changed
programmatically. The objective of changing the goal at this time step was that the object
should already have been placed at the original goal, which would necessitate additional
actions to move the object to the new goal. This task is significantly different than the basic
task, as it requires grasping and placing the object a second time, making the trajectory
significantly longer. As such, each trial was allowed to continue past the predicted distal
step in order to allow time for the network to try to adapt its predictive posterior and
generate a new plan.

The result is shown in Figure 12. Results of this experiment are broadly similar to
those of Experiment 2A, although with a very slight performance gain from reducing w f .

In a few instances, the robot did spontaneously drag the object to the new goal position;
however, this was not reliable. An example of this is shown in Figure 13. After the spike of
expected free energy following the change in ĝ, it began to decline; however, evidence free
energy continued to rise. This suggests that sensorimotor observations were being ignored,
which tends to cause unstable future behavior. Alternatively, expected free energy would
remain high and the robot would not react to the new goal position. In either case, it is
apparent that the network was not able to generate action plans that minimize the error in
both past observations and future goals.

From the preceding two experiments, it can be surmised that despite adequate per-
formance on the basic task without human interference, when the situation changed due
to human interference, the network by itself did not have sufficient adaptive capacity to
adequately perform the new task on the fly. As such, in the following experiments, in which
we introduced our incremental learning scheme, we used a single meta-prior configuration
wp = w f = wt = 1.0.
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Figure 12. Relative goal displacement for five combinations of meta-priors in Table 2 for the robot un-
dertaking interference task B. Goal displacement is relative to the same test cases without interference.

Figure 13. Example of change in evidence free energy (orange line) and expected free energy (green
line) during online plan generation during task B. The time the goal position is changed marked by a
black line. Note the sharp rise in both evidence and expected FE and the lack of drop in evidence FE.

4.3. Experiment 3: Incremental Learning

Finally, after evaluating the baseline performance of the model in the basic and in-
terference tasks, we proceeded to incremental learning. First, it was necessary to collect
tutoring examples of the new tasks. To accomplish this, the procedure from Experiment 2
was used with one of the trained networks as a representative network. Following this,
three examples of task A were executed. For these tutoring examples, the object and goal
positions were different from the test cases. The difference between this experiment and the
previous experiment was that the human experimenter intervened and physically moved
the robot in the following cases:

1. The robot attempted to grasp the object incorrectly;
2. The robot released the object before reaching the goal position;
3. The robot failed to respond to a change in goal position.

In the case of intervention, the human experimenter grasped the robot’s end effectors
and exerted sufficient force to manipulate the robot into completing the task. Once tutoring
began, the predicted distal step was ignored. At the end of each tutoring session, the robot
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saved the proprioceptive–exteroceptive sequence for incremental learning. This process
was repeated for task B. An example of the experimenter conducting tutoring with the
robot is shown in Figure 14.

Figure 14. Example of an experimenter intervening to guide the robot when the goal position (high-
lighted in white) changes. When the robot did not respond to the new goal position, the experimenter
pushed the robot’s end effectors in order to pick up the object, then pulled the robot’s arms toward
the correct goal position before releasing the robot.

Once a total of six tutoring examples were collected, the incremental learning process
was started. This process was conducted sequentially, that is, task A was incrementally
learned first, followed by task B. While the network parameters remain unchanged from the
initial settings in Table 1, there were several alterations from the initial learning undertaken
in Experiment 1. First, as noted in Section 3.4, in order to balance efficient learning of
new tasks and retention of old tasks, the network used a process of mental rehearsal by
generating sequences from its learned prior, analogous to the process undertaken in [41,54].
For the first incremental learning session, 57 rehearsal samples were generated and an
additional 100,000 epochs of training were conducted for each network. For the second
incremental learning session, based on the amount of training already completed and the
fact that task B deviated further from the basic task and task A, the number of rehearsal
samples generated using the networks after incrementally learning task A was reduced
to 17. In preliminary studies, we found that reducing the number of rehearsal samples to
increase the ratio of new tutoring samples was effective in efficiently learning longer tasks
with significantly changed actions. With a smaller number of learning samples, the number
of additional training epochs was also reduced to 75,000. The previous session’s training
data were not used for subsequent incremental learning sessions. In addition, while net-
work parameters were passed on between incremental learning sessions, the approximate
posterior distributions were reset each time, along with the Adam optimizer momentum.

Finally, as in initial training, we undertook the following procedure to filter out poorly
trained networks that might have been significantly overfitted or underfitted, as such
networks can cause unsafe robot operation.

1. For each of the four trained networks, incremental learning of task A was conducted
three times independently;

2. The resulting 12 networks were sorted by the loss at the end of training;
3. The top four and bottom four networks were discarded, leaving four networks to test;
4. Steps 1 to 3 were repeated for task B.

4.3.1. Experiment 3A: Catastrophic Forgetting

A major potential issue with incremental learning is the phenomenon of catastrophic
forgetting, in which the performance of previously learned tasks drops after incremental
learning is conducted on a new task. In this case, both task A and the basic task could
be affected by catastrophic forgetting. After following the aforementioned incremental
learning procedure, we first evaluated the networks after the first incremental learning



Entropy 2023, 25, 1506 23 of 34

session (task A), and after the second incremental learning session (task A followed by task
B) for catastrophic forgetting.

Figure 15 shows the results of testing task A with the networks prior to incremental
learning, the networks after the first incremental learning session, and the networks after
the second incremental learning session. After incremental learning, task performance
of the networks on task A returned to baseline levels (i.e., the equivalent task without
interference). Additionally, while it was expected that performance on task A should be
significantly improved immediately after incremental learning on tutoring examples of task
A, the aforementioned results show that even after incrementally learning another task,
task A performance was not significantly impacted. However, it is possible that adjusting
of the number of rehearsal samples for each task may cause overfitting and may not be
suitable in all cases. An alternative approach would be to increase the number of human
tutoring samples until the desired behavior is exhibited, which may involve more rounds
of incremental learning.

Figure 15. Relative goal displacement on task A using networks before incremental learning (Basic),
after incremental learning of task A (Basic→A), and after subsequent incremental learning of task B
(Basic→A→B).

Figure 16a shows a plot of the change in free energy while the robot undertook task
A. While the change in free energy appeared very similar to the pattern observed prior to
incremental learning as shown in Figure 10b, the updated plan that was generated as the
evidence free energy was minimized resulted in far more accurate grasping of the object,
leading to improved task performance. An example trajectory is shown in Figure 16b,
which plots the trajectory of a single arm joint while the robot is controlled by a network
before and after incremental learning. Visible changes in arm joint angle indicate that the
network, after the previously discussed delay, generated a planned motion to reposition
the end effector to correctly grasp the object at the new position.

Figure 17 shows the results of testing on the basic (no interference) task using the
networks after incremental learning compared to the networks before incremental learning.
After two rounds of incremental learning, performance on the basic task did not degrade,
and actually improved slightly. Based on the aforementioned results, subsequent testing
was conducted using only the network after both incremental learning sessions.
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(a)

(b)

Figure 16. (a) Example of change in evidence free energy (orange line) and expected free energy (green
line) during online plan generation, while the robot completes task A (object moved), after incremental
learning. (b) Comparison of generated trajectories of an arm joint (right arm elbow) from a network
prior to incremental learning (purple line) and after incremental learning (green line). The black box
highlights when the object was moved. Note the sudden change in direction of the arm joint after
the object moved, followed by a significantly changed trajectory compared to the output from the
network without incremental learning, indicating repositioning of the end effector to compensate for
the new object position.

Figure 17. Goal displacement on the basic task using networks before incremental learning, and after
incremental learning of task A followed by task B.

4.3.2. Experiment 3B: New Task Acquisition

Following the significant improvement in task A after incremental learning in Ex-
periment 3A, in this experiment, we evaluated the network on task B. Results comparing
the network before and after incremental learning are shown in Figure 18 and, as in
the previous experiment, we observed a significant task performance improvement after
incremental learning.



Entropy 2023, 25, 1506 25 of 34

Figure 18. Relative goal displacement on task B using networks before incremental learning, and after
incremental learning of task A followed by task B.

Examining the changes in free energy during online plan generation (Figure 19),
while the spike and drop in expected free energy is similar to that previously observed in
Figure 13, the evidence free energy in this case also dropped back to levels close to those
prior to interference in goal position, unlike in the case prior to incremental learning. This
suggests that the network was able to adapt its future plan without ignoring sensorimotor
observations, enabling generation of a more stable future trajectory for the robot and
resulting in improved task performance.

Figure 19. Example of change in evidence free energy (orange line) and expected free energy
(green line) during online plan generation, while the robot completes task B (goal moved), after
incremental learning.

Another matter to consider, particularly in our current study where a human is
supervising and physically tutoring the robot, is the amount of human intervention required
to ensure adequate task performance on more challenging tasks. After incremental learning,
the amount of human intervention required should be reduced, consistent with improved
task performance overall. Conditions for intervention by the experimenter are identical to
those listed in Section 4.3.

In this experiment, we considered the excess torque recorded by the robot while
undertaking the task. The task undertaken is task B (goal position change) (Figure 20).
Excess torque in this context refers to the difference in torque applied by the robot’s motors
compared to the amount predicted by the robot controller’s internal dynamics model D,
and is computed as total excess torque = ∑t ∑j |D(j, t)− torquej,t|, where j is the robot
joint index and t is the current time.
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The robot controller consists of multiple levels, with the highest level receiving the
generated predicted proprioception as a series of joint angles, which are subsequently
converted into required torque levels after computing the appropriate acceleration and
velocity to reach the commanded position from the current position. The dynamics model
D is a fixed model that estimates the torque level that should be required by each joint motor
in its current state, compensating for the force of gravity and internal friction. As the robot
controller continually monitors joint states, when a deviation is detected, the commanded
torque level can be adjusted to maintain the current state within a control loop. This
commanded torque is converted by a low level controller into the current required to move
each motor.

Figure 20. Total excess torque recorded by the robot during testing on task B using networks before
incremental learning, and after incremental learning.

Significantly lower excess torque was recorded by the robot, that is, less human
intervention was required while undertaking the task. Some excess torque is always
detected by the robot due to inaccuracies in the internal dynamics model and the force the
robot itself exerts while grasping the object. Figure 21 shows an example of excess torque
recorded by the arm joints, during task B. Time steps at which the robot was moving the
object, the goal position change, and physical tutoring by the experimenter are annotated
on the plots. Before incremental learning, a considerably longer time and larger magnitude
of force was applied to the robot compared to the same situation after incremental learning.
After incremental learning, a small amount of intervention was noted by the experimenter
following the protocol described in Section 4.3; however, the small magnitude of the
external force indicates that the intervention was not significant. Without experimental
notes, it would be difficult to discern these interventions from noise from the sensors and
fluctuations from normal interactions with the control loop.

From these results, we determined that after our incremental learning scheme was
applied, not only did task performance significantly improve in newly acquired tasks,
but task performance on previously learned tasks was retained. This was observed not
only in a reduction in goal displacement to near baseline levels, but also in the reduced
time and magnitude of human intervention required by the robot to reach the goal when
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testing on untrained positions. This suggests that subsequent human tutoring sessions
should be easier or possibly unnecessary with additional parameter tuning.

(a)

(b)

Figure 21. (a) Example of excess torque recorded over time, with the robot controlled by a network
before incremental learning. Red dashed areas represent periods of time when the robot had grasped
the object and was moving it. The dashed black line indicates when the goal position was changed.
Red-shaded areas indicate when the experimenter was applying force in order to guide the robot to
the goal. (b) Comparison of excess torque recorded over time, with the robot controlled by a network
after incremental learning. The marked areas represent the same events as in (a).

5. Discussion

In our previous study [7], we discussed the possibility of investigating how a robot
using our proposed model would respond to unexpected environmental changes, such as
when the robot was unable to grasp the object due to external interference. The current
study proposes a new scheme for a robot to conduct incremental learning of goal-directed
actions utilizing our previously proposed model for online goal-directed action planning.
Our proposed scheme addresses the two key issues of incremental learning as follows. First,
it avoids the problem of catastrophic forgetting of previously learned tasks by means of
mental rehearsal. This is accomplished by using the previously trained model to generate
rehearsal samples. This approach also has the advantage of not requiring storage of
old training data, which may not be practical in real-world applications. Second, it can
efficiently learn new tasks from a small number of human tutoring examples by adjusting
the number of rehearsal samples and tutoring samples, and by learning each new task
sequentially. Tutoring samples consist of proprioception–exteroception sequences that are
created when the robot appears to deviate from the task, and the human experimenter
intervenes and physically guides the robot to complete the task. These objectives are
accomplished using our T-GLean model and the PV-RNN network architecture, by first
configuring network parameters to balance learning of stable habituated actions and
generalization to different positions, and then adjusting the ratio of new tutoring samples
and rehearsal samples to ensure new task acquisition in an efficient manner. Our testing
showed that with a few tutoring examples, a relatively small number of rehearsal samples
could be used to maintain the balance of new task acquisition and old task retention.

Our proposed learning scheme was evaluated in three phases. In the first experiment,
we established baseline performance on a basic task of picking up an object and placing



Entropy 2023, 25, 1506 28 of 34

it at a specified goal position. This became the benchmark for task performance when
interference was introduced. In two subsequent experiments, we evaluated the selected
network configuration with different settings of the meta-prior on two new tasks that
resulted when the human experimenter interfered with the robot’s environment while the
robot was already executing a plan. The two tasks, designated A and B, corresponded to a
relatively small change (the position of the object was changed just before the robot grasped
it) and a larger change (the goal position was changed after the robot placed the object
down) during the basic task. In the final set of experiments, we first conducted incremental
learning following our proposed scheme by collecting a small number of examples of
the human tutoring the robot to complete the new tasks. After tutoring samples were
collected, incremental learning was performed sequentially, first on task A, and then on
task B. Once incremental learning was completed, testing on tasks A and B was undertaken
again, in addition to the original basic task without interference by the experimenter.

Results of these experiments established that even with networks that showed both
stable generation of habituated actions and generalization to untrained positions, when
faced with a sudden change in the environment, such as sudden movement of the object,
task performance deteriorated significantly, as the network could not generate the necessary
robot actions to compensate for conditions such as inadvertent contact with the object with
the wrong part of the end effector. Even if the new object position could easily have been
reached if the robot was reset to its home position and the network allowed to plan from
scratch, the task with interference was sufficiently different from the original task in that
it required new actions to perform adequately. After conducting incremental learning,
on both interference tasks A and B, goal displacement returned to near the performance
of the basic no-interference task. In addition, our results also showed that the networks,
after incrementally learning A followed by B, retained both the original basic task and the
previously learned task A. This confirms that following our proposed incremental learning
scheme, by using a small number of human tutoring examples and mental rehearsal prior
to each incremental learning phase, the model was able to incrementally learn new tasks
without catastrophically forgetting previously learned tasks.

Apart from the significant improvement in task performance, evaluated by the differ-
ence in object position relative to the goal position at the end of the trial, we also analyzed
the neural networks’ re-planning behavior following the rise and fall of evidence and
expected free energy based on the interference received. While a drop in evidence free
energy did not always correspond to an updated plan that adequately completed the task,
a constantly elevated expected free energy or a rising evidence free energy indicated that
the network was not able to reconcile its sensorimotor observations with the preferred
goal and its learned prior. We generally observed a more stable decrease in both evidence
and expected free energy after interference following incremental learning. Additionally,
we quantified the amount of human intervention the robots required in order to complete
the tasks in terms of the amount of force applied by the experimenter, and our results
showed that significantly less human intervention was required for the robot to complete
the task adequately after incremental learning. From this result, we concluded that as more
incremental learning is undertaken, less human intervention is required for the robot to
reach the goal in cases in which the robot encountered external interference.

Other studies have also considered the use of incremental learning in teaching robots
in a human–robot collaborative setting, such as in [57], where the authors used Gaussian
processes (GP) to determine the model’s task uncertainty in a manner similar to our use of
free energy, although GPs were not used for model optimization. An intriguing proposed
method [58] takes an active inference approach to reinforcement learning (RL) by imitation,
using free energy instead of typical reward functions. Our proposed scheme utilizes human
tutoring combined with mental rehearsal [14,16] for incremental learning, and integrates
them with our active inference-based model that employs free-energy minimization in
the latent space to find an optimal posterior predictive distribution. This scheme utilizing
PV-RNN and error regression not only allows for efficient online plan generation, but also
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governs regularization in both the initial and incremental learning contexts, analogous to
regularization approaches as in [41].

In the field of reinforcement learning, there is a significant body of work about goal-
directed action planning. A well known example of this is Dreamer [31], a model-based
RL agent that can learn a world model and then generate long-horizon behaviors using
imagination in the latent space, similar to our approach of mental simulation. Dreamer
has been developed further as DreamerV2 [59], which uses a discrete latent representation
and KL-balancing to control the learning between prior and posterior, and DreamerV3 [60],
which refined DreamerV2 and showed that with an optimized configuration, it could
outperform specialized models on the same tasks. While Dreamer also applies variational
free energy as its loss function, Dreamer’s goal-directed behavior is driven by reward
prediction, unlike our approach, which can arbitrarily specify goal states and generate goal-
directed actions by minimizing expected free energy. Other studies have also shown that
an RL agent can learn a model of both the world and goals that can be accomplished [61],
as well as multiple sub-goals that can be represented in latent space [33].

So-called incremental RL has attracted some attention, such as lifelong incremental
reinforcement learning [62], a proposed method that encodes all experienced environment
models in a latent space representation that can then be searched from the agent’s observa-
tions of the environment. Similarly, transfer learning of the RL agent’s environment model
to new tasks, i.e., new reward functions, not only enables the agent to quickly learn new
tasks with performance comparable to conventional Q-Learning and DQN [63], but also to
improve performance in previously learned tasks, an analogous phenomenon that we have
observed in this study.

Since incremental learning is a broad field of research, an interesting extension of
the current work would be to evaluate other approaches for incremental learning. In this
study, we adopted a bio-inspired approach based on mental rehearsal as a way of acquiring
and retaining motor skills, integrating it with our active inference-based method of action
planning and tutoring, as well as leveraging the PV-RNN architecture for regularization.
While this approach was a logical extension of our previous work, it would be worth
considering alternative approaches and methods with regard to incremental learning of
new tasks, as well as further evaluation on a broader set of tasks and parameters. The key
limiting factor, due to the nature of physical robot experiments, is the time required to
gather necessary data with limited hardware resources. To this end, we may also consider
utilizing some of the aforementioned reinforcement learning approaches, although these
carry their own risks to robot hardware due to the need for a large number of trials. To
alleviate this issue, we are considering a task utilizing a simulated version of our robot
using interactions within the simulated space, which would make testing multiple different
approaches tractable.

Continued future study could also consider other modalities such as the language
modality, as suggested by Parr and Pezzulo [34]. In the current study, certain concepts
such as understanding of constraints could only be inferred from activity within and ac-
tions generated by the neural network. By leveraging rich linguistic expressions, not only
could more abstract and complex goals be represented, but the network could also make
statements explicitly about its internal model of the world. Complex action structures
involving compositionality, repeating patterns and variations in speed that are challeng-
ing to teach with a limited tutoring set could be represented. Finally, such a means of
communication would give the robot a tool to tutor the human, making the adaptation of
behaviors by both the human and the robot more concrete. Additionally, incorporating
exteroception utilizing pixel-level data from the cameras could also enable more complex
partially observable tasks.
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Appendix A

In this study, we examined the ability of the network to generalize to untrained
object and goal positions, focusing on the task performance of the robot under several
network configurations, with the implication that good generalization performance implies
a robust representation in latent space. Under the concept of disentangled representation
learning (DRL), it is expected that factors of variation are extracted from observations of the
environment and then encoded in independent latent variables, and this may be important
in achieving human-like generalization [64].

As shown in this Appendix, we examined latent spaces of three representative net-
works from Experiment 1, one from each of the meta-prior (w) ratios. With these networks,
we undertook prior generation as shown in Figure 4 to generate 120 trajectories each,
and conducted principal component analysis (PCA) on the deterministic latent variables
(d) for the bottom layer at each timestep. As can be seen in Figure 2, the bottom layer d
variables takes as input, not only the previous hidden state and current stochastic variables
z, but also the top layer d variables. Factors of variation under consideration were the 2D
head angles at the initial step t = 1, which represents the anticipated initial object position
as also demonstrated in Figure 8, and the 1D anticipated goal position at the distal step.

In the following figures, we represent the trajectories using a red–green–blue (RGB)
color representation. Each color channel is mapped to one of the aforementioned factors of
variation, with values normalized. The resulting space of possible position combinations
was then represented as a cube of smoothly varying colors, an example of which is shown
in Figure A1. In this representation, it follows that similar colors reflect similar trajectories.

Figure A1. Color space representing possible combinations of 2D object position (derived from head
angles) and 1D goal position.

https://github.com/oist-cnru/T-GLean-Inc
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Each trajectory was plotted in latent space with the first three principal components.
There are three components to the trajectory:
1. The beginning of the trajectory is represented by a circle marker (•) using the initial

object position colors (RG = 2D object position, B = 0);
2. The end of the trajectory at the distal step represented by a square marker (‚) and

using the goal position color (RG = 0, B = goal position);
3. The trajectory itself is identified using all color channels (RG = 2D object position,

B = goal position).

Figure A2c shows trajectories in latent space for a w ratio 1:1 network. The start of
the trajectories are visible in a cluster in the center, where there is an even distribution of
starting points in both space and color. From the initial step, the trajectories spread out
and curve toward the distal step cluster on the right. Although there is some variability
in the trajectories, the start and end points show the expected color shifting, suggesting
good disentanglement of the three factors of variation with respect to the three principal
components of the latent space.

(a) (b)

(c)

Figure A2. One hundred and twenty trajectories in latent space generated using trained prior
distributions from Experiment 1, (a) 1:0.1 network, (b) 1:10 network, (c) 1:1 network.

Compared to the w ratio 1:1 network, the w ratio 1:0.1 network in Figure A2a shows
a planar structure with trajectories splitting into two distinct clusters of goal positions.
The color distribution of trajectories is also noticeably skewed, lacking in reds compared
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to the w ratio 1:1 network in Figure A2c, suggesting an inadequate learning of the task
distribution. This may explain the poor task performance exhibited by this network config-
uration.

Finally, Figure A2b shows the latent space trajectories for the network with w ratio 1:10
and, despite having task performance close to the 1:1 network, it shows a latent structure
with similarities to the 1:0.1 network. Trajectories with different goal positions terminate
on a wide arc; thus, based on the goal position, the trajectory in latent space may be quite
different. The color distribution also appears to be slightly skewed, compared to Figure A2c.

While in this study we did not focus on the internal dynamics of the network, our in-
spection of the networks under different meta-prior settings showed significant differences
in latent space representations that may correlate with the observed behavior of the robot.
In future work, we would like to further examine how internal dynamics develop during
different phases of learning.
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