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Abstract: Previous work has shown that nonlocal collapse in quantum mechanics can be described
by a deterministic, non-unitary operator added to the standard Schrödinger equation. In terms of
key aspects, this term differs from prior work on spontaneous collapse. In this paper, we discuss the
possible predictions of this model that can be tested by experiments. This class of collapse model
does not intrinsically imply unique experimental predictions, but it allows for the possibility.
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1. Introduction

Spontaneous collapse theories of quantum mechanics have the appeal that they allow
the experimental results of quantum mechanics to be accounted for within a mathemat-
ical formalism that needs no separate category of “measurement”, which is left off the
books. It has also been argued that a consistent approach to gravitation requires some
form of spontaneous collapse [1–3]. There have been various approaches to spontaneous
collapse, including early work by Pearle [4] and Gisin [5,6], the Ghirardi-Rimini-Weber
(GRW) model [7], a formalism that puts the GRW model into a relativistic framework [8],
and models of continuous spontaneous localization (CSL) [9–14]. A common characteristic
of these approaches is to argue that the equations of quantum mechanics must be altered to
include new, non-unitary terms. This means that they are, at least in principle, experimen-
tally falsifiable, and conversely, there can be predictions for experiments that give evidence
in support of them.

The above models involve, in one way or another, a universal source of random
fluctuations that interacts with all particles, even those in the vacuum of free space. This
randomness is expected to lead to both the washing out of interference and other decoher-
ence effects [15–19] and other ways of detecting noise [20–23]. So far, experiments have not
detected this type of noise directly. In general, these models imply the nonconservation
of energy that can be detected as heat because random spatial translations of the particles
amount to a heat source [7]. This prediction has recently been tested with null results [24].
An alteration of the GRW model may allow for the dissipation of this extra heat [25].

Recent work [26,27] has presented a new approach inspired by these spontaneous
collapse models but without an extrinsic noise term that would wash out interference in a
vacuum. This model proposes a specific new term to be added to the Schrödinger equation,
which gives the Born rule for measurements but also, as discussed below, conserves energy
and the total particle number and conserves the norm of the full many-body wave function.
The overall approach is entirely in the context of many-body quantum field theory without
committing to a definite ontology of “particles”. All that is needed is to define the localized
eigenstates of fermion fields.

Since total energy is conserved in this model, the question remains whether it gives
any experimentally testable predictions. In the following, we show that this class of
model may allow for novel experimental predictions but need not. In the absence of any
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unique experimental predictions, this approach would still have the appeal of internal
self-consistency and agreement with known experiments.

2. Properties of the Non-Unitary Term

The non-unitary term added to the Hamitonian in the Schrödinger equation in the
model derived in Ref. [27] is

V̂ = ∑
n

ih̄ωR,n
(
〈N̂n〉(1− N̂n)− (1− 〈N̂n〉)N̂n

)
= ∑

n
ih̄ωR,n

(
〈N̂n〉 − N̂n

)
, (1)

where N̂n is the number operator acting on a state, n, which is a single-particle state within
a general fermionic many-particle state. As shown in Ref. [27], this operator gives a Rabi
rotation on the Bloch sphere between two states, namely a fermion that does not exist in
state n (state “0”) and a fermion existing in state n (state “1”), and the scalar factor ωR,n
is the effective Rabi frequency. This factor is assumed to fluctuate randomly, dependent
on local environmental fluctuations, as discussed further below. This model is taken to
apply only to fermions, which naturally have two states corresponding to occupation 0
and 1, and does not apply to bosons (One might conjecture an analogous term for bosons
but of the opposite nature, of the form 〈α̂†

n〉 − α̂n, where α̂n = a†
n + an is the boson wave

amplitude, which would favor coherent states over Fock states and give the spontaneous
appearance of classical waves. For another approach, see Ref. [28]).

Because this operator gives pure Rabi rotations, it conserves the norm of any many-
body state. We can see this in the following calculation. Suppose that the total Hermitian
Hamiltonian is given by H = H0 + V̂I , where H0 defines the eigenstates of the system, and
V̂I is the full set of standard Hermitian interactions. We write the time evolution of the
norm of the state using the S-matrix expansion for the Hermitian part of the Hamiltonian
(see, e.g., Ref. [29], Section 8.1):

d〈ψ|ψ〉 = 〈ψt|ψt〉 − 〈ψ0|ψ0〉

= 〈ψ0|e−iH0t/h̄
(

1 +
i
h̄

∫ t

0
(V̂I(t′) + V̂†(t′))dt′

− 1
h̄2

∫ t

0
(V̂I(t′) + V̂†(t′))dt′

∫ t′

0
(V̂I(t′′) + V̂†(t′′))dt′′ + . . .

)
×
(

1− i
h̄

∫ t

0
(V̂I(t′) + V̂(t′))dt′

− 1
h̄2

∫ t′

0
(V̂I(t′) + V̂(t′))dt′

∫ t′

0
(V̂I(t′′) + V̂(t′′))dt′′ + . . .

)
eiH0t/h̄|ψ0〉

−〈ψ0|ψ0〉, (2)

where for any operator, we write, Ô, Ô(t) ≡ eiH0t/h̄Ôe−iH0t/h̄.
The set of all terms with just Hermitian V̂I(t) operators must give unitary evolution

if the entire wave function is taken into account. However, If the wave function is taken
to refer only to a restricted subsystem, then the second-order expansion gives dissipative
terms (as shown in Ref. [29], Section 8.1), which corresponds to the decay of the norm of the
wave function; if the same second-order terms are used to compute the time-evolution of the
density matrix, they give rise to the Lindbladian operator (see, e.g., Ref. [30], Section 19.3).

Moving on to those terms with the products of V̂I(t) and V̂(t), we note that

V̂(t) = ∑
n

(
〈N̂n〉 − eiH0t/h̄N̂ne−iH0t/h̄

)
= V̂(0), (3)
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since N̂n commutes with H0. Therefore, integrals over V̂(t) will be proportional to t, and
terms with the products of integrals of V̂I(t) and V̂(t) will be proportional to t2, and
therefore, will vanish for a small t, which is the differential limit taken here.

Finally, we turn to the terms with only a non-Hermitian V̂(t). The products of integrals
of these will be proportional to t2 or higher, which will vanish according to the same
argument given above. We are left with just the linear terms:

〈ψt|ψt〉 − 〈ψ0|ψ0〉 =
i
h̄

t〈ψ0|
(

V̂† − V̂
)
|ψ0〉

= ∑
n

2ωR,nt〈ψ0|
(
〈N̂n〉 − N̂n

)
|ψ0〉

= ∑
n

2ωR,nt
(
〈N̂n〉 − 〈N̂n〉

)
= 0. (4)

We can, therefore, call the term (1) “quasi-unitary”—although it is not Hermitian, it is
strictly norm-conserving, and if ωR,n fluctuates randomly as positive and negative, then the
time average of the adjoint of the operator is the same as the time average of the operator.

The form of (1) is similar to the terms in various other proposals in the literature,
e.g., Refs. [5,11,12]. It is often assumed, based on the arguments discussed further in
Appendix A, that a term like this must give a mechanism for superluminal communication.
The general form of the argument is (1) to construct a density matrix for the state of interest
and (2) then average this over many instances to get the density matrix for a mixed state
that depends on a specific choice of measurement of one degree of freedom of a nonlocally
entangled state, (3) act on this density matrix for with the non-Hermitian operator, and (4)
from this, show that changes in the measurement can be detected nonlocally by changes in
the density matrix.

This argument can only work, however, if the action of the non-Hermitian operator
is the same for every instance in the average, which is carried out for the density matrix
of a mixed state. If the non-Hermitian operator acts differently every time, namely with
random fluctuations that lead to the Born rule, as discussed in Section 3, then its action is
exactly the same as a standard quantum measurement, which cannot give superluminal
communication. To put it another way, the calculation for the average evolution must take
two limits in the proper order, and incorrect results are obtained if they are not taken in the
proper order. One must first take the limit dt→ 0 to obtain the proper differential equation
for any single time-evolution for one particular random walk, and then only afterward take
the limit of an infinite number of random walks in an ensemble to get the average behavior.

Consider the entangled state of a system in which the fermion is in a superposition of
both occupying and not occupying a state, n,

|ψ〉 = αn|ψ0〉|0〉+ βn|ψ1〉|1〉, (5)

where |0〉 and |1〉 represent the unoccupied and occupied localized fermion state, n, of
interest, and |ψ0〉 and |ψ1〉 represent the associated many-body states of the entire rest
of the system (which may be large superpositions of many-body states). The states |ψ0〉
and |ψ1〉 are orthonormal because they have different total numbers of fermions, and the
total fermion number is conserved. For norm-conserving evolution, the coefficients αn
and βn must always be normalized according to

√
|αn|2 + |βn|2 = 1. As discussed in

Section 3, various physical processes can lead to time-dependent fluctuations of ωR,n, and
these fluctuations of ωR,n lead to a random walk of the coefficients αn and βn, which has
the end result of either α or β becoming nearly exactly 1 while the other becomes nearly
exactly 0, with the probability of each given by the Born rule. This has the same end result
as a projection onto one state followed by the normalization of the wave function, as in
standard measurement theory. Therefore, this type of random walk cannot produce the
results that a standard Born-rule measurement does not produce.
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The projection of a state onto one of two localized fermion states is sufficient to give
nonlocal correlation. Consider the entangled state

|Ψ〉 = α1|0, 1〉|ψ1〉+ α2|1, 0〉|ψ2〉, (6)

where the 0s and 1s represent the fermion occupation numbers of two states, which can
be widely spatially separated, and |ψ1〉 and |ψ2〉 are the associated environments (again,
these may be highly complicated, massive superpositions). Then, according to the model
proposed here, fluctuations in the local environment of each of these states leads to a
random walk of αn and βn for each electron state n via the term (1). Because the term
acts on electrons in each of the atoms, when one electron state experiences an “upward”
kick toward occupation Nn = 1, the other experiences a downward kick toward zero
occupation. Eventually, this correlated random walk will end with one of the states having
an occupation of 1, and the other having an occupation of 0, effectively projecting the full
state onto one of the two states in (6). This argument can be generalized to any number of
spatially separated states in a superposition.

Conservation rules. While the term (1) is not Hermitian, we can derive several
conservation rules for it. First, it conserves the total number of fermions in the system. This
can be seen by computing the time evolution of the expectation value of the total number
operator N̂ = ∑ N̂n predicted by the Schrödinger equation. By the same arguments as
above, we keep only the terms that are linear in t, which gives, for an infinitesimal time
lapse, t,

〈ψt|N̂|ψt〉 − 〈ψ0|N̂|ψ0〉 = 〈ψ0|
(

1 +
i
h̄

V̂†dt
)

N̂
(

1− i
h̄

V̂dt
)
|ψ0〉 − 〈ψ0|N̂|ψ0〉

' i
h̄

dt〈ψ0|
(

V̂†N̂ − N̂V̂
)
|ψ0〉

=
i
h̄

Ndt〈ψ0|
(

V̂† − V̂
)
|ψ0〉, (7)

where in the last line, we have used the property of |ψ0〉, meaning that it is a superposition
of states all with the same total number of fermions, N, since any standard Hermitian
interaction that changes the states of the individual fermions conserves the total fermion
number. The change in 〈N̂〉 is, therefore, 0 when using the results of (4).

This term also conserves the total energy of the system under the same conditions
evoked for energy conservation when deriving irreversible behavior under Fermi’s golden
rule and the quantum Boltzmann equation (see, e.g., Sections 4.7 and 4.8 of Ref. [29]). In
this case, we can calculate the time dependence of the expectation value of H0 = ∑ h̄ωnN̂n.
Analogous to (7) above, we have

〈ψt|H0|ψt〉 − 〈ψ0|H0|ψ0〉 =
i
h̄

dt〈ψ0|
(

V̂† H0 − H0V̂
)
|ψ0〉

= h̄dt ∑
n,n′

ωR,nωn′〈ψ0|
((
〈N̂n〉 − N̂n

)
N̂n′ + N̂n′

(
〈N̂n〉 − N̂n

))
|ψ0〉

= h̄dt ∑
n,n′

ωR,nωn′
(
2〈N̂n〉〈N̂n′〉 − 2〈N̂nN̂n′〉

)
. (8)

This is equal to zero if 〈N̂nN̂n′〉 factors to 〈N̂n〉〈N̂n′〉, which, as shown in Ref. [31], is
equivalent to the strong decoherence limit, which is the same limit used to justify the
quantum Boltzmann equation. The same approach can be taken if we add a number-
conserving interaction to the Hamiltonian with terms that take the form Aa†

i aj. In this case,

we also find energy conservation as long as 〈N̂na†
i aj〉 = 〈N̂n〉〈a†

i aj〉, which is also the case
when there is strong decoherence.
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3. Numerical and Mathematical Results Showing the Born Rule

Ref. [27] showed that for any single fermion state, n, adding the operator (1) to
the Schrödinger equation maps to the motion of a vector on a Bloch sphere, given by
~U = (sin θ cos φ, sin θ sin φ, cos θ), representing the superposition (5) with α = eiφ sin θ/2
and β = cos θ/2. The motion of this Bloch vector is then governed by the dynamical
equations

∂U2

∂t
= −ωR,nU3(1−U2

3)
1/2

∂U3

∂t
= ωR,nU2(1−U2

3)
1/2. (9)

Here, the factor (1−U2
3)

1/2 gives two attractors corresponding to 〈N̂n〉 = 0 and 1; the
“collapse” of the wave function occurs when the Bloch vector hits either of these attractors.
The dynamics of this Bloch vector model were analyzed numerically in Ref. [26]. When the
Rabi factor ωR,n fluctuates randomly in time, the Bloch vector undergoes a random walk
between the two attractors.

The t→ ∞ results of many random walks of this type have been shown numerically
to give the Born probability rule with high accuracy. Figure 1 shows a comparison of the
linear prediction of the Born rule for the probability of collapse to the t → ∞ results of
a numerical calculation using this model, using a value of ωR,n picked randomly for a
sequence of time intervals dt, with the probability of the value within each time interval
given by the Lorentzian (Cauchy) distribution

P(ωR,n) =
1
π

γ

ω2
R,n + γ2

, (10)

where γ gives the characteristic range of the fluctuations, with γdt � 1 and a cutoff of
γdt ≤ 0.5. This is the expected distribution for a wide range of typical processes, in
which the fluctuations have an exponentially decaying correlation function in time, i.e.,
no long-time correlation (see, e.g., Refs. [32,33]). The Wiener-Khinchtine theorem says
that the frequency spectrum of a classical noise source is given by the Fourier transform
of the temporal correlation function (see, e.g., Ref. [29], Section 9.5). For an exponentially
decaying temporal correlation function C(t) ∝ e−γ|t|, this implies

F(ω) =
1

2π

∫ ∞

−∞
e−γ|t|eiωtdt =

1
2π

∫ 0

−∞
eγ/τeiωtdt +

1
2π

∫ ∞

0
e−tγeiωtdt

=
1
π

γ

γ2 + ω2 . (11)

Note that the function e−γ|t| has a discontinuity in its slope at t = 0. The Fourier transform
of this gives infinitely high-frequency components in the spectral function, which are
nonphysical. Realistically, this sharp discontinuity should be replaced by a smoothly
curved peak at t = 0 over some small time range. This was accounted for in the numerical
model by a high-frequency cutoff in the Lorentzian distribution.

The same linear result was found in numerical simulations using a Gaussian distribu-
tion of fluctuations of ωR,n. The Born rule holds for all of the random walks considered
numerically on a finite interval in the t → ∞ limit, which, mathematically, is because
these walks are “martingale” walks. Martingales are defined in Appendix B, where it is
shown that the numerical simulations will converge to +1 or −1 with probabilities linearly
proportional to their starting position.
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Figure 1. Comparison of the numerical results for the model with the Born rule (solid line). Circles:
probability of end state 〈N̂n〉 = 1 for γdt = 0.002. Squares: γdt = 0.02. For each value of γdt,
8000 trials were run for each data point, and the number of steps in each trial was limited to 4000.

4. Quasi-Unitary Evolution Is the Same As Weak Measurement

As discussed in Section 2, the nonlinear operator (1) is similar in form to that suggested
by Gisin [5] and others, and it has been argued that the nonlinear terms of this type
intrinsically imply the possibility of superluminal communication. As shown in Section 2,
however, the operator (1) is strictly norm-conserving, so that the Bloch vector for the full
wave function (5) always has an exact unit length. This Bloch vector represents the full
density matrix for the system as well as the environment that is entangled with it. When
this entanglement with the environment is taken into account, the density matrix for any
single random walk is always a pure state of the full many-body wave function, with a
Bloch vector of unit length. As discussed in Section 1, in the t→ ∞ limit, a random walk of
the Bloch vector implies that both the system and the environment collapse into one of two
possibilities in accordance with the Born rule.

In Section 2, we asserted that the average of many random walks using the operator (1)
will always give an evolution of the density matrix that is consistent with the standard Born
rule of measurements in quantum mechanics. This can be seen explicitly by calculating the
prediction of a random walk (“quantum trajectory”) using standard quantum mechanics
in the “weak measurement” limit. Weak measurement theory [34–37] (for reviews, see,
e.g., Refs. [38–40]) can be viewed as a type of spontaneous collapse, but it does not invoke
any explicit non-unitary terms; instead, many weak Copenhagen-type measurements are
assumed to occur, without specifying the observer. Recent work [41] has shown that weak
measurement theory can be integrated into the decoherence approach of Zurek. Zurek’s
approach (e.g., Ref. [42]) shows that the collapse of a density matrix to the diagonal can
occur via unitary dynamics (sometimes called “first collapse,”) but cannot reproduce the
statistics of individual quantum trajectories, i.e., single measurements (“second collapse”).
Therefore, weak measurement theory is completely compatible with standard quantum
mechanics but gives no insight into the cause of collapses. In this section, we show that
weak measurement gives exactly the same operator as posited in (1).

Consider the following scenario of weak measurement, following the model from
Ref. [43]. At time t = 0, the initial state is

|ψ〉 = |φ〉|X = 0〉, (12)
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where |X〉 is the state of an external detector with a center-of-mass value at X (e.g., the
position of a needle in a meter), and |φ〉 = α| − 1〉+ β|1〉 is the internal state, which is in a
superposition. The external state, in general, has position uncertainty in a Gaussian

|X〉 =
∫

dx e−(x−X)2/2σ2 |x〉, (13)

where |x0〉 is the state of the external detector at exactly x0.
At t = 0, a weak interaction of the system with the detector is turned on briefly, taking

the form of

V̂ = −gSzP, (14)

where Sz is the standard spin operator, P = −ih̄∂/∂x is the momentum operator of the
external center of mass X, and g is some small number. After a short time dt, the state of
the system is

|ψ′〉 = |ψ〉+ gdt
∫

dx|x〉
(
−α

∂

∂x
e−x2/2σ2 | − 1〉+ β

∂

∂x
e−x2/2σ2 |1〉

)
= |ψ〉+ gdt

∫
dx|x〉

(
α

x
σ2 e−x2/2σ2 | − 1〉 − β

x
σ2 e−x2/2σ2 |1〉

)
=

∫
dx|x〉e−x2/2σ2

(
α

(
1 +

xgdt
σ2

)
| − 1〉+ β

(
1− xgdt

σ2

)
|1〉
)

'
∫

dx|x〉
(

αe−(x−gdt)2/2σ2 | − 1〉+ β e−(x+gdt)2/2σ2 |1〉
)

. (15)

The last line is commonly used in discussing this scenario, but we will stick with the third line.
We now do a strong measurement of the external detector to collapse it to a definite

value x = x0. By defining d f = xgdt/σ2 � 1, the state of the whole system is then

|ψ′′〉 =
1√

|α|2(1 + d f )2 + |β|2(1− d f )2
(α(1 + d f )| − 1〉+ β(1− d f )|1〉)|x0〉

' 1√
1 + 2|α|2d f − 2|β|2d f

(α(1 + d f )| − 1〉+ β(1− d f )|1〉)|x0〉

'
(

1− |α|2d f + |β|2d f
)
(α(1 + d f )| − 1〉+ β(1− d f )|1〉)|x0〉. (16)

The change in time is then

d|ψ〉 = |ψ′′〉 − |ψ〉 = gdtx0

(
α(1− |α|2 + |β|2)| − 1〉 − β(1 + |α|2 − |β|2)|1〉

)
|x0〉

= gdtx0

(
(|β|2 − |α|2)(α| − 1〉+ β|1〉)− (−α| − 1〉+ β|1〉

)
|x0〉

= gdtx0(〈Sz〉 − Sz)|φ〉|x0〉. (17)

We have, thus, obtained a nonlinear operator of exactly the same form as (1) because the Sz
operator has exactly the same operation as N̂n acting on two states; the nonlinearity arises
from the fact that a standard quantum measurement is an intrinsically non-unitary process.

If σ is large, then x0 is equally probable to be positive or negative. Therefore, if we
apply the above process of weak measurement multiple times, with each time allowing
the position of the needle in the detector to gain uncertainty due to normal wavepacket
spreading, and then carrying out a measurement of the classical center of mass of the needle
each time, we will get a random walk that is exactly equivalent to the results discussed in
Section 2.

The significance of this mapping of weak measurement theory to the proposed non-
Hermitian operator (1) for spontaneous collapse is that because weak measurement theory
is based on standard measurement theory, the random walk with the non-Hermitian
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operator (1) cannot give any effects that violate known physics; in particular, the term
(1) does not intrinsically allow superluminal communication or lead to a violation of
energy conservation because weak measurement does not, and the two are mathematically
identical. Due to environmental fluctuations, the random walk will give a density matrix
corresponding to a non-unit-length Bloch vector only when the results of many trials in an
ensemble are averaged; for any single random walk, it will always correspond to a Bloch
vector of unit length.

Therefore, we can switch our viewpoint and adopt the operator (1) as a fundamental
postulate. By the martingale rule discussed in Appendix B, the result of many sequential
weak measurements will obey the Born rule, which is to say, many weak measurements
will give a strong measurement, which makes sense since the same information is extracted,
whether quickly or slowly. Thus, we can postulate that every strong measurement is
actually the end result of many weak measurements of the form (1), which are intrinsic,
rather than needing to rig the particular scenario discussed above.

This result depends crucially, however, on the assumption that the steps are random.
In the case of weak measurement theory, this was true because of the axiomatic assumption
of the Born rule for measurements. In the case of the operator (1), as a new term in the
Schrödinger equation, the randomness comes from the randomness of ωR,n(t). This, in turn,
depends on what physical processes we believe affect ωR,n(t). If ωR,n(t) is nonrandom
and deterministically predictable, then the model presented in Section 2 does imply the
possibility, at least in principle, of superluminal communication, as we will see below.

5. Possible Sources of Fluctuations and Experimental Implications

Let us now consider three different approaches to the physical source of the fluctua-
tions of ωR,n in this model.

Universal fluctuations from a novel source. The first possibility we consider is that
the fluctuations in ωR,n are unrelated to the local environment of the state n, and come
from some universal source, such as gravity noise, dark matter, or some other fundamental
field. This noise source would presumably still act locally in spacetime but would not be
directly related to the presence of regular matter or energy. In this case, ωR,n(t) would
be fundamentally unpredictable, and no superluminal communication would be possible.
This approach has much in common with the GRW and related Penrose-Diósi models—it
predicts the decoherence and collapse that are unrelated to the presence of any detector;
particle states decohere in a pure vaccum on some length and time scale. However, it does
not imply the nonconservation of energy; as is shown in Section 2, energy is conserved
under the same conditions of decoherence as Fermi’s golden rule.

Local fluctuations of the environment. A second possibility, proposed in Refs. [26,27],
is that ωR,n is directly the result of fluctuations of the local environment. For example, the
fluctuation of the local energy density, which gives the fluctuation of the phase precession
of state n, could give this. This has the appeal that measurement and collapse are directly
related to the decoherence found in detectors and in any macroscopic system with strong
decoherence.

In this case, we can posit that the full operator, which gives the nonlinear correction to
the Schrödinger equation, is

V̂(t) = iξ
∫

d3r
∂

∂t
〈H(~r, t)〉

(
〈Ψ†(~r)Ψ(~r)〉 −Ψ†(~r)Ψ(~r)

)
, (18)

where Ψ†(~r) and Ψ(~r) are spatial field operators (cf. Ref. [29], Section 4.6), H(~r, t) is the
standard energy operator from unitary physics, and ξ is a small parameter with units of
time, which is a new physical constant. A fully relativistic version of this term is discussed
in Appendix C.
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The term (18) is equivalent to the form (1) under the assumption of coarse graining;
that is, if we assume that ∂/∂t〈H(~r, t)〉 is slowly varying in space for scales of length that
are large compared to the localized states, n. In that case, we can write

V̂ = iξ ∑
~R

∂

∂t
〈H(~R, t)〉

∫
V(~R)

d3r
(
〈Ψ†(~r)Ψ(~r)〉 −Ψ†(~r)Ψ(~r)

)
, (19)

where ~R gives the positions of the coarse grains, and the integral is over the volume inside
a coarse grain. We can then write the Fourier series

Ψ†(~r) = ∑
n

φ∗n(~r)a†
n, (20)

where φn(~r) is the wave function, and a†
n is the creation operator for an eigenstate n,

assuming that these eigenstates are localized within a coarse grain. Then, (19) becomes

V̂ = iξ ∑
~R

∂

∂t
〈H(~R, t)〉∑

n,n′

∫
V(~R)

d3r φ∗n(~r)φn′(~r)
(
〈a†

nan′〉 − a†
nan′

)
. (21)

When using the orthogonality relation
∫

d3rφ∗n(~r)φn′(~r) = δn,n′ then this gives us

V̂ = iξ ∑
~R,n

∂

∂t
〈H(~R, t)〉

(
〈a†

nan′〉 − a†
nan′

)
, (22)

which is equivalent to (1) under the assumption that the states, n, of interest are localized.
If the local environment has fluctuating energy density, then this will give the type

of random walk discussed in Section 2, which reproduces the Born rule. Typical values of
fluctuations in atom-based detectors are meV per picosecond, and the numerical results
discussed above indicate that the order of 100 steps in a random walk is required to have a
“collapse”; therefore, we can estimate ξ is of the order of 10−11 s/eV. This form does not
violate energy conservation or produce heat because the fluctuations are driven entirely by
real energy fluctuations that exist in the local environment.

With the form (19), however, we have the possibility of the external control of the
detection statistics. Suppose that instead of waiting for local environmental fluctuations,
we control ∂〈H〉/∂t directly, for example, when using an intense laser pulse to give it a
constant value that overcomes any local fluctuations. In that case, at least in principle, we
can “jam” the detector locally to always detect a particle that is in violation of the Born
rule by producing a rapid increase in the local energy density. Then, any remote particles
entangled with the one we have jammed will also experience a violation of the Born rule,
which would allow superluminal communication. A person could monitor a local detector
for deviations from the Born rule with an agreed-upon flux of entangled particles sent
between the two detectors, and a deviation from the Born rule could be registered as one
bit of information, e.g., a bit value of 1 = for the Born rule, and a bit value of 0 = for the
non-Born rule.

For the estimated value of ξ above and the atomic states of the order of the Bohr radius,
jamming the detection by using this method would require a rate of energy density change
in the order of 1016 W/cm3. This would correspond to, for example, 10 kW of laser power
absorbed in a volume with dimension of 1 micron. This is high but is within the range of
modern technology.

Nonjammable environmental fluctuations. Suppose that the above experimental test
is carried out and that no change from the Born-rule statistics is found in the entangled
pairs. Does this falsify the proposed model? No, because it could be the case that form (1) is
still correct but that the connection of ωR,n to the rate of change in the local energy density
is incorrect. The form (1) allows for a wide variety of theories for what physical processes
lead to the Rabi rotations. For example, the Rabi frequency could be proportional to the
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second derivative in time, rather than the first derivative, which would still be sensitive to
local fluctuations but would require an acceleration of the local energy density increase to
give detectable “jamming.” It could also be the case that the Rabi rotations are induced by
a term proportional to the product of local fluctuations and a global, universal noise source,
as discussed above. In that case, there would still be no decoherence in a vacuum, but the
background fluctuations would prevent any jamming of the detection. It is also simply
possible that the effect of the local fluctuations is not linear but saturates, e.g., instead of
∂〈H〉/∂t, it is proportional to tan[∂〈H〉/∂t].

If no jamming is possible and no unique experimental evidence is found, this model is,
therefore, not falsified, but it loses the appeal of unique predictions. In that case, the appeal
of this spontaneous collapse model would primarily be that it carries less philosophical
baggage, with a fairly plebian description of reality, entailing just the evolution of waves
with resonances and nonlinearities without such things as parallel universes and the
injection of human consciousness as a metaphysical entity while not violating any of the
experimental results of standard quantum mechanics.

6. Conclusions

The above considerations show that experimental tests of spontaneous collapse, such
as superluminal communication, are not automatically implied by the existence of a nonlin-
ear term in the Schrödinger equation in the form (1), but are, in principle, allowed for some
versions of the physical mechanism that gives the fluctuations.

As discussed in Ref. [27], the most natural way to preserve a “narrativity” in spon-
taneous collapse theories of this type is to posit a preferred reference frame, such as the
rest frame of the cosmic microwave background (i.e., the rest frame of the center of mass
of the universe). In this case, even in the case of superluminal communication, there will
be no grandfather paradoxes because any return communications must occur in the same
preferred reference frame. Appendix C gives further discussion on how to implement this
type of collapse in a relativistic framework.

As discussed above, if no physical effect such as jamming is seen, it does not automati-
cally falsify the proposed mechanism because there may be intrinsic physical properties
that always give a noisy signal. In that case, the appeal of this mechanism is that it puts
measurement into the realm of the standard kinematic descriptions of waves. What the
present model shows is that a spontaneous collapse model that agrees with all the known
experimental results and is as logically coherent as possible.
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Appendix A. Critique of the Historical Argument against a Simple Nonlinear Term

The standard argument that simple, spontaneous collapse models all involve superlu-
minal communication is reviewed here.

Suppose that we have a source that emits a standard two-photon entangled state,

|ψ〉 = α|V〉|V〉+ β|H〉|H〉, (A1)

https://notebookarchive.org/2022-07-5la04jb
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where |V〉 is a vertically linearly polarized state, and |H〉 is horizontally polarized; the first
ket refers to a left-going photon and the second to a right-going one.

The photon on the left then hits a standard detection apparatus oriented to detect verti-
cal and horizontal polarization. It is assumed that this leads to the following density matrix:

ρ̂1 =


|α|2 0 0 0

0 0 0 0
0 0 0 0
0 0 0 |β|2

, (A2)

i.e., a mixed state of the projection onto states |V〉|V〉, |V〉|H〉, |H〉|V〉, and |H〉|H〉. If we
define N̂L = N̂H − N̂V for the photon on the left, an operator of the form V̂ = ih̄ω(〈N̂L〉 −
N̂L) will then give

∂ρ̂1

∂t
= −(i/h̄)(V̂ρ̂1 − ρ̂1V̂†)

= 2ω(|β|2 − |α|2)


|α|2 0 0 0

0 0 0 0
0 0 0 0
0 0 0 |β|2

− 2ω


−|α|2 0 0 0

0 0 0 0
0 0 0 0
0 0 0 |β|2



= 2ω


(|β|2 − |α|2 + 1)|α|2 0 0 0

0 0 0 0
0 0 0 0
0 0 0 (|β|2 − |α|2 − 1)|β|2

. (A3)

If, for example, |α|2 = .5, this gives

∂ρ̂1

∂t
= ω


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

. (A4)

This leads to evolution toward the pure |V〉|V〉 state.
On the other hand, suppose, at the last second, a person on the left changed the

measurement to polarization along ±45◦ instead of H and V. The recipe for getting the
density matrix of the mixed state, in this case, is to project the state (A1) onto these axes and
then create the stochastic mixture. The projector for +45◦ acting on the states on the left is

P+45 =
1
2
(|H〉+ |V〉)(〈H|+ 〈V|). (A5)

If we act with this operator on the whole state and normalize, we obtain

|ψ+45〉 =
1√
2
(α|H〉|V〉+ α|V〉|V〉+ β|H〉|H〉+ β|V〉|H〉), (A6)

which occurs with probability (|α|2 + |β|2)/2 = 1/2. The corresponding pure-density
matrix is

ρ̂+45 =
1
2


|α|2 αβ∗ |α|2 αβ∗

α∗β |β|2 α∗β |β|2
|α|2 αβ∗ |α|2 αβ∗

α∗β |β|2 α∗β |β|2

 (A7)
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The −45◦ polarization is similar:

ρ̂−45 =
1
2


|α|2 −αβ∗ −|α|2 αβ∗

−α∗β |β|2 α∗β −|β|2
−|α|2 αβ∗ |α|2 −αβ∗

α∗β −|β|2 −α∗β |β|2

 (A8)

The mixed-density matrix that occurs is then

ρ̂2 =
1
2


|α|2 0 0 αβ∗

0 |β|2 α∗β 0
0 αβ∗ |α|2 0

α∗β 0 0 |β|2

. (A9)

The total probability of getting a measurement of a photon with H-polarization on the right
is still the same, namely |β|2 (the sum of the two diagonal terms corresponding to a ket
with a rightmost |H〉), but there are now off-diagonal terms.

It is assumed that the non-Hermitian operator V̂, in this case, involves the number
operator N̂L = N̂+45 − N̂−45 for the 45◦ polarizations. The creation operator for 45◦

polariztion is a†
45 = a†

V + a†
H , which implies the number operator N45 = a†

45a45 = 1
2 (a†

V +

a†
H)(aV + aH) = 1

2 (NV + NH + a†
V aH + a†

HaV). Similarly, N−45 = 1
2 (NV + NH − a†

V aH −
a†

HaV), and therefore N45 − N−45 = a†
V aH + a†

HaV . The time dependence is then given by

∂ρ̂2

∂t
= −(i/h̄)(V̂ρ̂2 − ρ̂2V̂†), (A10)

with V̂ = ih̄ω(〈N̂L〉 − N̂L) as before, but in this case, the expectation value of N̂L =
N̂+45 − N̂−45 is zero since there is an equal likelihood of both polarizations. The time
dependence is then given just by the N̂L operator,

N̂L =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

. (A11)

This gives

∂ρ̂2

∂t
= ω


0 αβ∗ |α|2 0

α∗β 0 0 |β|2
|α|2 0 0 αβ∗

0 |β|2 α∗β 0

. (A12)

By comparing this to (A7), we see that the action is to move the mixed-density matrix
toward the density matrix for the pure 45◦ polarization state. The relative probability of
detecting single photons with H and V polarizations is unchanged.

Therefore, the change in the count rates is different for the detector on the right,
depending on what measurement setting the person on the left has chosen since in the
first case above, with vertical and horizontal detection, the non-Hermitian term was found
to give a change of the relative probabilities. The person on the right can, therefore,
presumably detect the position of the detector on the left instantaneously, which would
imply superluminal communication.

As discussed in the main text, this argument depends crucially on first creating the
mixed state and then, afterward, applying the non-Hermitian operator. However, the
probabilistic nature of the mixed state assumes the existence of an ensemble of trials
in which multiple collapses or projections have occurred. Applying the non-Hermitian
operator afterward assumes that it acts the same way, deterministically, for every one
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of these trials in the ensemble. However, the assumption of our model is that the non-
Hermitian operator is the cause of the collapses and that it acts stochastically to give random
outcomes in each trial, in accordance with the Born rule. The proper recipe, therefore, is to
first form the density matrix of the pure state and then apply the non-Hermitian operator to
get a collapse in one particular trial and, last, to average over many of these trials to get the
final mixed-density matrix.

One must be careful when carrying this out. The approaches that use Itô calculus (for
a review, see [44]) to perform the stochastic average can also implicitly rely on improper
assumptions. For example, Gisin and Percival [45] posit the form of the Schrödinger
equation (in terms of the operators used here)

|ψt〉 = |ψ0〉 −
i
h̄

H|ψ0〉dt− 1
2 ∑

n

(
N̂2

n + 〈N̂n〉2 − 2〈N̂n〉N̂n

)
|ψ0〉dt

+∑
n
(N̂n − 〈N̂n〉)|ψ0〉dWn, (A13)

where dWn is a (real-valued) Itô stochastic differential accounting for fluctuations. This can
be rewritten as

|ψt〉 = |ψ0〉 −
i
h̄

H|ψ0〉dt− 1
2 ∑

n

(
N̂n − 〈N̂n〉

)2|ψ0〉dt + ∑
n
(N̂n − 〈N̂n〉)|ψ0〉dWn

= |ψ0〉 −
i
h̄

H|ψ0〉dt− 1
2 ∑

n
V̂2

n |ψ0〉dt + ∑
n

V̂n|ψ0〉dWn, (A14)

and V̂n = N̂n − 〈N̂n〉. The averaged density matrix can then be constructed as

|ψt〉〈ψt| =

(
|ψ0〉 −

i
h̄

H|ψ0〉dt− 1
2 ∑

n
V̂2

n |ψ〉dt + ∑
n

V̂n|ψ〉dWn

)

×
(
〈ψ0|+

i
h̄
〈ψ0|Hdt− 1

2 ∑
n
〈ψ0|V̂2

n dt + ∑
n
〈ψ0|V̂ndWn

)
. (A15)

As per Itô calculus, those terms that are linear in dWn vanish (the mean of the random
walk remains unchanged) while dWndWm = δnmdt (fluctuation of different states are
uncorrelated, and the magnitude of the random walk increases as t1/2). This gives us

|ψt〉〈ψt| = |ψ0〉〈ψ0| −
i
h̄
[H, |ψ0〉〈ψ0|]−

1
2 ∑

n
V̂2

n |ψ0〉〈ψ0|dt− 1
2 ∑

n
|ψ0〉〈ψ0|V̂2

n dt

+∑
n

V̂n|ψ〉〈ψ0|V̂n. (A16)

The last three terms are exactly the Lindbladian for the operator V̂n. It can be shown that
this term gives the decay of the off-diagonal terms of the density matrix while preserving
the diagonal terms, leading to a diagonal density matrix that corresponds to a mixed state.
This, in turn, prevents superluminal communication of the type discussed above since the
diagonal of the mixed-density matrix is always left unchanged.

This approach of Gisin and Percival requires fine-tuning in that the magnitude of the
third term in (A13) must match exactly the amplitude of the noise assumed in the fourth
term. Without the third term, the Itô calculus applied to just the fourth term, as taken by
Gisin and Percival, will not preserve the diagonal of the density matrix. But we argue
here that such a term is not needed when physically realistic fluctuations are accounted for
correctly.

Itô calculus intrinsically assumes that the fluctuations are fast compared to all other
time scales; in particular, it assumes that fluctuations occur on time scales that are short
compared to dt. However, in our model, as discussed in Section 5, the fluctuations are
assumed to arise from physical fluctuations in the environment. As such, these have a
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short but nonzero persistence time, which means that one can always pick a dt that is
short enough such that ωR,n can be treated as constant. Therefore, one should first take the
dt→ 0 to derive the time evolution and, only afterward, take the stochastic average.

For the moment, treating ωR,n(t) as not time-varying, we can then use standard
time-dependent perturbation theory in the interaction representation, as in Section 2 (see,
e.g., Ref. [29], Chapter 4). Starting with the Schrödinger equation

ih̄
d
dt
|ψt〉 = H0|ψt〉+ ih̄ ∑

n
V̂nωR,n|ψt〉, (A17)

the prescription of this method is to write

|ψ(t)〉 = |ψ0〉+
1
ih̄

∫ t

0
dt ∑

n
V̂n(t)|ψ(t)〉, (A18)

where Vn(t) = eiH0t/h̄V̂ne−iH0t/h̄ and |ψ(t)〉 = eiH0t/h̄|ψt〉. Since N̂n commutes with the
Hamiltonian H0, the only time-dependence of V̂n(t) comes from the time dependence
of |ψt〉, which is used in the term 〈N̂n〉, which occurs in V̂n. The expansion of the time
dependence up to the first order is then

|ψ(t)〉 '
(

1 + ∑
n

ωR,nt
(
〈ψ0|N̂n|ψ0〉 − N̂n

))
|ψ0〉. (A19)

When substituting this back into (A18) for the second-order expansion, we then have

|ψ(t)〉 ' |ψ0〉+
∫ t

0
dt ∑

n
ωR,n

[
〈ψ0|

(
1 + ∑

m
ωR,mt

(
〈ψ0|N̂m|ψ0〉 − N̂m

))

×N̂n

(
1 + ∑

m′
ωR,m′ t

(
〈ψ0|N̂m′ |ψ0〉 − N̂m′

))
|ψ0〉 − N̂n

]

×
(

1 + ∑
n′

ωR,n′ t
(
〈ψ0|N̂n′ |ψ0〉 − N̂n′

))
|ψ0〉

' |ψ0〉+ ∑
n

ωR,nt
(
〈ψ0|N̂n|ψ0〉 − N̂n

)
|ψ0〉

+
t2

2 ∑
n,n′

ωR,nωR,n′
(
〈ψ0|N̂n|ψ0〉 − N̂n

)(
〈ψ0|N̂n′ |ψ0〉 − N̂n′

)
|ψ0〉

+t2 ∑
n,m

ωR,nωR,m〈ψ0|
(
〈ψ0|N̂m|ψ0〉 − N̂m

)
N̂n|ψ0〉. (A20)

When taking t2 as being negligible compared to t, as we did in Section 2, we form the
density matrix

|ψt〉〈ψt| = eiH0t/h̄

(
|ψ0〉+ t ∑

n
V̂nωR,n|ψ0〉

)(
〈ψ0|+ t ∑

n
V̂nωR,n〈ψ0|

)
e−iH0t/h̄. (A21)

Again, by keeping just the terms linear in t, we then have

|ψt〉〈ψt| = |ψ′t〉〈ψ′t|+ t ∑
n

ωR,n
(
|ψ′t〉〈ψ′t|V̂n + V̂n|ψ′t〉〈ψ′t|

)
, (A22)
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where |ψ′t〉 = eiH0t/h̄|ψ0〉 is the change in the state by normal Hamiltonian evolution. In
other words, when taking t = dt as an infinitesimal, the change in the density matrix due
to the non-Hermitian term is

d
dt
|ψt〉〈ψt| = ∑

n
ωR,n

(
|ψ′t〉〈ψ′t|V̂n + V̂n|ψ′t〉〈ψ′t|

)
. (A23)

The action of the operator |ψ〉〈ψ|V̂n + V̂n|ψ〉〈ψ| on the two states |0〉 and |1〉, for |ψ〉 =
α|1〉+ β|0〉 is given by the matrix(

−2|α|2|β|2 −α∗β(2|α|2 − 1)
β∗α(2|α|2 − 1) 2|α|2|β|2

)
. (A24)

As discussed in Ref. [27], this maps to a one-dimensional problem corresponding to a
random walk of the polar angle θ on the Bloch sphere, where cos θ = |α|2 − |β|2; the off-
diagonal components of the density matrix are not independent of the diagonal components
but instead approach zero as the diagonal components approach either |α| = 1 or |β| = 1.

We can now take the stochastic average for fluctuations in ωR,n. Since the fluctuations
of θ are linearly proportional to ωR,n, the Itô calculus prescribes that the average of θ does
not change in time. This implies that an average over many random walks will give

|ψ〉〈ψ| =
(
|α|2| 0

0 |β|2
)

, (A25)

in accordance with the Born rule. This is an alternate derivation of the proof given in
Appendix B.

Appendix B. Proof That a Martingale Random Walk Satisfies the Born Rule

Let Y1, Y2, . . . be a sequence of independent and identically distributed random vari-
ables with a common symmetric, continuous probability density φ that is strictly positive
in an open neighborhood of the origin. Examples of such φ include the Gaussian and
Lorenztian distributions. We also suppose that 0 < L < 1 is a fixed constant, small enough
so that

Lc ≤ 1/2, (A26)

where c > 0 is a cutoff parameter that we will make use of later. For convenience of
numerical implementation, we want to ensure that the step sizes are uniformly bounded.
We define σ to be the function

σ(x) =


x if |x| ≤ c
−c if x ≤ −c
+c if x ≥ +c.

(A27)

Finally, we define σn = σ(Yn). For each fixed n, σn is, thus, a continuous, symmetric
random variable with mean 0 and uniformly bounded range [−c, c].

We wish to study the following stochastic finite difference equation (SFDE):{
Xn+1 = Xn + σn+1L(1− X2

n)

X0 ∈ [−1, 1].
(A28)

This SFDE is a random walk starting at a given X0 ∈ [−1, 1]. We shall show that this model
leads to the Born rule. That is, when given any initial condition X0 ∈ [−1, 1], we can assign
a probability, p+(X0), of collapsing to state 1, and a probability, p−(X0), of collapsing to
state −1, such that

(Born rule) p±(X0) =
1± X0

2
. (A29)
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Our strategy is to first prove that we can achieve the Born rule within arbitrary
precision ε > 0, and then to take the limit as ε tends to 0 to recover the Born rule. The
crucial observation we will make is that the stochastic process (Xn) defined by (A28) is a
martingale. The martingale property is that

E[Xn+1|X0, . . . , Xn] = Xn, (A30)

where E denotes the conditional expectation. Intuitively, our best prediction of the next
position of a martingale, given the history of the process, is simply the current position
(martingales are like stochastic constants). In order to prove that our process is a martingale,
we simply compute the conditional expectation.

First, we note that Xn+1 depends only on Xn and not X0, . . . , Xn−1. Moreover, Xn is
known to us at time n. Finally, σn+1 is independent of Xn. According to the properties of
conditional expectation, we, therefore, have

E[Xn+1|X0, . . . , Xn] = E[Xn+1|Xn]

= E[Xn + σn+1L(1− X2
n)|Xn]

= Xn + L(1− X2
n)E[σn+1|Xn]

= Xn + L(1− X2
n)E[σn+1]

= Xn. (A31)

In the last line, we have used E[σn+1] = 0 for every n. Therefore, the sequence (Xn) is a
martingale.

Now, we introduce 0 < ε < 1 and define a stopping time

N(ε) = inf{n ≥ 0 : |Xn| ≥ 1− ε}. (A32)

We state here and prove below that N(ε) is finite almost surely, which simply means that
P[N(ε) < ∞] = 1. Because of this, we can make use of the optional stopping theorem,
ref. [46] which states that if a martingale (Zn) is bounded in the sense that there exists some
M > 0, such that |Zn| < M for all n ≥ 0, and if a stopping time τ is finite almost surely,
then E[Zτ ] = E[Z0].

We have already established that Xn is a martingale, and we are assuming that N(ε)
is finite almost surely. Thus, we only need to find a uniform bound on |Xn| to apply
the optional stopping theorem. A bound is achieved as follows: for all n, |Xn+1| ≤
|Xn|+ Lc|1−X2

n| ≤ 1+ Lc according to the triangle inequality. Thus, the optional stopping
theorem applies, and we can conclude that

E[XN(ε)] = E[X0] = X0. (A33)

With (A33) in hand, we proceed as follows: Let p+ε (X0) = P[XN(ε) ≥ 1− ε] be the prob-
ability that collapse to +1 occurs (before collapse to −1) with a tolerance of ε, and let
p−ε (X0) = P[XN(ε) ≤ −1 + ε] be the probability that collapse to −1 occurs (before collapse
to +1) with a tolerance of ε. Since we are assuming that P[N(ε) < ∞] = 1, we know that at
least one of the two events (XN(ε) ≥ 1− ε) or (XN(ε) ≤ −1 + ε) must occur. Moreover, for
sufficiently small ε, these two events are complements. Therefore, the probabilities satisfy
p+ε (X0) = 1− p−ε (X0).

Let b = b(ε) = XN(ε) if the event (XN(ε) ≤ −1+ ε) occurred, and let a = a(ε) = XN(ε)

if the event (XN(ε) ≥ 1− ε) occurred. We have b ≤ −1 + ε and a ≥ ε− 1, but we will
also need a sufficiently large lower bound on b, as well as a sufficiently small lower bound
on a. It turns out that, in fact, −1 ≤ b and a ≤ 1. To prove this, consider the function
f (x) = |x|+ 1

2 |1− x2| defined on the interval [−1, 1]. It is straightforward to find that the
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maximum value of f on this closed interval is 1. Thus, we can estimate the position of the
random walk at the stopping time N = N(ε):

|XN | ≤ |XN−1|+ Lc|1− X2
N−1|

≤ |XN−1|+
1
2
|1− X2

N−1| by (A26)

= f (XN−1) ≤ 1, (A34)

since, prior to the stopping time, XN−1 must be an element of [−1, 1].
Now, we can expand out the expected value in (A33):

X0 = E[XN(ε)] = p+ε (X0)a + (1− p+ε (X0))b. (A35)

Solving for p+ε (X0) yields

p+ε (X0) =
−b + X0

a− b
. (A36)

Since we have shown that−1 ≤ b ≤ −1+ ε and 1− ε ≤ a ≤ 1, it follows that lim
ε→0

a = 1 and

lim
ε→0

b = −1; hence, lim
ε→0

p+ε (x0) =
1 + X0

2
. Likewise, one finds that lim

ε→0
p−ε (x0) =

1− X0

2
.

Therefore, (A29) holds.
Proof that N(ε) is bounded almost surely. We wish to show that P[N(ε) < ∞] =

1. Choose δ > 0 so that φ > 0 on [−δ/2, δ/2] and such that 0 < δ < c. We claim
that the stochastic process {Xn : n = 0, 1, 2, . . . } defined via (A28) exhibits arbitrarily
long sequences of consecutive, equally sized steps in the direction of +1. Let K be an
arbitrary natural number, and let EK

n be the event (σn+i ≥ δ/2 for i = 1, . . . , K). Consider
the sequence of independent events EK

1 , EK
K+1, EK

2K+1, . . . . From our assumptions on the
probability density φ for m = 0, 1, 2, . . . , we have

P[EK
mK+1] = P[σn ≥ δ/2]K ≥

(∫ δ

δ/2
φ(x)dx

)K

=: λ > 0. (A37)

Therefore,

∞

∑
m=0

P[EK
mK+1] ≥

∞

∑
m=0

λ = ∞. (A38)

Since the events EK
mK+1 are independent, the second Borel-Cantelli lemma applies, and

P[EK
mK+1 infinitely often] = 1. We can, thus, choose an m so that EK

mK+1 holds almost surely.
Consider now the SFDE (after reindexing, we can assume the process starts at time mK){

Xn+1 = Xn + σn+1L(1− X2
n), n = 1, . . . , K

X0 ∈ [−1, 1]
(A39)

Consider the analogous deterministic finite difference equation{
yn+1 = yn +

δ
2 L(1− y2

n), n ≥ 1
y0 ∈ [−1, 1]

(A40)

It follows from the consideration of the function f defined above and the fact that δL/2 <
cL/2 < cL < 1/2 that, for system (A40), |yn| ≤ 1 for all n. Moreover, {yn} is monotone-

increasing. Thus, the sequence converges upward to a limit, y. Then, y− y =
δ

2
L(1− (y)2),

so y = ±1. Thus, y = 1. Hence, we can find a least M < ∞, so that 1− ε ≤ yM ≤ 1, and
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{n < ∞ : |yn| ≥ 1− ε} 6= ∅. Now, select K to be large enough so that M < K. For every
n = mK, . . . , (m + 1)K, we have σn ≥ δ/2; thus, Xn ≥ yn. Hence, (almost surely)

N(ε) = inf{n : |Xn| ≥ 1− ε} ≤ inf{n : |yn| ≥ 1− ε} = M < ∞.

Appendix C. Relativistic Formalism for Nonlocal Projections

The non-unitary term (18) has the appeal that it is a compact addition to the Schrödinger
equation that allows numerical methods to be applied. It also has nonlocal effects, acting as
a type of projector at equal times over all space.

As discussed in Ref. [27], one can generalize this to other relativistic reference frames
by positing that there is a favored, universal reference frame in which these projections
occur, which could be the center of mass of the universe, seen in the cosmic microwave
background, or some other chosen frame. In this case, we can take the many-body states of
the system, defined along equal-time slices in this favored reference frame.

A many-body “state” in the laboratory rest frame at time t0 can be written as

|ψ〉 = α|0, 1, 0, 0, 1, . . .〉+ β|1, 1, 0, 1, 0, . . .〉+ . . . (A41)

where α and β are complex phase factors for a potentially infinite number of different
superpositions of Fock states, and the Fock states are generated by the factor (a†(~r, t0))

N

acting at each point~r in space, where N can equal 0 or 1. This is somewhat unconventional
notation, as the state created by a†(~r, t0) is not an eigenstate of the system, but the set of
Fock states defined this way is a complete set of orthogonal states that can form the basis of
any many-body state. This can be carried out simply by switching the roles of~r and~k in
the standard plane-wave basis of the many-body field theory (see, e.g., Ref. [29], Chapter 4)
to give a discrete sum over~r-states and a continuum of~k-states created by Ψ†(~k). In this
notation, a plane-wave state with momentum~k is created as

|~k〉 = Ψ†
~k
|vac〉 = 1√

k3
max

∑
~r

ei(~k·~r−ω~kt)a†(~r, t)|vac〉, (A42)

which is a superposition of Fock states, each with a single particle at one location. Here,
kmax is a cutoff of momentum, which plays the same role as a system size cutoff V in
conventional notation, and the limit is taken of kmax → ∞. (It has been questioned [47,48]
whether the limit V → ∞ can be taken without causing a breakdown of the conventional
many-body theory, as the finite value of V is used to justify discrete~k-states. Here we simply
note that when taking V as infinite from the start, with kmax finite, and, afterward, taking
kmax → ∞, it is formally and mathematically equivalent to the conventional approach of
taking~k defined over an infinite range with V being finite, and then taking the limit V → ∞,
since we have just redefined the names of the conjugate variables.)

The state (A41) can be visualized as the horizontal line in Figure A1 with open circles,
where each circle represents a local fermionic state in a continuum. It amounts to taking a
slice at equal times in the overall hyperspace field. If an operator N̂(~r, t0) is applied to this
state, this will remove any Fock states in the overall superposition that have N(~r, t0) = 0.

The time-slice on which a many-body “state” is defined is somewhat arbitrary, how-
ever. We could also define a “state” as a slice of the global field at equal times in a different,
chosen reference frame (e.g., the rest frame of the cosmic microwave background). If that
chosen reference frame is moving at speed v relative to the laboratory rest frame, its equal
time slice will correspond and have the same form as (A41), but in this case of the local cre-
ation operators, it will be Ψ†(~r, t0 −~r ·~v/c2). This corresponds to the tilted line with open
circles in Figure A1. If an operator N̂(~r, t0) is applied to this state, this will remove any Fock
states in this overall superposition that have N(~r, t0) = 0. This implies a backwards-in-time
action of a sort, but as discussed in Ref. [27], it does not imply grandfather paradoxes.

Of course, we could just solve all problems in the chosen reference frame, in which
case we do not have to worry about backwards-in-time actions. But in many cases, it may
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be more convenient to solve the normal Hermitian Hamiltonian dynamics in the laboratory
frame and then apply the nonlocal, non-Hermitian term separately. In this case, we have a
well-defined algorithm for evolving the field in time:

• For a given many-body “state” along a time slice, first evolve the state using the local,
Hermitian interaction Hamiltonian to take the state from time t to time t + dt. This
may generate superpositions of different Fock states.

• At each point of this new “state”, apply the non-Hermitian operator (18). This will
have the effect of changing the relative weights of the phase factors α, β of the overall
superposition of Fock states.

• With this new superposition, go on to the next time slice t+ dt and start the process over.

This algorithm may seem odd, but it is well-defined, is consistent between different ref-
erence frames, and involves no random numbers other than what randomness is generated
by actual fluctuations in the local environment via the 〈H〉 term in (18).

Figure A1. Horizontal line with open circles: the standard definition of a many-body state at equal
times in the observer’s rest frame. The circles represent creation at multiple locations~r via Ψ†(~r, t = 0).
Tilted line with open circles: the definition of a many-body state at equal times in a universal, favored
reference frame, moving at speed v relative to the rest frame of the horizontal axis (with the time axis
given by the line with an arrow, t = r/v). The circles represent creation at multiple locations~r via
Ψ†(~r, t−~r ·~v/c2).
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