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Abstract: This research systematically analyzes the behaviors of correlations among stock prices and
the eigenvalues for correlation matrices by utilizing random matrix theory (RMT) for Chinese and
US stock markets. Results suggest that most eigenvalues of both markets fall within the predicted
distribution intervals by RMT, whereas some larger eigenvalues fall beyond the noises and carry
market information. The largest eigenvalue represents the market and is a good indicator for averaged
correlations. Further, the average largest eigenvalue shows similar movement with the index for
both markets. The analysis demonstrates the fraction of eigenvalues falling beyond the predicted
interval, pinpointing major market switching points. It has identified that the average of eigenvector
components corresponds to the largest eigenvalue switch with the market itself. The investigation on
the second largest eigenvalue and its eigenvector suggests that the Chinese market is dominated by
four industries whereas the US market contains three leading industries. The study later investigates
how it changes before and after a market crash, revealing that the two markets behave differently,
and a major market structure change is observed in the Chinese market but not in the US market.
The results shed new light on mining hidden information from stock market data.

Keywords: financial big data; stock market modeling; random matrix theory; eigenvalue analysis

1. Introduction

Thanks to the availability of financial data in a wide range of frequencies from tick
to daily, it is possible to apply data mining and knowledge discovery methods beyond
traditional finance but from data science, network analysis, and even physics, etc. The
asset prices in the markets result from complicated dynamics of spreading and reacting
to market signals and information. The market structures are embedded in the price
movements, which are normally correlated with each other. As a starting point for the
underlying cornerstones of finance theories like modern portfolio theory (MPT) [1] and
capital asset pricing model [2], the correlation information of assets prices is always at heart
for theoretical studies and finance industrial practices in portfolio management and risk
management, etc.

For a portfolio of N stocks, we need a correlation matrix with N × N elements to
describe the pairwise relationships. With the increase of N, the number of possible rela-
tionships snowballs, making it difficult and challenging to calculate or analyze. To extract
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the hidden structure and essential information, it is necessary to simplify the network by
filtering the less important elements to make it feasible to analyze portfolios even with
a very large N. In the past few years, we see some methods have been introduced to
simplify the stock matrices. To study the correlation behaviors of the financial markets, a
correlation matrix is constructed from the price time series before we apply methods and
techniques such as principal component analysis [3–6], multidimensional scaling [7], factor
analysis [4], minimum spanning tree [8,9], hierarchical clustering [8,10,11], and singular
value decomposition [12].

Simplification of the correlation matrix requires validation, which statistically validates
the matrix and keeps those validated elements to achieve a simple matrix with fewer noises
and ease of analysis. The validations provide statistical confidence in the results or insights
extracted from the validated matrices. The underlying idea of design validation is to
compare the empirical matrices with random ones generated from the same distributions,
random shuffles, or statistical tests with which the null hypothesis is set up to be tested with
empirical data. Any deviations from these benchmarks are considered noises and should
be filtered. Similarly, given an empirical correlations matrix (and the derived distance
matrices for the networks), we can consider a random matrix with the same size. A null
hypothesis can be introduced to test the statistical validation of each element of the original
empirical matrix by comparing the distributions. The basic idea is that any deviations
from the random distribution are believed as validated with genuine information from the
system. In contrast, those falling within the random distribution are pure random noises
that contain no system information.

Specifically, in this study, based on a dataset covering nine years of stock prices, we
systematically investigate the stock markets of China and the US using random matrix
theory (RMT) to study and compare the correlation properties and the dynamics of eigen-
values and eigenvectors. The findings revealed that the two stock markets are both similar
and different in many ways. The results add new insights into market behaviors with
implications for finance applications such as portfolio management and optimization, mar-
ket risk monitoring, and trading strategy design. Meanwhile, this study also serves as a
framework for data mining and knowledge in financial big data using RMT.

This work is organized as follows. First, we review the literature in Section 2. The
methodology is introduced in Section 3. In Section 4 we describe the dataset of two markets
and the properties of correlation matrices. Using RMT, in Section 5, the properties and
behaviors of eigenvalues and eigenvectors are analyzed with an investigation of a market
switch study. Finally, Section 6 presents conclusions, discussions, and limitations.

2. Literature Review

In this section, we introduce literature from three aspects. First, RMT and its applica-
tions are introduced in Section 2.1, representative studies of applying RMT in analyzing
financial markets are described in Section 2.2, as well as recent studies focusing on com-
paring different stock markets, especially the US and Chinese markets are discussed in
Section 2.3.

2.1. RMT and Its Applications

Originating in mathematical physics, RMT was first introduced by physicists to study
nuclear activities back in the 1950s [13]. Eugene Wigner used RMT to model the excited
states of nuclei in reactions which was hard to obtain by using traditional methods. Instead,
he proposed to analyze the eigenvalues and their spacing of a random matrix [14]. The
basic idea is to analyze the statistical properties of eigenvalues of the random counterpart
whereas it is practically impossible to analyze the individual eigenvalues of the original
complex system. RMT provides a powerful toolbox to reveal properties of matrices whose
elements are sampled from randomness, usually based on certain probability distributions.
Soon, RMT was proved an efficient tool for many challenges in physics and beyond. Before
long, RMT attracted significant interest from scholars in various fields with wide-spreading
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applications like physics, mathematics, biology, engineering, computer science, and social
science. After decades of development, RMT has become an important research field with
rich theoretical implications and real applications in a variety of disciplines, such as spec-
trum analysis and filter in information processing, signal detection and channel estimation
in wireless communication, data analysis in high dimensional space, and optimization in
machine learning. Interested readers should refer to works by Potters and Tao for details
on theories and applications of RMT [15,16].

2.2. Applying RMT Approaches in Financial Markets

In finance, RMT was first introduced into the study of financial markets by [17], and
more recently, there are significant advances in applying RMT in finance studies and
applications [18–20]. In one study, RMT is applied to analyze stock market behaviors [21].
In another study, the world stock market is analyzed with RMT [22]. Recent works also
investigated various financial markets using RMT [23–25].

2.2.1. RMT in Financial Correlation Analysis

Rooted in the correlation analysis, RMT offers a new look into the structures and
behaviors of the financial markets. Applying RMT to financial markets is closely related
to the analysis of correlation matrices and network structures [26–30]. The market is full
of noises, and the useful information in correlation matrices built from price data might
be covered by the noises and make correlation analysis less meaningful [31]. To quantify
the validations of correlations, recently, there are many works applying RMT into the
studies of the correlation matrices of financial markets [17,31–37]. Recently, there is an
emergence of research using RMT in financial markets to filter noises and reveal embedded
market properties. The cross-correlations of stock prices are studied using RMT to identify
correlated relationships [38]. Furthermore, free random variables are applied in RMT
analysis in financial time series [39]. RMT has also been applied to return estimation and
asset allocation in Markowitz mean-variance optimization [40].

2.2.2. RMT in Eigenvalue Analysis

RMT provides a powerful tool for eigenvalue analysis in financial markets. Using
time-shifted series, the lagged correlation matrices are studied from the RMT approach
to compute eigenvalue density and identify deviations [41]. It has been verified that the
largest eigenvalue λmax is a good estimator of the average correlation of the correlation
matrices constructed from a sliding window approach [42]. The same results are also
reported, revealing that the average correlation co-moves with the largest eigenvalue
for the component stocks of S&P500 [36]. For normalized eigenvectors, the value of
Sij ranges from 0 to 1. In other words, the two eigenvectors change from orthogonal
to exactly the same. One study reports that the effect of noises on the risk becomes
insignificant in measure of the fixed portfolio while remaining important for an optimized
portfolio for small values of N/L [31]. This indicates that the correlation matrix can still
be valid in traditional risk management and portfolio optimization; noises cover even
most information. Using simulation methods, many correlation matrix filtering approaches
are tested, and the approaches based on random matrix theory are found to perform
consistently well in all cases [43]. The eigenvalue distribution of the emerging stock market
is different from developed markets though correlation distributions and other properties
are similar. Methods based on clustering for portfolio optimization and effective size
determination are proposed. The results are found to be improved compared to RMT
approaches [37], which indicates that RMT might be further combined with other methods
in filtering matrix and optimizing a portfolio [27].

It was found that the average of correlations in the correlation matrix can be well
estimated from the largest eigenvalue as

λmax/N ∼
〈
Cij
〉
. (1)
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Following the RMT approach, the largest eigenvalues are found to be responsible for the
market mode. By removing this, the correlation matrix is cleaned to reveal the topological
structures [28]. The details of the residual noise part for a market are studied, revealing that
the noise band is composed of more sub-bands [11]. Using RMT, the Chinese stock market is
studied [18], a similar anti-correlation relationship between sub-sectors is studied [44], and
the results show that the prominent sector structure exists. The distribution of eigenvalues
also reveals that the market is likely to be influenced by the Chinese government’s global
financial crisis and policies. In a further study on the sub-sectors of a stock market, local
interaction structures are found to change during financial crises [19]. The sign information
of components in eigenvectors is again used to detect the sub-sector anti-correlations [45].
Focusing on how the credit market and stock market behave before and after a financial
crisis, RMT is applied and finds that the largest eigenvalue of the credit market precedes
that of the stock market [46]; this indicates that the pattern changes of eigenvalues have
potential implications in the understanding of interrelationships between different markets.
Market contagion is also investigated from financial network analysis and, naturally, RMT.
Market contagion is an important indicator of market stability. By looking into the structural
changes in networks and properties revealed by RMT, one can identify and predict the
market contagion and thus major market switches [47–51].

2.2.3. RMT in Eigenvalue Distributions

Since the introduction of RMT into the study of financial markets, much literature
investigated different markets. An earlier study points out that the lower bound is pos-
itive and no eigenvalues fall between 0 and λmin also vanish above λmax [17]. Since the
empirical values of N and L are limited far from ∞, the edges are blurred with some
eigenvalues falling beyond the bounds [32]. The distribution of the spacings of eigenvalues
s ≡ λi+1 − λi are found to agree with a Wigner distribution of the energy spacing levels [34].
This provides evidence indicating that the empirical correlation matrix is consistent with
its random matrix counterpart. Many empirical studies reveal that only a small fraction
of eigenvalues and their corresponding eigenvectors contain system information while
most are embedded in noises [17,52–54]. It has been reported that the portion of the largest
eigenvalues deviating from the theoretical prediction of the counterpart random matrix is
6% [17], 4.7% [54], 2% [34], 11% [53], and 1% [35].

Furthermore, the study of [55] adds new evidence that not all eigenvalues that fall into
the theoretical interval predicted by the random matrix are purely random noise but still
carry some information. Derived from the eigenvector-eigenvalue identity, a study showed
that dominant eigenvalues, super eigenvalues, and maximum eigenvalues could help to an-
alyze the spectrum of the financial correlation matrix in depth [56]. In computational results
and applications in financial markets, one study reviewed the previous works, including
some real-world applications, and presented promising analytical techniques from random
matrix theory [26,57]. Another study proposed general, exact formulas for the overlaps
between the eigenvectors of large correlated random matrices with noises [58]. Besides the
intro-relationship of stock markets, another study revealed a deep relationship between
news and world financial indices using tools of random matrix theory [59]. Economic
policy is another field that has a significant influence on the stock market, and [60] analyzed
the correlation matrix and different stock network structures to reveal the implication of
the correlation matrix components. The work of [61] fused previous models, which made
predictions based on the arbitrarily long time horizon and introduced an ensemble of
random rectangular matrices from the observations of independent Lévy processes over a
fixed-time horizon. To summarize and compose a benchmark for the study of correlated
time-series signals, ref. [62] used supersymmetric theory to generate the statistics of eigen-
vectors of the cross-correlations of correlated time-series. Another study investigated the
correlations of Chinese stocks before and during the 2008 crisis based on the random matrix
analysis [63].
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2.3. Comparative Studies on Different Markets

In another thread, there are abundant studies dedicated to the comparative studies on
the two major stock markets, namely the Chinese and US markets [29,64–67]. Although
RMT has been applied to stock markets, there is still a lack of comprehensive studies
using RMT to analyze the Chinese and US markets. How the correlations and eigenvalues
behavior are related to the market switches between bull and bear markets is still not
sufficiently investigated. There is a thread of literature on comparing the dynamics of
markets in different countries [29,30]. Considering the signs of eigenvector components,
sub-sectors of positive and negative signs can be derived from sectors in anti-correlation.
The sub-sectors are detected with strong appearances in the Chinese stock market but
weaker in the US stock market [44]. US and British stock exchanges are studied by using
RMT on the asymmetric correlation matrix with a lag of τ [3]. One work revealed the
different strengths of correlations between stocks, especially the oil sector and banking
stocks in the Nigerian Stock Market (NSM) and Johannesburg Stock Exchange (JSE), for
the period of 2009 to 2013, using random matrix theory [68]. Comparative analyses on two
different stock markets—the S&P 500 (USA) and Nikkei 225 (JPN) via the power mapping
method from the random matrix theory, and found strong consistency between the states
of the two stock markets as well as the feasibility to predict critical state (market crash) [69].

Particularly, some works investigated the markets of the US and China [64,66]. Ac-
cording to the strong connection between financial assets and institutions and the diversity
as well as the localization of the stock market, one study previously analyzed the topo-
logical structure of financial networks of two major markets of China and the US with
complex network theory [29]. Several studies investigated the two markets from aspects
of comovement [70], impacts of trade conflicts and pandemic [65,67,71], and conditional
correlations [72]. These studies revealed the different behaviors of the two major stock
markets. However, there is still a lack of comprehensive studies on the Chinese and US
stock markets from the perspective of RMT. In this sense, this work aims to fill this gap by
systematically investigating the two markets using correlation analysis and RMT.

3. Methodology
3.1. Construction of Correlation Matrices

For an empirical correlation matrix C of size N × N generated from N returns series
of length L, we can construct the elements as

C =
1
L

MMT , (2)

where M is a N× L matrix with normalized return yi(t) for each stock at every time t, where

yi(t) =
Yi(t)− 〈Yi(t)〉

σi
, (3)

where Yi(t) stands for the return at time t.
The study of [73] provides a study of the eigenvalues spectrum for the Chinese stock

market with a sliding window approach. The inverse participation ratio is defined as

Ik =
N

∑
l=1

[
uk

l

]4
, (4)

where uk
l is the components of eigenvector vk, to measure the deviation degree of eigen-

vectors [53]. A criterion of fractional Gaussian noise (fGn) is used to evaluate the auto-
correlation matrix of stocks showing agreement with fGn, though the stock returns are
non-Gaussian [20].
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3.2. Eigenvalue Analysis Using RMT

RMT is a powerful tool in the analysis of eigenvalues of noisy data in various
fields [15,16,74,75]. According to RMT [15,16], the eigenvalue distribution of a pure random
matrix Crandom with the same size of C follows

p(λ)random =
Q
2π

√
(λmax − λ)(λ− λmin)

λ
, (5)

where λmin and λmax are the theoretical minimum and maximum eigenvalue bounds of
random matrix, the Q is the ratio of L/N satisfying the requirement that Q > 1, L → ∞,
and N → ∞ [17]. Using the empirical data, we can also get the empirical distribution as

p(λ)random =
1
N

dn(λ)
dλ

. (6)

Theoretically, with the knowledge of Q, we can determine the theoretical eigenvalue
bounds as

λmin,max = 1 +
1
Q
∓ 2

√
1
Q

. (7)

With these calculations, we can construct and determine the theoretical distribution of
a null hypothesis random matrix. The empirical eigenvalues that fall within the interval of
[λmin, λmax] are pure random noises, and those that fall beyond the interval are the validated
eigenvalues carrying true information of the system. In this way, we also get the validated
corresponding eigenvectors for those validated eigenvalues. Also, we can go further to
investigate the statistical validation of the eigenvectors. The distribution of the eigenvector
components in vi for eigenvalue λi follows the Porter-Thomas distribution [17] as

P(vi) =
1√
2π

e−
v2

i
2 , (8)

with which we can validate the eigenvector components by comparing the distributions. It
has been reported that the distribution of eigenvector components of the largest eigenvalues
shows a great difference from the theoretical predictions [17].

In short, we first construct the correlation matrix for the N stocks and calculate the
corresponding theoretical bounds of eigenvalues predicted with RMT, and analyze the
eigenvalues with special attention to the largest and second largest eigenvalues.

4. Data and Correlation Matrices
4.1. Data

In this paper, we study the stock markets of China and the United States. There are
three considerations in choosing these two markets. First, both markets are major stock
markets in the world with tremendous total market scales and a large number of stocks
that are actively traded. Second, the two markets both experienced major market shifts
between bull and bear markets demonstrating rich market dynamics and behaviors. Third,
the US market and Chinese market are representatives of a much-matured market and
still-developing market, respectively. We collected the daily price data of the components
of the China Securities Index 300 (CSI300) and Standard & Poor’s 500 (S&P500) between
4 January 2007 and 6 November 2015. In total, the dataset covers 2149 trading days for
CSI300, and 2228 trading days for S&P500. The data of CSI300 are retrieved from the
CSMAR Solution Database of Shenzhen GTA Education Tech. Ltd. The data of S&P500 are
extracted from Yahoo Finance service. We further selected 163 stocks from CSI300 with at
least 2000 trading dates without continuous 100 non-trading dates, whereas we selected
468 stocks with at least 2100 trading dates from S&P500. Later, we refer to the screened
stocks as CSI163 and S&P468, respectively [29].
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4.2. Correlation Matrices

In a stock market, the prices of stocks fluctuate constantly showing complex behaviors.
It is important to investigate the performance of individual stocks as well as the interactive
behaviors among stocks. To evaluate the interactive co-movement behaviors among the
prices of assets, the correlation is a fundamental concept widely used in studies of price
dynamics and is used in traditional theories. When the correlation is considered, in
traditional theories, like in MPT where the correlation matrices are actually inputs for the
portfolio optimization [1], the correlation is assumed as fixed. Still, in the real world, the
correlations fluctuate and demonstrate some collective behaviors in market crashes. As a
starting point for studying the structure and behavior of markets, correlation analysis is
found to be useful not only in theory but also in practices of portfolio risk estimation and
optimization [33,76]. Especially during periods of crisis, highly collected co-movements
of the stocks are very likely to cause significant losses for a portfolio, so it is necessary
to watch the portfolio’s correlations. Also, to understand the market structure and the
dynamics, it is interesting to investigate the correlations [8,33,35,77–79].

Following the definition and notation widely used in the literature, the Pearson
correlation coefficient [8]

ρij =

〈
YiYj

〉
− 〈Yi〉

〈
Yj
〉√(〈

Y2
i
〉
− 〈Yi〉2

)(〈
Y2

j

〉
−
〈
Yj
〉2
) (9)

can be calculated for each stock pair of si and sj using the logarithmic return

Yi = ln Pi(t)− ln Pi(t− 1). (10)

The value of ρij ranges from −1 to −1, indicating a dynamic relationship for the two stocks
from a complete anti-correlation to a complete correlation. For a perfect uncorrelated pair,
ρij = 0 by definition. If there are N stocks in consideration, then there will be N2 correlation
coefficients fitting into a N × N correlation matrix. Correlation analysis has been applied
in the study of market structures [8,28,80] and portfolio optimization [31,37,43,54].

In the RMT approach, the statistics of the eigenvalues distribution and the deviation
between empirical distribution and the distribution generated from a random fashion are
discussed to describe the information contribution of these deviated eigenvalues and the
corresponding components of the eigenvectors. But first, the empirical results are tested
against a random matrix case [31].

5. Eigenvalues and Eigenvectors for CSI163 and S&P468
5.1. Eigenvalues

Based on the correlation matrices we built in the previous section, we are ready to
investigate the eigenvalues and eigenvectors of both markets. First, we use all the logged
daily returns data of both two markets, CSI163 and S&P468 over the whole study period,
which is 4 January 2007 and 6 November 2015 covering 2149 trading dates for the former
and 2228 trading dates for the latter. We present the probability density distributions
(PDF) of eigenvalues from the empirical correlation matrix and theoretically predicted by
using random matrix theory for CSI163 in Figure 1 and for S&P468 in Figure 2, respec-
tively. For both markets, we find that most empirical eigenvalues are within the RMT
predicted interval with some exceptions. As shown in Figure 1, for CSI163, the theoretical
predicted eigenvalues bounds are λmin = 0.5250 and λmax = 1.6267. We see that there are
7 eigenvalues are larger than the largest eigenvalue predicted by RMT, i.e., 4.29% of all
eigenvalues fall beyond the interval. The largest eigenvalue λ1 = 60.2252 is nearly 37 times
the predicted largest eigenvalue, i.e., λ1/λmax = 37.0238. For S&P468, as shown in Figure 2,
the largest eigenvalue λ1 = 189.5698 which is almost 89 times the bound predicted by RMT.
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There are 12 eigenvalues that are larger than the bound, i.e., 3.56% are beyond the interval
and carry real market information.
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Figure 1. The eigenvalue distributions for CSI163 correlation matrix over the whole study period.
The yellow bars are distributions of all eigenvalues calculated from the empirical correlation matrix
of 163 daily log return time series, and the red curve is the theoretical distribution predicted from
the random matrix theory by using a random matrix of the same size as the empirical correlation
matrix. The upper bound is λmax = 1.6267. The inset is a plot of all empirical eigenvalues including
the largest eigenvalue λ1 = 60.2252.
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Figure 2. The eigenvalue distributions for S&P468 correlation matrix over the whole study period.
The yellow bars are distributions of all eigenvalues calculated from the empirical correlation matrix
of 468 daily logged return series, and the red curve is the theoretical distribution predicted from
the random matrix theory by using a random matrix of the same size as the empirical correlation
matrix. The upper bound is λmax = 2.130. The inset is a plot of all empirical eigenvalues, including
the largest eigenvalue λ1 = 189.5698.
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Using the sliding window approach, we can investigate the dynamic properties of
eigenvalue distributions. For CSI163 and S&P468, we use the window size Lcsi163 = 170
and LS&P468 = 500, respectively, to satisfy the requirement of Q = L/N > 1. In choosing
the window sizes, basically, we desire a window that is large enough to cover significant
market periods. A shorter window might lead to short-term noises that do not reflect the
fundamental dynamics of the markets. Furthermore, the window moves at a step of one
trading date; this allows our sliding windows to move smoothly with the finest possible
granularity and capture detailed market behaviors. For each sliding window, we use the
data of N stocks to calculate the pairwise correlation matrix C, from which we further
calculate the λ1/N and average correlation

〈
Cij
〉
= ∑ Cij/N2. As shown in Figure 3a,b, we

see that for both markets, the values of λ1/N and the average correlation
〈
Cij
〉

correlated
very well over the whole study period indicating that λ1/N is a good estimator of the
average correlation

〈
Cij
〉

as we have introduced previously.

Year

2007 2008 2009 2010 2011 2012 2013 2014 2015

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
CSI163

λ1/N

〈Cij〉

(a)
Year

2009 2010 2011 2012 2013 2014 2015

0.25

0.3

0.35

0.4

0.45

0.5

0.55
sp468

λ1/N

〈Cij〉

(b)

Figure 3. The largest eigenvalue λ1/N and the average correlation
〈

Cij

〉
for all sliding windows of

CSI163 (a) and S&P468 (b). We see that the two curves fit very well.

In Figure 4a,b, we plot the largest eigenvalue λ1/N and the index close prices of
CSI300 (a) and S&P500 (b). After the left shifting, we find that λ1/N and the index itself
show similar trends. This shows that λ1/N is also an indicator of the index itself. For
CSI163, the trend similarity is relatively more obvious than that of S&P468. If we do not
perform left shifts, we find that λ1/N is anti-co-move with the index showing that during
market crashes, the λ1/N (also the average correlation

〈
Cij
〉
) becomes larger, i.e., the

stocks of the market are correlated, whereas during calm periods, the λ1/N becomes small
indicating fewer correlations among stocks.

To see how the eigenvalues distributed in the whole study period. In Figures 5 and 6,
we plot the distributions of the eigenvalues (excluding the largest eigenvalue) of all sliding
windows over the study periods CSI163 and S&P468, respectively. As the figures show,
most eigenvalues are very small. Though many eigenvalues are within the bounds of
prediction based on RMT, we also observe some eigenvalues are larger than the upper
bound λmax = 3.9172 for CSI163 and λmax = 3.8709 for S&P468. We define the fraction of
eigenvalues that are larger than the predicted λmax using RMT as

pd =
|λ > λmax|

N
, (11)

i.e., the ratio of the number of eigenvalues deviated beyond λmax to the total number of
eigenvalues N. Since the eigenvalues carry meaningful information about the market, this
ratio can be employed as an indicator describing how much information is embedded in
the distribution of the empirical eigenvalues. Using the sliding window approach, we
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calculate the fraction for each window and plot with the index close price for CSI163 in
Figure 7 and S&P468 in Figure 8, respectively.

For better visualizations, we shrink the index values of 200,000 times for CSI163close
and 100,000 times for S&P468close, respectively. As we can see, the values of pd stay
unchanged between sudden changes, so the curves of pd show a shape of discrete stages
with ups and downs. More interestingly, we find that the changes of pd coincide with the
changes in index closing prices. As shown in Figure 7 for CSI163 and Figure 8 for S&P468,
the changing points of the pd precisely mark out the local minimums (marked with yellow
dots) and local maximums (marked with red dots) of the index itself.

Year

2007 2008 2009 2010 2011 2012 2013 2014 2015

0.15
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0.3

0.35

0.4
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0.6
CSI163

CSI300close
λ1/N

(a)
Year

2007 2008 2009 2010 2011 2012 2013 2014 2015

0.1
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0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
S&P468

S&P500close

λ1/N

(b)

Figure 4. The largest eigenvalue λ1/N and the index close price of CSI300 (a) and S&P500 (b). The
largest eigenvalue λ1/N curves are left shifted 170 trading dates for CSI300 and 500 trading dates
for S&P500, for the window size is 170 for CSI163 and 500 for S&P468. For better visualizations, we
shrink the indices of CSI300 and S&P500 10,000 times and 5000 times, respectively. We see that the
shifted curves of λ1/N are similar to the indices.

Figure 5. The PDF of all eigenvalues (excluding the largest eigenvalue λ1) distribution for all sliding
windows over the study period of CSI163.
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Figure 6. The PDF of all eigenvalues (excluding the largest eigenvalue λ1) distribution for all sliding
windows over the study period of S&P468.

Year

2007 2008 2009 2010 2011 2012 2013 2014 2015

0

0.005

0.01
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0.035

0.04
CSI163

pd

CSI300close

2009-02-20

2009-08-03

2010-07-15

2009-12-29

2010-10-14

2012-01-09

2013-01-14
2013-05-28

2012-12-07

2015-05-27

2015-05-28
2015-01-07

2014-12-10

2015-09-28

2014-08-01

2007-09-24 2007-10-16

2008-01-14

2008-11-28

2008-03-31

Figure 7. The fraction pd of eigenvalues beyond the predicted largest eigenvalue versus the index
close price for CSI163 over the study period. For better visualization, we rescale the index values by
shrinking 200,000 times. The coincidences of changes of fraction pd and the index closing price are
marked out in red dots for local maximums and yellow dots for local minimums on the price curve
with dates.
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Year
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S&P500close
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2011-07-22
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2013-05-21
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2015-08-172014-12-17

Figure 8. The fraction pd of eigenvalues beyond the predicted largest eigenvalue versus the index
close price for S&P468 over the study period. For better visualization, we rescale the index values by
shrinking 100,000 times. The coincidences of changes of fraction pd and the index closing price are
marked out in red dots for local maximums and yellow dots for local minimums on the price curve
with dates.

We see that pd is relatively stable with many fixed periods, but the changes of pd can
match with the significant market changes in index closing prices. Some of them are even
leading the index for several days. This observation indicates that pd has the potential
to monitor the market situation. Once the pd changes value, investors must be cautious
and pay particular attention to the market fluctuations both of surges and crashes. This
information might also be useful in designing trading strategies to catch major market
mode switches.

In Table 1, we summarize the properties of eigenvalues that deviate beyond the λmax.
We see that only a very small fraction of eigenvalues is larger than the theoretically predicted
eigenvalue. On average, only 3.0268 eigenvalues for CSI163 and 7.2250 eigenvalues for
S&P468 are beyond the bounds. The average fraction is

〈
pd
〉
= 0.0186 for CSI163 and〈

pd
〉
= 0.0154 for S&P468, respectively.

Table 1. Properties of eigenvalue deviation fraction pd for CSI163 and S&P468. The avg. number is
the average number of eigenvalues deviated beyond the predicted upper bounds λmax.

Market Avg. Number pd
min pd

max

〈
pd
〉

CSI163 3.0268 0.0061 0.0368 0.0186
S&P468 7.2250 0.0107 0.0214 0.0154

5.2. Largest Eigenvalue

To study the eigenvector u1 corresponding to the largest eigenvalue λ1, we take an
average of all eigenvector components. Since the λ1 stands for the whole market, we expect
that the average components are related to the index. We plot the

〈
u1

i
〉

with the index close
prices of both markets for each sliding window in Figure 9a,b. As shown in the figures,
the value of

〈
u1

i
〉

changes happened on the dates or periods of major market changes.
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For the eigenvector u1, we also confirm that all components have the same sign, either
positive or negative [81], i.e., all stocks contribute to the movement of the market on the
eigenvector u1 in the same direction; they either climb or fall. It is worth noting that, in
practice, one might choose to remove the market mode of the largest eigenvalue before
analyzing the eigenvalues. Here, we directly analyze the second-largest eigenvalue and the
corresponding eigenvector for simplicity.

Year

2007 2008 2009 2010 2011 2012 2013 2014 2015

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
CSI163

〈

u1

i

〉

CSI300close

(a)
Year

2007 2008 2009 2010 2011 2012 2013 2014 2015

-0.06

-0.04

-0.02

0
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0.04

0.06

0.08

0.1

0.12
S&P468

〈

u1

i

〉

S&P468close

(b)

Figure 9. The average of eigenvector components corresponding to the largest eigenvalue
〈
u1

i
〉

and
the index close price of both CSI300 (a) and S&P500 (b). For better visualizations, we shrink the index
close price by 25,000 times and 10,000 times for CSI300 and S&P500, respectively. We see that the
changes of

〈
u1

i
〉

happen on the dates when the markets change.

5.3. Second Largest Eigenvalue

It is believed that the largest eigenvalue λ1 stands for the market mode itself, whereas
the second largest λ2 eigenvalue and its corresponding eigenvector u2 contain more in-
formation about the market. Now, we focus on the distribution of the components in
u2. As we know, the values of components in eigenvectors represent the weights for the
corresponding eigenvector; the best idea to allocate investment in portfolio management is
that we long the assets with positive signs and short the assets with negative signs. The
eigenportfolio based on eigenvector uj is given as:

Pj =
N

∑
i=1

1√
λj

uj
i

σi
Yi, (12)

where N is the number of assets, U j
i is the component for asset si in eigenvector uj, and Yi

is the return for asset si. This indicates that larger eigenvalues λi bring fewer weights for
assets in a risky portfolio, whereas smaller eigenvalues bring smaller risks with greater
weights on the assets.

For industry Ii, the contribution of Ii is defined as

I j
i (t) = ∑

k∈Ii

(
uj

k

)2
, (13)

where uj
k is the value of the stock belonging to industry Ii. By dividing over the total values

of all industries, we get the normalized contribution for industry Ii

I j
i(t) =

I j
i (t)

∑
i

I j
i (t)

. (14)
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Compared with another approach [73], the normalized values allow comparison between
any two industries, thus making the ranking of industries possible. Of course, Equation (14)
also indicates that ∑

i
I j

i(t) = 1.

Using Equations (13) and (14), we calculate and rank all industries in all sliding win-
dows for both CSI163 and S&P468. For a given date, we can get the contributions from all
sectors to the eigenvector components for the second largest eigenvalue u2. We investigate
which industries appear in the components with the largest values. In Figure 10a,b, we plot
the histograms for industries that appeared for CSI163 and S&P468, respectively. We find
that four industries appeared for CSI163, which are finance and insurance, pharmaceuticals,
machinery, and metals, whereas for S&P468, we find only three industries appeared, which
are utilities, financials, and energy. This reveals the leading industrial sectors for the two
markets over the whole study period.
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Figure 10. The frequencies of industries appearing in the largest values of eigenvector components of
CSI163 (a) and S&P468 (b). For CSI163, four industries appear in the largest eigenvector components,
whereas there are three industries for that of S&P468.

5.4. Market Switching

Both the Chinese and US markets experienced significant fluctuations during our
study period covering some major market mode changes of bull markets and bear markets.
In our study period between 4 January 2007 and 6 November 2015, the Chinese stock
market enjoyed a bull market period from 2007 to 2008 and surged to its historical height
in 2008 but soon suffered a major crash and only partially recovered in the middle of
2008 and stepped into bear market mode before long. This bear market mode lasted for
almost seven years, and only finished in 2015, being replaced by a rocket bull market mode.
Unfortunately, the 2015 bull market was very short and tumbled greatly into bear market
mode again with huge drops. For S&P500, the US stock markets also suffered a great
market crisis in 2008, but the market changed into a very long climbing bull market in 2009.

To investigate how the u2 changes before and after a market crash, we choose a case
study period between 24 July 2008 and 16 February 2009 for CSI300 centering with a
market turning point on 4 November 2008, covering 135 trading days and a period between
26 December 2008 and 2 June 2009, and for S&P500 centering with a market turning point
on 9 March 2009, covering 108 trading days. We denote the ranking for stock si at time t as
Ri(t) according to the normalized values. For a period of [ts, te] of length Ls,e, the averaged
ranking for si is

〈Ri(t)〉 =
1

Ls,e

te

∑
t=ts

Ri(t), (15)

where Ls,e = te − ts + 1 is the number of trading dates in the period. By calculating all
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averaged rankings for all of the stocks in both periods before and after the market crash, we
can get the top and bottom 10 stocks for CSI163 and S&P468. The top and bottom 10 stocks
according to the averaged ranking for CSI163 in the Fall stage and Climb stage are presented
in Tables 2 and 3, respectively. The same lists are presented in Tables 4 and 5 for the Fall
and Climb stages of S&P468.

Table 2. The top ten and bottom ten stocks of the second largest eigenvalue u2 of CSI163 ranked by
the average u2 components values in the Fall stage between 24 July 2008 and 4 November 2008.

Top 10
Rank Tick Stock Name Industry

1 2007 Hualan Biological Engineering Inc. Pharmaceuticals
2 600,867 Star Lake Bioscience Co., Inc. Pharmaceuticals
3 600,085 Beijing Tongrentang Co., Ltd. Pharmaceuticals
4 963 Huadong Medicine Co., Ltd. Wholesale
5 600,332 Sichuan Hongda Co., Ltd. Metals
6 600,108 Gansu Yasheng Industrial (Group) Co., Ltd. Agriculture
7 600,535 Nanjing Chixia Development Co., Ltd. Real estate
8 600,277 Jiangsu Hengrui Medicine Co., Ltd. Pharmaceuticals
9 600,089 TBEA Co., Ltd. Machinery
10 999 Sanjiu Medical & Pharmaceutical Co., Ltd. Pharmaceuticals

Bottom 10
Rank Tick Stock Name Industry

154 46 Oceanwide Construction Group Co., Ltd. Real estate
155 601,988 China Construction Bank Finance
156 2 China Vanke Co., Ltd. Real estate
157 600,048 Poly Real Estate Group Co., Ltd. Real estate
158 601,398 Guangshen Railway Transportation
159 600,016 China Minsheng Banking Corp. Ltd. Finance
160 600,015 Hua Xia Bank Co., Ltd. Finance
161 1 Shenzhen Development Bank Co., Ltd. Finance
162 600,036 China Merchants Bank Co., Ltd. Finance
163 600,000 Shanghai Pudong Development Bank Finance

The tables reveal some exciting results. In Table 2, we see that stocks of finance and
real estate occupy the bottom ten while stocks of pharmaceuticals dominate the top 10 in
the Fall stage of CSI300, and this phenomenon remains unchanged during the Climbing
stage after the market turning point. This indicates and confirms again that financials are
not the only dominating players in the Chinese stock market. In the Climbing stage, as
shown in Table 2, stocks of pharmaceuticals still dominate the top 10, and the stocks of
finance remain at the bottom part. This shows that the internal structure of the CSI300
market remains almost unchanged before and after the market crashes.

Being opposite to CSI163, S&P468 demonstrates a different behavior before and after
the crash period. As shown in Table 4, stocks of financials dominate the top positions
with the smallest rankings; in other words, stocks of financials play significant roles in the
Fall stage; however, stocks of energy collectively occupy the bottom 10. When the market
entered the Climb stage, passing the turning point, the whole rankings reversed with stocks
of energy becoming the top stocks whereas the financials stocks fell to the bottom, as shown
in Table 5.
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Table 3. The top ten and bottom ten stocks of the second largest eigenvalue u2 of CSI163 ranked by the
average u2 components values in the Climb stage between 4 November 2008 and 16 February 2009.

Top 10
Rank Tick Stock Name Industry

1 999 Sanjiu Medical & Pharmaceutical Co., Ltd. Pharmaceuticals
2 2007 Hualan Biological Engineering Inc. Pharmaceuticals
3 629 Panzhihua New Steel & Vanadium Co., Ltd. Metals
4 600,089 TBEA Co., Ltd. Machinery
5 600,085 Beijing Tongrentang Co., Ltd. Pharmaceuticals
6 538 Yunnan Baiyao Industry Co., Ltd. Pharmaceuticals
7 963 Huadong Medicine Co., Ltd. Wholesale
8 729 Beijing Yanjing Brewery Co., Ltd. Food & Beverage
9 600,535 Nanjing Chixia Development Co., Ltd. Real estate
10 600,332 Sichuan Hongda Co., Ltd. Metals

Bottom 10
Rank Tick Stock Name Industry

459 157 Changsha Zoomlion Heavy Industry Machinery
460 600,030 CITIC Securities Co., Ltd. Finance
461 600,585 Jiangsu Changjiang Electronics Technology Electronics
462 601,988 China Construction Bank Finance
463 601,398 Guangshen Railway Transportation
464 1 Shenzhen Development Bank Co., Ltd. Finance
465 600,015 Hua Xia Bank Co., Ltd. Finance
466 600,016 China Minsheng Banking Corp. Ltd. Finance
467 600,036 China Merchants Bank Co., Ltd. Finance
468 600,000 Shanghai Pudong Development Bank Co., Ltd. Finance

Table 4. The top ten and bottom ten stocks of the second largest eigenvalue u2 of S&P468 ranked by
the average u2 components values in the Fall stage between 26 December 2008 and 9 March 2009.

Top 10
Rank Tick Stock Name Industry

1 STI SunTrust Banks Financials
2 ZION Zions Bancorp Financials
3 MTB M&T Bank Corp. Financials
4 CMA Comerica Inc. Financials
5 WFC Wells Fargo Financials
6 BBT BB&T Corporation Financials
7 JPM JPMorgan Chase & Co. Financials
8 RF Regions Financial Corp. Financials
9 LEN Lennar Corp. Consumer Discretionary
10 PNC PNC Financial Services Financials

Bottom 10
Rank Tick Stock Name Industry

459 EOG EOG Resources Energy
460 MUR Murphy Oil Energy
461 OXY Occidental Petroleum Energy
462 HP Helmerich & Payne Energy
463 NBL Noble Energy Inc. Energy
464 XEC Cimarex Energy Energy
465 APC Anadarko Petroleum Corp. Energy
466 DO Diamond Offshore Drilling Energy
467 DVN Devon Energy Corp. Energy
468 APA Apache Corporation Energy
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Table 5. The top ten and bottom ten stocks of the second largest eigenvalue u2 of S&P468 ranked by
the average u2 components values in the Climb stage between 10 March 2009 and 2 June 2009.

Top 10
Rank Tick Stock Name Industry

1 APA Apache Corporation Energy
2 DVN Devon Energy Corp. Energy
3 ETR Entergy Corp. Utilities
4 DO Diamond Offshore Drilling Energy
5 NBL Noble Energy Inc. Energy
6 APC Anadarko Petroleum Corp. Energy
7 FE FirstEnergy Corp. Utilities
8 OXY Occidental Petroleum Energy
9 MUR Murphy Oil Energy
10 XOM Exxon Mobil Corp. Energy

Bottom 10
Rank Tick Stock Name Industry

459 USB US Bancorp Financials
460 JPM JPMorgan Chase & Co. Financials
461 RF Regions Financial Corp. Financials
462 WFC Wells Fargo Financials
463 BBT BB&T Corporation Financials
464 PNC PNC Financial Services Financials
465 ZION Zions Bancorp Financials
466 CMA Comerica Inc. Financials
467 MTB M&T Bank Corp. Financials
468 STI SunTrust Banks Financials

6. Conclusions and Discussion

In this study, we applied random matrix theory to study the eigenvalues and their
eigenvectors of the US and Chinese stock markets. The correlation properties are studied,
and some eigenvalues of the correlation matrices beyond the predicted bounds are observed
in both markets. The largest eigenvalues λ1 are dozens of times larger than the predicted
λmax. They are found to be potential market indicators. Eigenvalue deviation fractions
beyond the predicted largest eigenvalue are observed to pinpoint market turning points.
For the two markets, the most influential industry sectors are identified. They behave
differently when the market crashes. These findings provide information on the dynamics
of eigenvalues and eigenvectors. This is useful for investors and regulators to monitor
the markets. On the other hand, the eigenvalues are related to factor models. The largest
eigenvalue stands for the market itself and the corresponding eigenvector has impacts on
most stocks, described as the single factor model for stock si: ri = βirM + ei, where rM
is the market return, for N stocks, the correlation matrix has one dominant eigenvalue.
The CAMP is a special case of a single factor model. However, other eigenvalues are
beyond the predicted λmax. It is natural to model the returns in multi-factors as proposed
in arbitrage pricing theory (APT), ri = ∑ βki fk+ei, where fk is the kth factor. Since the
eigenvalues embedded in the predicted bounds represent noises, it is natural to choose the
top k largest eigenvalues λmax−k, . . . , λmax−1; thus, we get k corresponding eigenvectors
vmax−k, . . . , vmax−1. In other words, the k principle components in the PCA. To simplify
the model, it is reasonable to consider the sector information revealed in the eigenvec-
tors; in other words, the corresponding eigenvector components belonging the the sector
are reserved.

Last but not least, the present work still has several limitations that should not be
neglected and are worth further efforts in future works. First, this work only considered two
major markets in an outdated time period. More global markets and updated periods can be
considered in future work. Second, this work provides findings largely through empirical
analysis rather than rigorous statistical approaches. In order to further validate the findings,
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statistical testing should be considered. Third, this work only reports observations, and
no practical applications are developed to further evaluate the values of the methodology
and findings. In the future, applications like quantitative trading strategies, portfolio
management, and risk management can be developed around the findings to demonstrate
the values in financial practices.
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