
Citation: Zhang, J. Jeffreys

Divergence and Generalized Fisher

Information Measures on

Fokker–Planck Space–Time Random

Field. Entropy 2023, 25, 1445.

https://doi.org/10.3390/

e25101445

Academic Editor: Jean-Pierre Gazeau

Received: 24 August 2023

Revised: 1 October 2023

Accepted: 11 October 2023

Published: 13 October 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Jeffreys Divergence and Generalized Fisher Information
Measures on Fokker–Planck Space–Time Random Field
Jiaxing Zhang

School of Mathematics, Tianjin University, Tianjin 300350, China; 2017233010@tju.edu.cn; Tel.: +86-1512-750-2081

Abstract: In this paper, we present the derivation of Jeffreys divergence, generalized Fisher diver-
gence, and the corresponding De Bruijn identities for space–time random field. First, we establish the
connection between Jeffreys divergence and generalized Fisher information of a single space–time
random field with respect to time and space variables. Furthermore, we obtain the Jeffreys diver-
gence between two space–time random fields obtained by different parameters under the same
Fokker–Planck equations. Then, the identities between the partial derivatives of the Jeffreys diver-
gence with respect to space–time variables and the generalized Fisher divergence are found, also
known as the De Bruijn identities. Later, at the end of the paper, we present three examples of the
Fokker–Planck equations on space–time random fields, identify their density functions, and derive
the Jeffreys divergence, generalized Fisher information, generalized Fisher divergence, and their
corresponding De Bruijn identities.

Keywords: space–time random field; Fokker–Planck equations; differential entropy; Jeffreys divergence;
fisher information; De Bruijn identities

1. Introduction

Information entropy and Fisher information are quantities to measure random in-
formation, and entropy divergence is derived from information entropy to measure the
difference between two probability distributions. Formally, we can construct straightfor-
ward definitions of entropy divergence and Fisher information for the case of a space–time
random field found on classical definitions. The density function, in their definitions, can be
obtained in many different ways. In this paper, the density function of a space–time random
field is obtained by Fokker–Planck equations. The traditional Fokker–Planck equation is
a partial differential equation that describes the probability density function of a random
process [1]. It describes the density function’s time-varying change rule. However, the
Fokker–Planck equations for random fields, especially for space–time random fields, do
not yet possess a distinct form. The classical equation needs to be generalized because the
variable varies from time to space–time.

In this paper, we mainly obtain the relation between Jeffreys divergence and general-
ized Fisher information measure for space–time random field generated by Fokker–Planck
equations. Jeffreys divergence is a symmetric entropy divergence, which is generalized
from Kullback–Leibler divergence (KL divergence). Jeffreys divergence is a measure in
information theory and statistics that evaluates the variation between anticipated and real
probability distributions. However, if there is no overlap between the two distributions,
the outcome will be infinite, which is a limitation of this approach. To prevent infinite
results, we examine how Jeffreys divergence relates to generalized Fisher information for a
space–time random field with slight variations in space–time parameters.

Moreover, the classical De Bruijn identity describes the relationship between dif-
ferential entropy and the Fisher information of the Gaussian channel [2], and it can be
generalized to other cases [3–7]. With gratitude to their works and following their ideas,
we obtain De Bruijn identities on Jeffreys divergence and generalized Fisher information of
space–time random fields, whose density functions satisfy Fokker–Planck equations.
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1.1. Space–Time Random Field

The random field was first studied by Kolmogorov [8–10], and it was gradually
improved by Yaglom [11–13] in the middle of the last century. A random field with n ∈ N+

variables can be expressed as
X(t1, t2, · · · , tn) (1)

where (t1, t2, · · · , tn) ∈ Rn. We call (1) a generalized random field or a multiparameter
stochastic process. In some practical applications, we often use the concept of space–time
random field. The space–time random field on a d-dimensional space is expressed as

X(t, x) (2)

where (t, x) ∈ R+ ×Rd are the space–time variables. It has many applications in statistics,
finance, signal processing, stochastic partial differential equations, and other fields [14–27].

1.2. Kramers–Moyal Expansion and Fokker–Planck Equation

In the literature of stochastic processes, Kramers–Moyal expansion refers to a Taylor
series of the master equation, named after Kramers and Moyal [28,29]. The Kramers–Moyal
expansion is an infinite order partial differential equation

∂

∂t
p(u, t) =

∞

∑
n=1

(−1)n

n!
∂n

∂un [Kn(u, t)p(u, t)] (3)

where p(u, t) is the density function and

Kn(u, t) =
∫
R

(
u′ − u

)nW(u′|u, t)du′ (4)

is the n-order conditional moment. Here, W(u′|u, t) is the transition probability rate. The
Fokker–Planck equation is obtained by keeping only the first two terms of the Kramers–Moyal
expansion. In statistical mechanics, the Fokker–Planck equation is usually used to describe
the time evolution of the probability density function of the velocity of a particle under the
influence of drag forces and random forces, as in the famous Brownian motion, and this
equation is commonly employed for determining the density function of an Itô stochastic
differential equation [1].

1.3. Differential Entropy and De Bruijn Identity

The entropy of a continuous distribution was proposed by Shannon in 1948, known as
differential entropy [30]:

h(X) = −
∫
Rd

p(x) log p(x)dx (5)

where h(·) represents the differential entropy and p(·) is the probability density function
of X. However, differential entropy is not easy to calculate and seldom exists. There are
related studies on the entropy of stochastic processes and continuous systems [31–34]. If
we consider a classical one-dimensional Gaussian channel model

Yt = X +
√

tG (6)

where X is the input signal, G is standard Gaussian noise, t ≥ 0 is the strength, and Yt is the
output, we can obtain that the density of Yt satisfies the following Fokker–Planck equation:

∂

∂t
p(y, t) =

1
2

∂2

∂y2 p(y, t) (7)
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Furthermore, the differential entropy of Yt can be calculated, and then its derivative
with respect to t can be obtained as

dhYt(t)
dt

=
1
2

FIYt(t) (8)

where

FIYt(t) =
∫
R

[
∂ log p(y, t)

∂y

]2

p(y, t)dy (9)

is the Fisher information of Yt. The Equation (8) here is the De Burijn identity. The de Bruijn
identity connects the differential entropy h(·) and the Fisher information FI(·), which
shows that they are different aspects of the concept of “information”.

1.4. Entropy Divergence

In information theory and statistics, an entropy divergence is a statistical distance
generated from information entropy to measure the difference between two probability
distributions. There are various divergences generated by information entropy, such as
Kullback–Leibler divergence [35], Jeffreys divergence [36], Jensen-Shannon divergence [37],
and Rényi divergence [38]. These measures are applied in a variety of fields such as finance,
economics, biology, signal processing, pattern recognition, and machine learning [39–49].
In this paper, we mainly focus on the Jeffreys divergence of two distributions, formed as

JD(P, Q) =
∫
R
[p(u)− q(u)] log

p(u)
q(u)

dµ(u) (10)

where µ is a measure of u.

2. Notations, Definitions, and Propositions
2.1. Notations and Assumptions

In this paper, we use the subsequent notations and definitions

• Given a probability space (Ω,F , P), two real valued space–time random fields are denoted
as X(ω; t, x), Y(ω; s, y) or X(t, x), Y(s, y), where ω ∈ Ω and (t, x) (s, y) ∈ R+ ×Rd,
d ∈ N+ are space–time variables.

• The probability density functions of P and Q are denoted as p and q. With ∀u ∈ R,
p(u; t, x) is the density value at (t, x) of X and q(u; s, y) is the density value at (s, y)
of Y.

• Unless there are specific restrictions on the ranges of variables, suppose that our
density functions p(u; t, x) and q(u, s, y) belongs to C2,1,1(R × R+ × Rd,R). This
means that p(u; t, x) and q(u; s, y) are partial differentiable twice with respect to u and
once with respect to (t, x) or (s, y), respectively.

• Vectors that differ only from the k-th coordinate of x = (x1, x2, · · · , xk, · · · , xd) are
denoted x̃(k) = (x1, x2, · · · , x′k, · · · , xd), where the k-th coordinates are xk and x′k,
k = 1, 2, · · · , d.

2.2. Definitions

To obtain the generalized De Bruijn identities between Jeffreys divergence and Fisher
divergence, we need to introduce some new definitions and propositions.

The primary and most important measure of information is the Kullback–Leibler
divergence for random fields. Definition 1 is easily obtained as follows.

Definition 1. The Kullback–Leibler divergence between two space–time random fields X(t, x) and
Y(s, y), (t, x), (s, y) ∈ R+ ×Rd, with density functions p(u; t, x) and q(u; s, y), is defined as

KL(P(t, x)‖Q(s, y)) =
∫
R

p(u; t, x) log
p(u; t, x)
q(u; s, y)

du (11)
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Similar to the classical Kullback–Leibler divergence, Kullback–Leibler divergence on
random fields is not symmetrical, i.e.,

KL(P(t, x)‖Q(s, y)) 6= KL(Q(s, y)‖P(t, x)) (12)

Following the classical definition of Jeffreys divergence on two random variables, we
mainly consider Jeffreys divergence for random fields in this paper.

Definition 2. The Jeffreys divergence between space–time random fields X(t, x) and Y(s, y),
(t, x), (s, y) ∈ R+ ×Rd, with density function p(u; t, x) and q(u; s, y) is defined as

JD(P(t, x), Q(s, y)) = KL(P(t, x)‖Q(s, y)) + KL(Q(s, y)‖P(t, x)) (13)

Here, we replace ‖ with , in the distortion measure to emphasize the symmetric
property.

Another significant measure of information is Fisher information. In this paper, we
consider the generalized Fisher information of the space–time random field.

Definition 3. The Generalized Fisher information of the space–time random field X(t, x),
(t, x) ∈ R+ ×Rd , with density function p(u; t, x) defined by nonnegative function f (·), is
formed as

FI f (P(t, x)) =
∫
R

f (u)[∂u log p(u; t, x)]2 p(u; t, x)du (14)

In this case, where f is equal to 1, FI1(P(t, x)) represents the typical Fisher information. In addition
to Equation (14), there are similar forms of generalized Fisher information

FI(t)f (P(t, x)) =
∫
R

f (u)[∂t log p(u; t, x)]2 p(u; t, x)du (15)

and
FI(xk)

f (P(t, x)) =
∫
R

f (u)
[
∂xk log p(u; t, x)

]2 p(u; t, x)du (16)

for k = 1, 2, · · · , d.

Obviously, (15) and (16) are generalized Fisher information on space–time variables. Re-
garding the generalized Fisher information (14), we can come to a following simple proposition.

Proposition 1. For the arbitrary positive continuous function f (·), suppose the generalized Fisher
information of continuous random variable X

FI f (X) :=
∫
R

f (u)
[

d log pX(u)
du

]2

pX(u)du (17)

is well defined, where pX(u) represents the probability density. Then, we have the generalized Fisher
information inequality

1
FI f (X + Y)

≥ 1
FI f (X)

+
1

FI f (Y)
(18)

when f ≡ 1, FI1(X) represents the Fisher information in the standard case.

Proof. Denote Z = X + Y, pX , pY, and pZ represent densities, i.e.,

pZ(z) =
∫
R

pX(x)pY(z− x)dx (19)

and derivative function
p′Z(z) =

∫
R

p′X(x)pY(z− x)dx (20)
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If pX , pY, and pZ never vanish,

p′Z(z)
pZ(z)

=
∫
R

p′X(x)pY(z− x)
pZ(z)

dx

=
∫
R

pX(x)pY(z− x)
pZ(z)

p′X(x)
pX(x)

dx

=E

[
p′X(x)
pX(x)

∣∣∣∣∣Z = z

]
(21)

is the conditional expectation of p′X(x)
pX(x) for given z. Similarly, we can obtain

p′Z(z)
pZ(z)

= E

[
p′Y(y)
pY(y)

∣∣∣∣∣Z = z

]
(22)

and ∀µ, λ ∈ R, we also find that

E

[
µ

p′X(x)
pX(x)

+ λ
p′Y(y)
pY(y)

∣∣∣∣∣Z = z

]
= (µ + λ)

p′Z(z)
pZ(z)

(23)

Then, we have [
(µ + λ)

p′Z(z)
pZ(z)

]2

=

{
E

[
µ

p′X(x)
pX(x)

+ λ
p′Y(y)
pY(y)

∣∣∣∣∣Z = z

]}2

≤E

{[
µ

p′X(x)
pX(x)

+ y
p′Y(y)
pY(y)

]2
∣∣∣∣∣Z = z

} (24)

with equality only if

µ
p′X(x)
pX(x)

+ λ
p′Y(y)
pY(y)

= (µ + λ)
p′Z(z)
pZ(z)

(25)

with probability 1 whenever z = x + y and we have

f (z)
[
(µ + λ)

p′Z(z)
pZ(z)

]2

≤ f (z)E

[(
µ

p′X(x)
pX(x)

+ y
p′Y(y)
pY(y)

)2
∣∣∣∣∣Z = z

]
(26)

Averaging both sides over the distribution of z

E

{
f (z)

[
(µ + λ)

p′Z(z)
pZ(z)

]2
}

≤E

{
f (z)E

[(
µ

p′X(x)
pX(x)

+ y
p′Y(y)
pY(y)

)2
∣∣∣∣∣Z = z

]}

=µ2E

{
f (z)E

[(
p′X(x)
pX(x)

)2
∣∣∣∣∣Z = z

]}
+ λ2E

{
E

[
f (z)

(
p′Y(y)
pY(y)

)2
∣∣∣∣∣Z = z

]} (27)

i.e.,
(µ + λ)2FI f (X + Y) ≤ µ2FI f (X) + λ2FI f (Y) (28)
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Let µ = 1
FI f (X)

and λ = 1
FI f (Y)

, we obtain

1
FI f (X + Y)

≥ 1
FI f (X)

+
1

FI f (Y)
(29)

According to Definition 3, we can obtain relevant definitions on the generalized Fisher
information measure.

Definition 4. The generalized Cross–Fisher information for space–time random fields X(t, x) and
Y(s, y), (t, x), (s, y) ∈ R+ ×Rd, with density functions p(u; t, x) and q(u; s, y), defined by the
nonnegative function f (·), is defined as

CFI f (P(t, x), Q(s, y)) =
∫
R

f (u)[∂u log q(u; s, y)]2 p(u; t, x)du (30)

Similar to the concept of cross-entropy, it is easy to verify that (30) is symmetrical
about P and Q.

Definition 5. The generalized Fisher divergence for space–time random fields X(t, x) and Y(s, y),
for (t, x), (s, y) ∈ R+×Rd, with density functions p(u; t, x) and q(u; s, y), defined by nonnegative
function f (·), is defined as

FD f (P(t, x)‖Q(s, y)) =
∫
R

f (u)[∂u log p(u; t, x)− ∂u log q(u; s, y)]2 p(u; t, x)du (31)

In particular, when f ≡ 1, FD1(P(t, x)‖Q(s, y)) represents the typical Fisher divergence.

Obviously, the generalized Fisher divergence between two random fields is not a
symmetrical measure of information. We need to create a new formula to expand on (31) in
order to achieve symmetry.

Definition 6. The generalized Fisher divergence for space–time random fields X(t, x) and Y(s, y),
(t, x), (s, y) ∈ R+ ×Rd, with density functions p(u; t, x) and q(u; s, y), defined by nonnegative
functions f (·) and g(·), is defined as

FD( f ,g)(P(t, x)‖Q(s, y)) =
∫
R
[ f (u; t, x)∂u log p(u; t, x)− g(u; s, y)∂u log q(u; s, y)]

× [∂u log p(u; t, x)− ∂u log q(u; s, y)][p(u; t, x) + q(u, s, y)]du
(32)

In particular, if f equals g, the generalized Fisher divergence for random fields using a single
function is denoted as FD( f , f )(P(t, x)‖Q(s, y)).

In general, FD( f ,g)(P(t, x)‖Q(s, y)) is asymmetric with respect to P and Q, i.e.,

FD( f ,g)(P(t, x)‖Q(s, y)) 6= FD( f ,g)(Q(s, y)‖P(t, x)) (33)

If we suppose that f and g are functions only related to P and Q, i.e.,{
f (u; t, x) = T [p(t, x)](u)

g(u; s, y) = T [q(s, y)](u)
(34)
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where T is an operator; the generalized Fisher divergence FD( f ,g)(P(t, x)‖Q(s, y)) can be
rewritten as

FD( f ,g)(P(t, x)‖Q(s, y))

=
∫
R
{T [p(t, x)](u)∂u log p(u; t, x)− T [q(s, y)](u)∂u log q(u; s, y)}

× [∂u log p(u; t, x)− ∂u log q(u; s, y)][p(u; t, x) + q(u, s, y)]du

(35)

and we can easily obtain

FD( f ,g)(P(t, x)‖Q(s, y)) = FD(g, f )(Q(t, x)‖P(s, y)) (36)

In this case, we call (35) symmetric Fisher divergence for random fields generated by
operator T and denote it as

sFDT (P(t, x), Q(s, y))

=
∫
R
{T [p(t, x)](u)∂u log p(u; t, x)− T [q(s, y)](u)∂u log q(u; s, y)}

× [∂u log p(u; t, x)− ∂u log q(u; s, y)][p(u; t, x) + q(u, s, y)]du

(37)

Notice that

Aa− Bb

=
1
2
× 2(Aa− Bb)

=
1
2
[(Aa− Ab + Ab− Bb) + (Aa− Ba + Ba− Bb)]

=
1
2
[(A + B)(a− b) + (A− B)(a + b)]

(38)

for A, B, a, b ∈ R; then, we can rewrite (37) as

sFDT (P(t, x), Q(s, y))

=
1
2

∫
R
{T [p(t, x)](u) + T [q(s, y)](u)}[∂u log p(u; t, x)− ∂u log q(u; s, y)]2

× [p(u; t, x) + q(u, s, y)]du

+
1
2

∫
R
{T [p(t, x)](u)− T [q(s, y)](u)}

{
[∂u log p(u; t, x)]2 − [∂u log q(u; s, y)]2

}
× [p(u; t, x) + q(u, s, y)]du

=
1
2

[
FDT [p(t,x)]+T [q(s,y)](P(t, x)‖Q(s, y)) + FDT [p(t,x)]+T [q(s,y)](Q(s, y)‖P(t, x))

]
+

1
2

[
FIT [p(t,x)]−T [q(s,y)](P(t, x)) + FIT [p(t,x)]−T [q(s,y)](Q(s, y))

]
+

1
2

[
CFIT [p(t,x)]−T [q(s,y)](Q(s, y), P(t, x))− CFIT [p(t,x)]−T [q(s,y)](P(t, x), Q(s, y))

]

(39)

Lemma 1 (Kramers–Moyal expansion [28,29]). Suppose that the random process X(t) has any
order moment; then, the probability density function p(u, t) satisfies the Kramers–Moyal expansion

∂

∂t
p(u, t) =

∞

∑
n=1

(−1)n

n!
∂n

∂un [Kn(u, t)p(u, t)] (40)

where
Kn(u, t) =

∫
R

(
u′ − u

)nW(u′|u, t)du′ (41)

is the n-order conditional moment and W(u′|u, t) is the transition probability rate.
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Lemma 2 (Pawula theorem [50,51]). If the limit on conditional moment of random process X(t)

lim
∆t→0

1
∆t

E
{
[X(t + ∆t)− X(t)]n

∣∣∣X(t) = x
}

(42)

exists for all n ∈ N+, and the limit value equals 0 for some even number, then the limit values are 0
for all n ≥ 3.

The Pawula theorem states that there are only three possible cases in the
Kramers–Moyal expansion:

(1) The Kramers–Moyal expansion is truncated at n = 1, meaning that the process
is deterministic;

(2) The Kramers–Moyal expansion stops at n = 2, with the resulting equation being the
Fokker–Planck equation, and describes diffusion processes;

(3) The Kramers–Moyal expansion contains all the terms up to n = ∞.

In this paper, we only focus on the case of the Fokker–Planck equation.

3. Main Results and Proofs

In this section, we establish the Fokker–Planck equations for continuous space–time
random field. Additionally, we present the relationship theorem between Jeffreys diver-
gence and Fisher information, as well as the De Bruijn identities connection between Jeffreys
divergence and Fisher divergence.

Theorem 1. The probability density function p(u; t, x) of the continuous space–time random field
X(t, x), u ∈ R, (t, x) ∈ R+ ×Rd satisfies the following Fokker–Planck equations:

∂

∂t
p(u; t, x) =

1
2

∂2

∂u2 [b0(u; t, x)p(u, t, x)]− ∂

∂u
[a0(u; t, x)p(u; t, x)]

∂

∂xk
p(u; t, x) =

1
2

∂2

∂u2 [bk(u; t, x)p(u, t, x)]− ∂

∂u
[ak(u; t, x)p(u; t, x)]

k = 1, 2, · · · , d

(43)

where 

a0(u; t, x) = lim
∆t→0

1
∆t

M1(u; t, ∆t, x)

b0(u; t, x) = lim
∆t→0

1
∆t

M2(u; t, ∆t, x)

ak(u; t, x) = lim
∆xk→0

1
∆xk

M̃1(u; t, x, ∆xk)

bk(u; t, x) = lim
∆xk→0

1
∆xk

M̃2(u; t, x, ∆xk)

k = 1, 2, · · · , d

(44)

here, 
Mn(u; t, ∆t, x) = E

{
[X(t + ∆t, x)− X(t, x)]n

∣∣∣X(t, x) = u
}

M̃n(u; t, x, ∆xk) = E
{
[X(t, x + ∆xkek)− X(t, x)]n

∣∣∣X(t, x) = u
} (45)

are n-order conditional moments and ek = (0, 0, · · · , 1, · · · , 0) ∈ Rd are standard orthogonal basis
vectors, k = 1, 2, · · · , d.

Proof. ∀∆t 6= 0, we can obtain the difference of density function in the time variable

p(u; t + ∆t, x)− p(u; t, x) =
+∞

∑
n=1

(−1)n

n!
∂n

∂un [Mn(u; t, ∆t, x)p(u; t, x)] (46)
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where
Mn(u; t, ∆t, x) = E

{
[X(t + ∆t, x)− X(t, x)]n

∣∣∣X(t, x) = u
}

(47)

is the n-order conditional moment. Then, the partial derivative of the density function with
respect to t is

∂

∂t
p(u; t, x) = lim

∆t→0

1
∆t

+∞

∑
n=1

(−1)n

n!
∂n

∂un [Mn(u; t, ∆t, x)p(u; t, x)] (48)

The Pawula theorem implies that if the Kramers–Moyal expansion stops after the
second term, we obtain the Fokker–Planck equation about the time variable t

∂

∂t
p(u; t, x) =

1
2

∂2

∂u2 [b0(u; t, x)p(u, t, x)]− ∂

∂u
[a0(u; t, x)p(u; t, x)] (49)

where 
a0(u; t, x) = lim

∆t→0

1
∆t

M1(u; t, ∆t, x)

b0(u; t, x) = lim
∆t→0

1
∆t

M2(u; t, ∆t, x)
(50)

Similarly, we may consider the increment ∆xk of the spatial variable xk, and we can
obtain the Fokker–Planck equations about xk as

∂

∂xk
p(u; t, x) =

1
2

∂2

∂u2 [bk(u; t, x)p(u, t, x)]− ∂

∂u
[ak(u; t, x)p(u; t, x)] (51)

where 
ak(u; t, x) = lim

∆xk→0

1
∆xk

M̃1(u; t, x, ∆xk)

bk(u; t, x) = lim
∆xk→0

1
∆xk

M̃2(u; t, x, ∆xk)

(52)

here,
M̃n(u; t, x, ∆xk) = E

{
[X(t, x + ∆xkek)− X(t, x)]n

∣∣∣X(t, x) = u
}

(53)

ek = (0, 0, · · · , 1, · · · , 0) ∈ Rd are standard orthogonal basis vectors, k = 1, 2, · · · , d.

The Fokker–Planck equations are partial differential equations that describe the proba-
bility density function of the space–time random field, similar to the classical Fokker–Planck
equation. Solving a system of partial differential equations for general Fokker–Planck equa-
tions proves to be challenging. Fortunately, in Section 4 we present three distinct categories
of space–time random fields in detail, along with their corresponding Fokker–Planck
equations, and deduce their probability density functions.

Next, we examine the relationship between Jeffreys divergence and Fisher information
in a single space–time random field when there are different time or spatial variables.

Theorem 2. Suppose that p(u; t, x) > 0 is a continuous differential density function of the
space–time random field X(t, x), the partial derivatives ∂u p(u; t, x), ∂t p(u; t, x), ∂xk p(u; t, x) are
continuous bounded functions, and the integrals in the proof are well-defined, k = 1, 2, · · · , d,
u ∈ R, (t, x) ∈ R+ ×Rd. Then, we have

lim
|t−s|→0

JD(P(t, x), P(s, x))
|t− s|2 = FI(t)1 (X(t, x))

lim
|xk−x′k|→0

JD
(

P(t, x), P(t, x̃(k))
)

|xk − x′k|2
= FI(xk)

1 (X(t, x))

k = 1, 2, · · · , d

(54)
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Proof. For fixed x ∈ R, and ∀s 6= t > 0,

JD(P(t, x), P(s, x)) = KL(P(t, x)||P(s, x)) + KL(P(s, x)||P(t, x))

=
∫
R
[log p(u; t, x)− log p(u, s, x)][p(u; t, x)− p(u, s, x)]du

(55)

then we can obtain

lim
|t−s|→0

JD(P(t, x), P(s, x))
|t− s|2

= lim
|t−s|→0

∫
R

log p(u; t, x)− log p(u, s, x)
t− s

p(u; t, x)− p(u, s, x)
t− s

du
(56)

Notice that 
lim
|t−s|→0

log p(u; t, x)− log p(u, s, x)
t− s

= ∂t log p(u; t, x)

lim
|t−s|→0

p(u; t, x)− p(u, s, x)
t− s

= ∂t p(u; t, x)
(57)

exist, and we obtain

lim
|t−s|→0

JD(P(t, x), P(s, x))
|t− s|2

=
∫
R

∂t log p(u; t, x)∂t p(u; t, x)du

=
∫
R

∂t[log p(u; t, x)]2 p(u; t, x)du

=FI(t)1 (X(t, x))

(58)

Similarly, for fixed t and ∀xk 6= x′k, we can obtain the identity on Jeffreys divergence and
Fisher information for space coordinates

lim
|xk−x′k|→0

JD
(

P(t, x), P(t, x̃(k))
)

|xk − x′k|2
= FI(xk)

1 (X(t, x)) (59)

for k = 1, 2, · · · , d.

Theorem 2 states that as the space–time variable difference approaches zero, the
Fisher information of the space–time random field is the limit of the ratio of Jeffreys
divergence at different locations to the square of space–time variable difference. It is
noteworthy that Theorem 2 specifically addresses Jeffreys divergence only in cases where
a single space–time random field is situated in distinct space–time positions, and where
the difference between space–time variables approaches to 0. This ensures that Jeffreys
divergence will not be infinite.

Theorem 3. Suppose that p(u; t, x) and q(u; t, x) are continuous differentiable density functions
of space–time random fields X(t, x) and Y(t, x) such that

lim
u→∞

{
1
2

∂u

[
b(1)k (u; t, x)p(u; t, x)

]
− a(1)k (u; t, x)p(u; t, x)

}[
log

p(u; t, x)
q(u; t, x)

− q(u; t, x)
p(u; t, x)

]
= 0

lim
u→∞

{
1
2

∂u

[
b(2)k (u; t, x)q(u; t, x)

]
− a(2)k (u; t, x)q(u; t, x)

}[
log

q(u; t, x)
p(u; t, x)

− p(u; t, x)
q(u; t, x)

]
= 0

(60)

where ak, bk are the forms in (44) and (45), and (t, x) ∈ R+ ×Rd, k = 0, 1, 2, · · · , d. Then, the
Jeffreys divergence JD(P(t, x), Q(t, x)) satisfies generalized De Bruijn identities
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∂

∂t
JD(P(t, x), Q(t, x)) = −1

2
FD(

b(1)0 ,b(2)0

)(P(t, x)‖Q(t, x))− R0(P(t, x)‖Q(t, x))

∂

∂xk
JD(P(t, x), Q(t, x)) = −1

2
FD(

b(1)k ,b(2)k

)(P(t, x)‖Q(t, x))− Rk(P(t, x)‖Q(t, x))

k = 1, 2, · · · , d

(61)

where
R0(P(t, x)‖Q(t, x)) =

∫
R

[
1
2

∂2
uu

(
b(1)0 − b(2)0

)
− ∂u

(
a(1)0 − a(2)0

)]
(p + q)du

Rk(P(t, x)‖Q(t, x)) =
∫
R

[
1
2

∂2
uu

(
b(1)k − b(2)k

)
− ∂u

(
a(1)k − a(2)k

)]
(p + q)du

k = 1, 2, · · · , d

(62)

here, we omit (u; t, x) in the integrals for convenience.

Proof. By Definition 2, we have

JD(P(t, x), Q(t, x))
=KL(P(t, x)‖Q(t, x)) + KL(Q(t, x)‖P(t, x))

=
∫
R

p log
p
q

du +
∫
R

q log
q
p

du

=
∫
R

[
p log

p
q
+ q log

q
p

]
du

(63)

where p := p(u; t, x), q := q(u; t, x) are density functions of X(t, x) and Y(t, x); here, we
omit (u; t, x).

Notice that 
∂u

(
p
q

)
=

1
q

(
∂u p− p

q
∂uq
)

∂u

(
q
p

)
=

1
p

(
∂uq− q

p
∂u p

) (64)

i.e., 
p
q

∂uq = ∂u p− q∂u

(
p
q

)
q
p

∂u p = ∂uq− p∂u

(
q
p

) (65)

and
(∂u log p− ∂u log q)(p + q)

=

(
1
p

∂u p− 1
q

∂uq
)
(p + q)

=∂u p− ∂uq +
q
p

∂u p− p
q

∂uq

=p
q∂u p− p∂uq

p2 + q
q∂u p− p∂uq

q2

=−
[

p∂u

(
q
p

)
− q∂u

(
p
q

)]
(66)

then,
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∂t JD(P(t, x), Q(t, x))

=
∫
R

[
∂t p log

p
q
+ q∂t

(
p
q

)
+ ∂tq log

q
p
+ p∂t

(
q
p

)]
du

=
∫
R

[
∂t p log

p
q
+ ∂t p− p

q
∂tq + ∂tq log

q
p
+ ∂tq−

q
p

∂t p
]

du

=
∫
R

[(
log

p
q
− q

p

)
∂t p +

(
log

q
p
− p

q

)
∂tq
]

du

=
∫
R

(
log

p
q
− q

p

)[
1
2

∂2
uu

(
b(1)0 p

)
− ∂u

(
a(1)0 p

)]
du

+
∫
R

(
log

q
p
− p

q

)[
1
2

∂2
uu

(
b(2)0 q

)
− ∂u

(
a(2)0 q

)]
du

=−
∫
R

[
1
2

∂u

(
b(1)0 p

)
− a(1)0 p

][
q
p

∂u

(
p
q

)
− ∂u

(
q
p

)]
du

−
∫
R

[
1
2

∂u

(
b(2)0 q

)
− a(2)0 q

][
p
q

∂u

(
q
p

)
− ∂u

(
p
q

)]
du

=−
∫
R

[
1
2

∂u

(
b(1)0 p

)
− a(1)0 p

]
1
p

[
q∂u

(
p
q

)
− p∂u

(
q
p

)]
du

−
∫
R

[
1
2

∂u

(
b(2)0 q

)
− a(2)0 q

]
1
q

[
p∂u

(
q
p

)
− q∂u

(
p
q

)]
du

=−
∫
R

{[
1
2

∂u

(
b(1)0 p

)
− a(1)0 p

]
1
p
−
[

1
2

∂u

(
b(2)0 q

)
− a(2)0 q

]
1
q

}
× (∂u log p− ∂u log q)(p + q)du

=−
∫
R

[
1
2

b(1)0 ∂u log p− 1
2

b(2)0 ∂u log q +
1
2

∂u

(
b(1)0 − b(2)0

)
−
(

a(1)0 − a(2)0

)]
× (∂u log p− ∂u log q)(p + q)du

=−
∫
R

[
1
2

b(1)0 ∂u log p− 1
2

b(2)0 ∂u log q
]
(∂u log p− ∂u log q)(p + q)du

−
∫
R

[
1
2

∂u

(
b(1)0 − b(2)0

)
−
(

a(1)0 − a(2)0

)]
(∂u log p− ∂u log q)(p + q)du

=− 1
2

FD(
b(1)0 ,b(2)0

)(P(t, x)‖Q(t, x))− R0(P(t, x)‖Q(t, x))

(67)

where
FD(

b(1)0 ,b(2)0

)(P(t, x)‖Q(t, x))

=
∫
R

[
b(1)0 ∂u log p− b(2)0 ∂u log q

]
(∂u log p− ∂u log q)(p + q)du

(68)

and

R0(P(t, x)‖Q(t, x)) =
∫
R

[
1
2

∂2
uu

(
b(1)0 − b(2)0

)
− ∂u

(
a(1)0 − a(2)0

)]
(p + q)du (69)

Similarly, for k = 1, 2, · · · , d, we can obtain the generalized De Bruijn identities about
the spatial variable xk

∂

∂xk
JD(P(t, x), Q(t, x)) = −1

2
FD(

b(1)k ,b(2)k

)(P(t, x)‖Q(t, x))− Rk(P(t, x), Q(t, x)) (70)

where

Rk(P(t, x)‖Q(t, x)) =
∫
R

[
1
2

∂2
uu

(
b(1)k − b(2)k

)
− ∂u

(
a(1)k − a(2)k

)]
(p + q)du (71)
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then we obtain the conclusion.

Unlike Theorem 3, Theorem 4 focuses on the Jeffreys divergence between two sep-
arate space–time random fields X(t, x) and Y(t, x), both at the same position (t, x), and
establishes the identities of the connection between the Jeffreys divergence and the Fisher
divergence of X(t, x) and Y(t, x). This is known as the De Bruijn identities. To prevent
Jeffreys divergence from becoming infinite, it is necessary for the difference between the
probability density functions of X(t, x) and Y(t, x) to be small. In Section 4, we obtain Jef-
freys divergence and Fisher divergence using the same type of Fokker–Planck equations but
with different parameters. This allows for the selection of only the appropriate parameters.

4. Three Fokker–Planck Random Fields and Their Corresponding Information Measures

In this section, we present three types of Fokker–Planck equations and derive their
corresponding density functions and information measures, which are Jeffreys divergence,
generalized Fisher information, and Fisher divergence. With these quantities, the results
corresponding to the applications of Theorems 2 and 3 are obtained. On the one hand,
we calculate the ratio of Jeffreys divergence to the square of space–time variation on
the identical Fokker–Planck space–time random field at various space–time points, in
comparison to generalized Fisher information. On the other hand, we derive the De Burijn
identities for Jeffreys divergence and generalized Fisher divergence from Fokker–Planck
equations on a single space–time random field at the corresponding space–time location,
under same type but with different parameters.

First, we present a theorem regarding simple type Fokker–Planck equations of the
random field.

Theorem 4. Suppose the functions in the Fokker–Planck Equations (43) for the continuous random
field X(t, x) are formulated as follows:

a0(u; t, x) = a0(t, x)

b0(u; t, x) = b0(t, x) > 0

ak(u; t, x) = ak(t, x)

bk(u; t, x) = bk(t, x) > 0

k = 1, 2, · · · , d

(72)

where a0, ak, b0, and bk are continuously differentiable functions independent of u and two continu-
ously differentiable functions, α(t, x) and β(t, x), exist such that{

dα(t, x) = a0dt + a1dx1 + · · ·+ addxd

dβ(t, x) = b0dt + b1dx1 + · · ·+ bddxd
(73)

the initial density function is p(u; t, x) = δ[u− u0(x)] as prod(t, x) = 0; then, the density
function of X(t, x) is presented as follows:

p(u; t, x) =
1√

2πβ(t, x)
e−

[u−u0(x)−α(t,x)]2

2β(t,x) (74)

Proof. It can be easily inferred that the Fokker–Planck equations are simple parabolic
equations, and their solution can be obtained through Fourier transform
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p(u; t, x) =
1√

2π
∫ t

0 b0(s, x)ds
e
− [

u−u0(x)−
∫ t

0 a0(s,x)ds]
2

2
∫ t

0 b0(s,x)ds

p(u; t, x) =
1√

2π
∫ xk

0 bk(t, x)dxk

e
−
[
u−u0(x)−

∫ xk
0 ak(t,x)dxk

]2
2
∫ xk

0 bk(t,x)dxk

(75)

Recall that there are two functions α(t, x) and β(t, x) such that{
dα(t, x) = a0(t, x)dt + a1(t, x)dx1 + · · ·+ ad(t, x)dxd

dβ(t, x) = b0(t, x)dt + b1(t, x)dx1 + · · ·+ bd(t, x)dxd
(76)

we can obtain the probability density function

p(u; t, x) =
1√

2πβ(t, x)
e−

[u−u0(x)−α(t,x)]2

2β(t,x) (77)

Actually, numerous examples exist in which the Fokker–Planck equations comply
with Theorem 4. Let B(t, x) be the (1 + d, 1) Brownian sheet [52,53], that is, a centered
continuous Gaussian process that is indexed by (1 + d) real, positive parameters and takes
its values in R. Moreover, its covariance structure is given by

E[B(t, x)B(s, y)] = (t ∧ s)
d

∏
k=1

(xk ∧ yk) (78)

for (t, x1, x2, · · · , xd), (s, y1, y2, · · · , yd) ∈ R+ ×Rd
+, where (· ∧ ·) represents the minimum

of two numbers. We can easily obtain

E
[

B2(t, x)
]
= prod(t, x) (79)

where prod(t, x) = tx1x2 · · · xd is the coordinate product of (t, x) and the density function is

p(1)(u; t, x) =
1√

2πprod(t, x)
e−

u2
2prod(t,x) (80)

Moreover, the Fokker–Planck equations of Brownian sheet are

∂

∂t
p(1)(u; t, x) =

prod(x)
2

∂2

∂u2 p(1)(u, t, x)

∂

∂xk
p(1)(u; t, x) =

prod(t, x)
2xk

∂2

∂u2 p(1)(u, t, x)

k = 1, 2, · · · , d

(81)

with the initial condition p(u; t, x) = δ(u) as prod(t, x) = 0.
Following the concept of constructing a Brownian bridge on Brownian motion [53],

we refer to
B∗(t, x) = B(t, x)− prod(t, x)B(1, 1, · · · , 1) (82)

as a Brownian sheet bridge on the cube (t, x) ∈ [0, 1]× [0, 1]d, where B(t, x) represents the
Brownian sheet. Obviously, B∗(t, x) is Gaussian, and E[B∗(t, x)] = 0 and the covariance
structure are

E[B∗(t, x)B∗(s, y)] = E[B(t, x)B(s, y)]− prod(t, x)prod(s, y) (83)
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we can obtain
E
[

B2(t, x)
]
= prod(t, x)[1− prod(t, x)] (84)

and the density function of B∗(t, x) is

p(2)(u; t, x) =
1√

2πprod(t, x)[1− prod(t, x)]
e−

u2
2prod(t,x)[1−prod(t,x)] (85)

In addition to this, the Fokker–Planck equations of Brownian sheet bridge are

∂

∂t
p(2)(u; t, x) =

prod(x)[1− 2prod(t, x)]
2

∂2

∂u2 p(2)(u, t, x)

∂

∂xk
p(2)(u; t, x) =

prod(t, x)
2xk

[1− 2prod(t, x)]
∂2

∂u2 p(2)(u, t, x)

k = 1, 2, · · · , d

(86)

with the initial condition p(u; t, x) = δ(u) as prod(t, x) = 0, and we obtain the solution (85).
Combining two probability density functions (80) and (85) yields their respective

Jeffreys divergence and generalized De Burijn identities. The Jeffreys divergence of (74) can
be obtained at various space–time points as

JD(P(t, x), P(s, y)) =
[α(t, x)− α(s, y)]2 + β(s, y)

2β(t, x)
+

[α(t, x)− α(s, y)]2 + β(t, x)
2β(s, y)

− 1 (87)

and the Fisher divergence between P(1) and P(2) at the identical space–time point represents

FD(
b(1)k ,b(2)k

)(P(1)(t, x)‖P(2)(t, x)
)

=
1

β2
1(t, x)β2

2(t, x)

{
[α1(t, x)− α2(t, x)]2

[
b(2)k β2

1(t, x) + b(1)k β2
2(t, x)

]
+ [β1(t, x)− β2(t, x)][β1(t, x) + β2(t, x)]

[
b(2)k β1(t, x)− b(1)k β2(t, x)

]}
(88)

where k = 0, 1, · · · , d.
Bring the density function of Brownian sheet into Equation (87); we can easily obtain

the Jeffreys divergence of the Brownian sheet at various space–time points as

JD
(

P(1)(t, x), P(1)(s, y)
)
=

prod(s, y)
2prod(t, x)

+
prod(t, x)

2prod(s, y)
− 1 (89)

and the generalized Fisher information on space–time variables is as follows:
FI(t)1

(
P(1)(t, x)

)
=

1
2t2

FI(xk)
1

(
P(1)(t, x)

)
=

1
2x2

k

(90)

k = 1, 2, · · · , d.
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Then, we can obtain quotients of the squared difference between Jeffreys divergence
and space–time variables

JD
(

P(1)(t, x), P(1)(s, x)
)

|t− s|2 =
1

2st

JD
(

P(1)(t, x), P(1)(t, x̃(k))
)

|xk − x′k|2
=

1
2xkx′k

(91)

and then we can obtain the relation between quotients and generalized Fisher information

JD
(

P(1)(t, x), P(1)(s, x)
)

|t− s|2FI(t)1
(

P(1)(t, x)
) =

t
s

JD
(

P(1)(t, x), P(1)(t, x̃(k))
)

|xk − x′k|2FI(xk)
1
(

P(1)(t, x)
) =

xk
x′k

(92)

for k = 1, 2, · · · , d. If we consider the approximation of spacetime points (t, x) and (s, y),
the final result (92) satisfies the conclusion of Theorem 2.

Similarly, we can obtain the Jeffreys divergence of Brownian sheet bridge at different
space–time points

JD
(

P(2)(t, x), P(2)(s, y)
)
=

prod(s, y)[1− prod(s, y)]
2prod(t, x)[1− prod(t, x)]

+
prod(t, x)[1− prod(t, x)]

2prod(s, y)[1− prod(s, y)]
− 1 (93)

and the generalized Fisher information on space–time variables
FI(t)1

(
P(2)(t, x)

)
=

[1− 2prod(t, x)]2

2t2[1− prod(t, x)]2

FI(xk)
1

(
P(2)(t, x)

)
=

[1− 2prod(t, x)]2

2x2
k [1− prod(t, x)]2

(94)

k = 1, 2, · · · , d. Further, we can easily get the quotients of the squared difference between
Jeffreys divergence and space–time variables

JD
(

P(2)(t, x), P(2)(s, x)
)

|t− s|2 =
[1− prod(x)(s + t)]2

2st[1− prod(s, x)][1− prod(t, x)]

JD
(

P(2)(t, x), P(2)(t, x̃(k))
)

|xk − x′k|2
=

1
2xkx′k[1− prod(t, x)]

[
1− prod(t, x̃(k))

] [1− prod(t, x)
xk

(
xk + x′k

)]2
(95)

and then we can obtain the relation between quotients and generalized Fisher information

JD
(

P(2)(t, x), P(2)(s, x)
)

|t− s|2FI(t)1
(

P(2)(t, x)
) =

t[1− prod(t, x)][1− prod(x)(s + t)]2

s[1− prod(s, x)][1− 2prod(t, x)]2

JD
(

P(2)(t, x), P(2)(t, x̃(k))
)

|xk − x′k|2FI(xk)
1
(

P(2)(t, x)
) =

xk[1− prod(t, x)]

x′k
[
1− prod(t, x̃(k))

]
[1− 2prod(t, x)]2

[
1− prod(t, x)

xk

(
xk + x′k

)]2
(96)

for k = 1, 2, · · · , d. Without loss of generality, the result (96) also satisfies Theorem 2.
Next, we evaluate the Jeffreys divergence between the density functions (80) and (85)

for the same space–time points. It should be noted that the Brownian sheet bridge density
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function is defined on a bounded domain; therefore, we limit our analysis to the space–time
region of (t, x) ∈ [0, 1]× [0, 1]d.

The Jeffreys divergence between P(1) and P(2) can be easily obtained as

JD
(

P(1)(t, x), P(2)(t, x)
)
=

1− prod(t, x)
2

+
1

2[1− prod(t, x)]
− 1 (97)

and the Fisher divergence as shown in (88) is given by
FD(

b(1)0 ,b(2)0

)(P(1)(t, x)‖P(2)(t, x)
)
= prod(x)− prod(x)

[1− prod(t, x)]2

FD(
b(1)k ,b(2)k

)(P(1)(t, x)‖P(2)(t, x)
)
=

prod(t, x)
xk

− prod(t, x)

xk[1− prod(t, x)]2

(98)

with the remainder terms

R0

(
P(1)(t, x)‖P(2)(t, x)

)
= Rk

(
P(1)(t, x)‖P(2)(t, x)

)
= 0 (99)

for k = 1, 2, · · · , d. Furthermore, we can obtain the generalized De Bruijn identities

∂

∂t
JD
(

P(1)(t, x), P(2)(t, x)
)
= −1

2
FD(

b(1)0 ,b(2)0

)(P(1)(t, x)‖P(2)(t, x)
)

∂

∂xk
JD
(

P(1)(t, x), P(2)(t, x)
)
= −1

2
FD(

b(1)k ,b(2)k

)(P(1)(t, x)‖P(2)(t, x)
)

k = 1, 2, · · · , d

(100)

Next, we present two categories of significant Fokker–Planck equations and pro-
vide pertinent illustrations for computing Jefferys divergence, Fisher information, and
Fisher divergence.

Theorem 5. Suppose the functions in the Fokker–Planck Equations (43) for the continuous random
field X(t, x) are formulated as follows:

ak(u; t, x) ≡ 0

bk(u; t, x) = bk(t, x)u2 > 0

k = 0, 1, 2, · · · , d

(101)

where bk are continuously differentiable functions independent of u and a continuously differentiable
function β(t, x) exists, such that

dβ(t, x) = b0(t, x)dt + b1(t, x)dx1 + · · ·+ bd(t, x)dxd (102)

the initial value X(t, x) = 1 as prod(t, x) = 0 and the initial density function is p(u; t, x) = δ(u− 1)
as prod(t, x) = 0. Then, the density function is

p(u; t, x) =
eβ(t,x)√

2πβ(t, x)
e−

[log u+ 3
2 β(t,x)]

2

2β(t,x) (103)

Proof. Depending on the conditions, it is easy to obtain the Fokker–Planck equations as

∂

∂t
p(u; t, x) =

b0(t, x)
2

u2 ∂2 p(u; t, x)
∂u2 + 2b0(t, x)u

∂

∂u
p(u; t, x) + b0(t, x)p(u; t, x)

∂

∂xk
p(u; t, x) =

bk(t, x)
2

u2 ∂2 p(u; t, x)
∂u2 + 2bk(t, x)u

∂

∂u
p(u; t, x) + bk(t, x)p(u; t, x)

k = 1, 2, · · · , d

(104)
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Take the transformation v = log u or u = ev and note p̃(v; t, x) = p(u(v); t, x); we
can obtain

∂

∂t
p̃(v; t, x) =

b0(t, x)
2

∂2

∂v2 p̃(v; t, x) +
3b0(t, x)

2
∂

∂v
p̃(v; t, x) + b0(t, x) p̃(v; t, x)

∂

∂xk
p̃(v; t, x) =

bk(t, x)
2

∂2

∂v2 p̃(v; t, x) +
3bk(t, x)

2
∂

∂v
p̃(v; t, x) + bk(t, x) p̃(v; t, x)

k = 1, 2, · · · , d

(105)

with the solution 

p̃(v; t, x) =
e
∫ t

0 b0(s,x)ds√
2π
∫ t

0 b0(s, x)ds
e
− [

v+ 3
2
∫ t

0 b0(s,x)ds]
2

2
∫ t

0 b0(s,x)ds

p̃(v; t, x) =
e
∫ xk

0 bk(t,x)dxk√
2π
∫ xk

0 bk(t, x)dxk

e
−
[
v+ 3

2
∫ xk

0 bk(t,x)dxk
]2

2
∫ xk

0 bk(t,x)dxk

k = 1, 2, · · · , d

(106)

then, 

p(u; t, x) =
e
∫ t

0 b0(s,x)ds√
2π
∫ t

0 b0(s, x)ds
e
− [

log u+ 3
2
∫ t

0 b0(s,x)ds]
2

2
∫ t

0 b0(s,x)ds

p(u; t, x) =
e
∫ xk

0 bk(t,x)dxk√
2π
∫ xk

0 bk(t, x)dxk

e
−
[
log u+ 3

2
∫ xk

0 bk(t,x)dxk
]2

2
∫ xk

0 bk(t,x)dxk

k = 1, 2, · · · , d

(107)

Recall that a continuously differential function β(t, x) exists such that

dβ(t, x) = b0(t, x)dt + b1(t, x)dx1 + · · ·+ bd(t, x)dxd (108)

this enables the derivation of the probability density

p(u; t, x) =
eβ(t,x)√

2πβ(t, x)
e−

[log u+ 3
2 β(t,x)]

2

2β(t,x) (109)

Remark 1. In the stochastic process theory, a correlation exists between the Fokker–Planck equation
and the Itô process. Specifically, if the Itô process is

dXt = µ(Xt, t)dt + σ(Xt, t)dBt (110)

then the corresponding Fokker–Planck equation can be obtained as

∂

∂t
p(u, t) =

1
2

∂2

∂u2

[
σ2(u, t)p(u, t)

]
− ∂

∂u
[µ(u, t)p(u, t)] (111)

where µ and σ represent drift and diffusion, Bt is the standard Brownian motion, or

dXt

dt
= µ(Xt, t) + σ(Xt, t)Wt (112)
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where Wt =
dBt
dt represents the white noise. Actually, if we consider the Itô processes corresponding

to Fokker–Planck equations from Theorem 5, we can obtain
∂tX(t, x) =

√
b0(t, x)X(t, x)Wt

∂xk X(t, x) =
√

bk(t, x)X(t, x)Wk

(113)

where Wk represents the space white noise with respect to xk, k = 1, 2, · · · , d. Further, we can also
write Equation (113) in vector form

∇X(t, x) = γ(t, x)X(t, x)�W(t, x) (114)

where  γ(t, x) =
[√

b0(t, x),
√

b1(t, x), · · · ,
√

bd(t, x)
]

W(t, x) = [Wt, W1, · · · , Wd]

(115)

∇ represents the gradient operator and � represents element by element multiplication. Notice that
each equation in Equation (113) is similar in form to the geometric Brownian motion in the theory of
stochastic processes. Similarly, we can call the space–time random field that satisfies Equation (113)
a geometric Brownian filed.

If we consider different β3(t, x) and β4(t, x) in density function (103), we can obtain
density functions p(3)(u; t, x) and p(4)(u; t, x); then, we can obtain the Jeffreys divergence

JD
(

P(3)(t, x), P(3)(s, y)
)
=

β3(t, x) + β3(s, t) + 4
8β3(t, x)β3(s, y)

[β3(t, x)− β3(s, y)]2 (116)

and generalized Fisher information
FI(t)1

(
P(3)(t, x)

)
=

β3(t, x) + 2
4β2

3(t, x)

[
b(3)0 (t, x)

]2

FI(xk)
1

(
P(3)(t, x)

)
=

β3(t, x) + 2
4β2

3(t, x)

[
b(3)k (t, x)

]2
(117)

and then the quotients

JD
(

P(3)(t, x), P(3)(s, x)
)

|t− s|2 =
β3(t, x) + β3(s, x) + 4

8β3(t, x)β3(s, y)

[
β3(t, x)− β3(s, y)

t− s

]2

JD
(

P(3)(t, x), P(3)(t, x̃(k))
)

|xk − x′k|2
=

β3(t, x) + β3(t, x̃(k)) + 4
8β3(t, x)β3(t, x̃(k))

[
β3(t, x)− β3(t, x̃(k))

xk − x′k

]2
(118)

and we can easily obtain the relation

JD
(

P(3)(t, x), P(3)(s, y)
)

|t− s|2FI(t)1
(

P(3)(t, x)
) =

β3(t, x)
β3(s, x)

β3(t, x) + β3(s, x) + 4
2[β3(t, x) + 2]

[
β3(t, x)− β3(s, y)

b(3)0 (t, x)(t− s)

]2

JD
(

P(3)(t, x), P(3)(t, x̃(k))
)

|xk − x′k|2FI(xk)
1
(

P(3)(t, x)
) =

β3(t, x)
β3(t, x̃(k))

β3(t, x) + β3(t, x̃(k)) + 4
2[β3(t, x) + 2]

[
β3(t, x)− β3(t, x̃(k))

b(3)k (t, x)
(
xk − x′k

)
]2

(119)

for k = 1, 2, · · · , d. Without a loss of generality, the result (119) also corroborates Theorem 2.
Furthermore, if we consider different β3(t, x) and β4(t, x) in density function (103),

we can obtain density functions p(3)(u; t, x) and p(4)(u; t, x); then, the generalized Fisher
divergence at the same space–time points is
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FD(
b(3)k ,b(4)k

)(P(3)(t, x)‖P(4)(t, x)
)

=
β3(t, x)− β4(t, x)
4β2

3(t, x)β2
4(s, y)

×
{

b(4)k (t, x)β3(t, x)
[

β2
3(t, x)− 2β2

4(s, y)
]
− b(3)k (t, x)β4(t, x)

[
β2

4(s, y)− 2β2
3(t, x)

]}
× [4β3(t, x) + 4β4(t, x)− 3β3(t, x)β4(t, x)]

[
b(4)k (t, x)β3(t, x)− b(3)k (t, x)β4(t, x)

]
(120)

with the remainder terms

Rk

(
P(3)(t, x)‖P(4)(t, x)

)
= 2

[
b(3)k (t, x)− b(4)k (t, x)

]
(121)

k = 0, 1, 2, · · · , d. Then, the generalized De Bruijn identities are as follows:

∂

∂t
JD
(

P(3)(t, x), P(4)(t, x)
)
=− 1

2
FD(

b(3)0 ,b(4)0

)(P(3)(t, x)‖P(4)(t, x)
)

− 2
[
b(3)0 (t, x)− b(4)0 (t, x)

]
∂

∂xk
JD
(

P(3)(t, x), P(4)(t, x)
)
=− 1

2
FD(

b(3)k ,b(4)k

)(P(3)(t, x)‖P(4)(t, x)
)

− 2
[
b(3)k (t, x)− b(4)k (t, x)

]
k =1, 2, · · · , d

(122)

Additionally, we offer an alternative non-trivial form below that utilizes the im-
plicit functions method to express our results. This form differs from the one presented
in Theorem 5.

Theorem 6. Suppose the functions in Fokker–Planck Equations (43) for the continuously bounded
random field X(t, x) ∈ [0, 1] are formulated as follows:

ak(u; t, x) = −3
2

bk(t, x)u

bk(u; t, x) = bk(t, x)
(

1− u2
)

k = 0, 1, 2, · · · , d

(123)

where bk are continuously differentiable functions independent of u and a continuously differentiable
function β(t, x) exists such that

dβ(t, x) = b0(t, x)dt + b1(t, x)dx1 + · · ·+ bd(t, x)dxd (124)

the initial value X(t, x) = 0 as prod(t, x) = 0 and the initial density function is p(u; t, x) = δ(u)
as prod(t, x) = 0. Then, the density function is as follows:p(u; t, x) =

e
1
2 β(t,x)√

2πβ(t, x)
e−

v2
2β(t,x)

u = sin v

(125)
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Proof. Depending on the conditions, it is easy to obtain the Fokker–Planck equations as

∂

∂t
p(u; t, x) =

b0(t, x)
2

∂2

∂u2

[(
1− u2

)
p(u; t, x)

]
− 3b0(t, x)

2
∂

∂u
[up(u; t, x)]

∂

∂xk
p(u; t, x) =

bk(t, x)
2

∂2

∂u2

[(
1− u2

)
p(u; t, x)

]
− 3bk(t, x)

2
∂

∂u
[up(u; t, x)]

k = 1, 2, · · · , d

(126)

By implementing the transformation with u = sin v and defining p̃(v; t, x) = p(u(v; t, x)),
the equations can be restructured as

∂

∂t
p̃(v; t, x) =

b0(t, x)
2

∂2

∂v2 p̃(v; t, x) +
b0(t, x)

2
p̃(v; t, x)

∂

∂xk
p̃(v; t, x) =

bk(t, x)
2

∂2

∂v2 p̃(v; t, x) +
bk(t, x)

2
p̃(v; t, x)

k = 1, 2, · · · , d

(127)

with the solution 

p̃(v; t, x) =
e

1
2
∫ t

0 b0(s,x)ds√
2π
∫ t

0 b0(s, x)ds
e
− v2

2
∫ t

0 b0(s,x)ds

p̃(v; t, x) =
e

1
2
∫ xk

0 bk(t,x)dxk√
2π
∫ xk

0 bk(t, x)dxk

e
− v2

2
∫ xk

0 bk(t,x)dxk

k = 1, 2, · · · , d

(128)

Recall that a continuously differential function β(t, x) exists such that

dβ(t, x) = b0(t, x)dt + b1(t, x)dx1 + · · ·+ bd(t, x)dxd (129)

we can derive the probability density function

p̃(v; t, x) =
e

1
2 β(t,x)√

2πβ(t, x)
e−

v2
2β(t,x) (130)

then, p(u; t, x) =
e

1
2 β(t,x)√

2πβ(t, x)
e−

v2
2β(t,x)

u = sin v

(131)

Remark 2. Similar to the discussion in Remark 1, we can obtain the Itô processes corresponding to
the Fokker–Planck equations in Theorem 6

∂tX(t, x) = −3
2

b0(t, x)X(t, x) +
√

b0(t, x)[1− X2(t, x)]Wt

∂xk X(t, x) = −3
2

bk(t, x)X(t, x) +
√

bk(t, x)[1− X2(t, x)]Wk

(132)

k = 1, 2, · · · , d. In fact, this random field can be solved with a sinusoidal transformation, and the
corresponding probability density function can be obtained. Although random field (132) has not
yet found its application scenario, it gives us ideas for constructing different forms on space–time
random fields in the future.
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From density function (125), if we consider different β5(t, x) and β6(t, x), we can obtain
density functions p(5)(u; t, x) and p(6)(u; t, x); then, we can obtain the Jeffreys divergence
and generalized Fisher information

JD
(

P(5)(t, x), P(5)(s, y)
)
=

1− β5(t, x)− β5(s, y)
2β5(t, x)β5(s, y)

[β5(t, x)− β5(s, y)]2 (133)

and 
FI(t)1

(
P(5)(t, x)

)
=

1− 2β5(t, x)
2β2

5(t, x)

[
b(5)0 (t, x)

]2

FI(xk)
1

(
P(5)(t, x)

)
=

1− 2β5(t, x)
2β2

5(t, x)

[
b(5)k (t, x)

]2
(134)

and then the quotients

JD
(

P(5)(t, x), P(5)(s, x)
)

|t− s|2 =
1− β5(t, x)− β5(s, x)

2β5(t, x)β5(s, x)

[
β5(t, x)− β5(s, x)

t− s

]2

JD
(

P(5)(t, x), P(5)(t, x̃(k))
)

|xk − x′k|2
=

1− β5(t, x)− β5(t, x̃(k))
2β5(t, x)β5(t, x̃(k))

[
β5(t, x)− β5(t, x̃(k))

xk − x′k

]2
(135)

Obviously, we can easily obtain

JD
(

P(5)(t, x), P(5)(s, x)
)

|t− s|2FI(t)1
(

P(5)(t, x)
) =

1− β5(t, x)− β5(s, x)
1− 2β5(t, x)

β5(t, x)
β5(s, x)

[
β5(t, x)− β5(s, x)

b(5)0 (t, x)(t− s)

]2

JD
(

P(5)(t, x), P(5)(t, x̃(k))
)

|xk − x′k|2FI(xk)
1
(

P(5)(t, x)
) =

1− β5(t, x)− β5(t, x̃(k))
1− 2β5(t, x)

β5(t, x)
β5(t, x̃(k))

[
β5(t, x)− β5(t, x̃(k))

b(5)k (t, x)
(

x− x′k
)
]2

(136)

for k = 1, 2, · · · , d. Without a loss of generality, the result (136) corroborates Theorem 2.
Furthermore, if we consider different β5(t, x) and β6(t, x) in the density function (125),

denoted as p(5)(u; t, x) and p(6)(u; t, x), we can obtain the generalized Fisher divergence at
the same space–time points

FD(
b(5)k ,b(6)k

)(P(5)(t, x)‖P(6)(t, x)
)

=
[β5(t, x)− β6(t, x)]

[
b(6)k β5(t, x)− b(5)k β6(t, x)

]
2β2

5(t, x)β2
6(t, x)

[
β5(t, x)− β2

5(t, x) + β6(t, x)− β2
6(t, x)

] (137)

with the remainder terms

Rk

(
P(5)(t, x)‖P(6)(t, x)

)
= b(5)k (t, x)− b(6)k (t, x) (138)

for k = 0, 1, 2, · · · , d. Then, the generalized De Bruijn identities are as follows:

∂

∂t
JD
(

P(5)(t, x), P(6)(t, x)
)
= −1

2
FD(

b(5)0 ,b(6)0

)(P(5)(t, x)‖P(6)(t, x)
)
−
[
b(5)0 (t, x)− b(6)0 (t, x)

]
∂

∂xk
JD
(

P(5)(t, x), P(6)(t, x)
)
= −1

2
FD(

b(5)k ,b(6)k

)(P(5)(t, x)‖P(6)(t, x)
)
−
[
b(5)k (t, x)− b(6)k (t, x)

]
k = 1, 2, · · · , d

(139)

5. Conclusions

In this paper, we provide a generalization of the classical definitions of entropy,
divergence, and Fisher information and derive these measures on a space–time random
field. In addition, the Fokker–Planck Equations (43) for the space–time random field
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and density functions are obtained. Moreover, we obtain the Jeffreys divergence of a
space–time random field at different space–time positions, and we obtain the approximation
of the ratio of Jeffreys divergence to the square of space–time coordinate difference to the
generalized Fisher information (54). Additionally, we use the Jeffreys divergence on two
space–time random fields from the same type but different parameters Fokker–Planck
equations, to obtain generalized De Bruijn identities (61). Finally, we give three examples
of Fokker–Planck equations, with their solutions, to calculate the corresponding Jeffreys
divergence, generalized Fisher information, and Fisher divergence and obtain the De
Bruijn identities. These results encourage further research into the entropy divergence
of space–time random fields, which advances the pertinent fields of information entropy,
Fisher information, and De Bruijn identities.
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