
Citation: Li, W.; Zhu, E.; Wang, S.;

Guo, X. Graph Clustering with

High-Order Contrastive Learning.

Entropy 2023, 25, 1432. https://

doi.org/10.3390/e25101432

Academic Editors: Alberto J. Rosales

Silva and Francisco J. Gallegos-Funes

Received: 20 August 2023

Revised: 29 September 2023

Accepted: 7 October 2023

Published: 10 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Graph Clustering with High-Order Contrastive Learning
Wang Li 1, En Zhu 1,* , Siwei Wang 1 and Xifeng Guo 2,*

1 School of Computer Science, National University of Defense Technology, Changsha 410000, China;
leon20080518@163.com (W.L.); wangsiwei13@nudt.edu.cn (S.W.)

2 School of Cyberspace Science, Dongguan University of Technology, Dongguan 523808, China
* Correspondence: enzhu@nudt.edu.cn (E.Z.); guoxifeng1990@163.com (X.G.)

Abstract: Graph clustering is a fundamental and challenging task in unsupervised learning. It has
achieved great progress due to contrastive learning. However, we find that there are two problems
that need to be addressed: (1) The augmentations in most graph contrastive clustering methods are
manual, which can result in semantic drift. (2) Contrastive learning is usually implemented on the
feature level, ignoring the structure level, which can lead to sub-optimal performance. In this work, we
propose a method termed Graph Clustering with High-Order Contrastive Learning (GCHCL) to solve
these problems. First, we construct two views by Laplacian smoothing raw features with different
normalizations and design a structure alignment loss to force these two views to be mapped into the
same space. Second, we build a contrastive similarity matrix with two structure-based similarity
matrices and force it to align with an identity matrix. In this way, our designed contrastive learning
encompasses a larger neighborhood, enabling our model to learn clustering-friendly embeddings
without the need for an extra clustering module. In addition, our model can be trained on a large
dataset. Extensive experiments on five datasets validate the effectiveness of our model. For example,
compared to the second-best baselines on four small and medium datasets, our model achieved an
average improvement of 3% in accuracy. For the largest dataset, our model achieved an accuracy
score of 81.92%, whereas the compared baselines encountered out-of-memory issues.

Keywords: graph clustering; unsupervised learning; contrastive learning; augmentation

1. Introduction

As a powerful tool, the Graph Neural Network (GNN) has been designed to deal with
graph data such as social networks, knowledge graphs, citation networks, etc. The inven-
tion of the GNN has greatly facilitated graph-related tasks such as graph classification [1–3],
neural machine translation [4,5], relation extraction [6,7], relational reasoning [8,9], and
graph clustering [10–12]. Unlike traditional clustering methods such as K-means, GNN-
based graph clustering models use deep neural networks for representation learning before
clustering. Adaptive graph convolution (AGC) [11] is a method that can adaptively choose
its neighborhood over various graphs. A deep attentional embedded graph clustering
model (DAEGC) [13] can learn to aggregate neighbors by calculating their importance. The
adversarially regularized graph autoencoder (ARGV) [14] introduces adversarial regular-
ization to learn and improve the robustness of representations. The work on attributed
graph embedding (AGE) [15] proposed a Laplacian filtering mechanism that can effectively
denoise features. The deep fusion clustering network (DFCN) [16] is a hybrid method
that integrates embeddings from autoencoder (AE) [17] and graph autoencoder (GAE) [18]
modules for representation learning.

Recently, there has been growing interest in contrastive learning. Applying contrastive
learning to deep graph clustering has become more common than before. The principle of
contrastive learning is to bring similar or positive sample pairs closer and push dissimilar
or negative sample pairs further away from each other. Graph clustering is a fundamental
but challenging task in graph analysis. The contrastive multi-view representation learning

Entropy 2023, 25, 1432. https://doi.org/10.3390/e25101432 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25101432
https://doi.org/10.3390/e25101432
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-2305-7555
https://orcid.org/0000-0001-9517-262X
https://doi.org/10.3390/e25101432
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25101432?type=check_update&version=1


Entropy 2023, 25, 1432 2 of 16

method (MVGRL) [19] has achieved its best performance by contrasting the embeddings
of the nodes and sampled sub-graphs. Specifically, it constructs an extra diffusion graph
for contrastive learning. The node embeddings from one view are contrasted with the sub-
graph embeddings from the other. The method determines which nodes and sub-graphs
belong to the positive pair and which belong to the negative pair. The self-consistent
contrastive attributed graph clustering method (SCAGC) [20] can maintain the consistency
between the learned representation and cluster structure by performing contrastive learning
between clusters and between nodes with the guidance of clustering results. Inspired by
the deep graph infomax method (DGI) [21], the community detection-oriented deep graph
infomax method (CommDGI) [22] introduced a community mutual information loss to
capture the community structural information for nodes.

Although promising performance has been achieved, there still exist problems that
need to be addressed. Firstly, in existing methods, manual augmentation such as feature
masks and edge drops can result in semantic drift, which leads to sub-optimal performance.
Secondly, most of the methods perform contrastive learning on feature-based (first-order)
contrastive similarity, ignoring structure-based (second-order) contrastive similarity, which
leads to sub-optimal performance. Figure 1 shows the difference between first-order
contrastive learning and second-order contrastive learning.

……
……

1-order contrastive 

learning

2-order contrastive 

learning

build

build

Z1

structure

Z2

S1

S2

feature

Figure 1. First-order contrastive learning and second-order contrastive learning. Z1 and Z2 denote
the features, and S1 and S2 are the similarity matrices built by Z1 and Z2.

To solve the above-mentioned problems, we propose a contrastive graph clustering
method termed Graph Clustering with High-Order Contrastive Learning. To address
the first problem, we build two views by performing Laplacian smoothing with different
normalizations on the same features. We build two similarity matrices with features. Each
element in the similarity matrices denotes the similarity between nodes. We argue that the
corresponding embeddings can be mapped into the same space using the alignment loss
between the similarity matrices. To address the second problem, we build a contrastive
similarity matrix using the similarity matrices. Inspired by [23], we perform contrastive
learning by minimizing the loss between the contrastive similarity matrix and an identity
matrix. In this way, our model can implement contrastive learning at the structure level.
Meanwhile, the contrastive similarity matrix is built using the feature-based similarity
matrix, and contrastive learning can also be assumed to be at the feature level to some
degree. Furthermore, we can learn clustering-friendly representations naturally without



Entropy 2023, 25, 1432 3 of 16

the manual sampling that is applied in most contrastive methods and we need no extra
clustering algorithms for training. Moreover, our method can be trained on large datasets.
The key contributions of this paper are as follows:

• Without any manual augmentations, we use two different Laplacian smoothing meth-
ods to build two views for contrastive learning and design an alignment loss to force
the learned embeddings to map into the same space.

• We design a novel structure-based contrastive loss without a sampling phase. By
contrasting two similarity matrices, our model can learn clustering-friendly represen-
tations. It is worth noting that our model can also be applied to large-scale datasets.

• Extensive experiments on five open datasets validate the effectiveness of our model.

2. Related Works

In this paper, we roughly divide deep graph clustering models into two kinds—
reconstructive and contrastive—and we introduce them in the following subsections. The
definitions of the acronyms used here can be found in Appendix A.2.

2.1. Deep Reconstructive Graph Clustering

Reconstructing graphs or features is a basic learning paradigm in many deep clus-
tering graphs. It can be divided into three categories: reconstruction only, adversarial
regularization, and hybrid. The graph autoencoder (GAE) [18] is a basic model that is often
introduced in graph clustering models as the framework. DAEGC [13] and MGAE [12] are
models that are trained by reconstructing the given structure or raw features. ARGV and
AGAE [10,14] can improve the robustness of the learned representations by introducing
adversarial regularization. SDCN, AGCN, and DFCN [16,24,25] are typical hybrid models.
SDCN can alleviate over-smoothness by integrating the representations from the AE and
GCN. Based on SDCN, AGCN includes an adaptive fusion mechanism to improve the
graph representations. DFCN includes a triple loss function to improve the robustness
of the graph representations. All these models need an extra clustering module to learn
clustering-friendly representations. Our model can naturally learn the clustering-friendly
representations through high-order contrastive learning.

2.2. Deep Contrastive Graph Clustering

The effectiveness of contrastive learning has been widely validated. Applying con-
trastive learning to the deep graph clustering model has recently become a trend. The
aim of Sublime [26] is to improve the anchor graph by constructing a learned auxiliary
graph. By contrasting the node embeddings of the anchor graph and the learned graph,
Sublime can reduce the impact of noisy connections or missing connections. Inspired
by [23], DCRN [27] is used to perform feature decorrelating in two different ways, but it
still needs a clustering module to learn clustering-friendly representations. GDCL [28]
employs a debiased method to choose negative samples. Specifically, it defines the nodes
and their augmented ones as the positive pairs and defines the node pairs with different
pseudo-labels as the negative pairs. This way, it alleviates the impact of false-negative
samples. SAIL [29] utilized self-distillation to maintain distribution consistency between
low-layer node embeddings and high-layer node features and alleviate the problem of
smoothness. The idea behind AFGRL [30] is that augmentation on graphs is difficult to
design. Therefore, it employs an augmentation-free method by combining KNN, K-means,
and the adjacency matrix to capture the local and global similarities of nodes, and the
obtained guidance can help contrastive learning. AutoSSL [31] adaptively combines differ-
ent pre-text tasks to improve graph representation learning. These contrastive models are
characterized by manual augmentation, sampling positive and negative pairs, and first-
order contrastive learning. Manual augmentation can result in semantic drift, the sampling
strategy needs an extra clustering-oriented module to define the positive and negative
pairs, and first-order contrastive learning can only learn clustering-friendly representations



Entropy 2023, 25, 1432 4 of 16

from the feature perspective, ignoring the structure perspective. Our model can effectively
alleviate these issues.

3. Proposed Method

In this section, we propose an algorithm for the Graph Clustering with High-Order
Contrastive Learning model. The entire framework of our model is shown in Figure 2.
Below, we describe the proposed GCHCL model.

……X

M

L

P

M

L

P

...

... ……...
...

...

...
...
...

X

X

Random Walk Norm

Symmetric Norm

similarity functionmultiple smoothing

I

Lmu Lcl
+ ……

clustering

+ fusion

A

batch

batch

rwS

symS

rwX̂

symX̂

rwZ

symZ

fZ

S

alignment 

loss

contrastive 

loss

Figure 2. The overall framework of the GCHCL model.

3.1. Problem Definition

In this paper, V = {v1, v2, . . . , vn} is a set of N nodes, and E denotes an edge set. Given
an undirected graph G = (X, A), X ∈ Rn×d denotes the attribute matrix, and A = (aij)n×n
denotes the given adjacency matrix. In the adjacency matrix A, aij ∈ 0, 1. aij = 1 indicates
an explicit connection between vi and vj. Otherwise, there exists no direct connection
between them. We let D = diag(d1, d2, . . . , dN) ∈ Rn×n be the degree matrix. di indicates
the ith row in D and di = ∑n

j=1 aij. The Laplacian matrix of the graph is built as L = D− A.
Details about the notations used are shown in Table 1.

Table 1. Notations used.

Notation Meaning

X ∈ Rn× f Feature matrix
X̂ ∈ Rn× f Smoothed feature matrix
Xb ∈ Rb× f Sampled Features
A ∈ Rn×n Given adjacency matrix
D ∈ Rn×n Degree matrix
Z ∈ Rb×d Output of encoder
Ẑ ∈ Rb×d Normalized output of encoder
Ẑ f ∈ Rb×d Fused embeddings
S ∈ Rb×b First-order similarity matrix
Ŝ ∈ Rb×b Second-order similarity matrix
S̃ ∈ Rb×b Contrastive similarity matrix
I ∈ Rb×b Identity matrix

3.2. Double Laplacian Smoothing

In several works, Laplacian smoothing has been proven to be effective in alleviating
the impact of high-frequency noise [15,32]. In [15], the GCN was decoupled into a graph
filter and a linear transformation, and it was demonstrated that the decoupled GCN could
achieve the same or even better performance in representation learning compared to the



Entropy 2023, 25, 1432 5 of 16

GCN. Generally, the features are convolved by the Laplacian matrix to avoid gradient
explosion during training; therefore, the Laplacian matrix needs to be normalized. There
are two types of normalization: random walk normalization and symmetric normalization.
During the aggregation step, the random walk-normalized Laplacian matrix treats the
neighbors equally. However, the symmetric-normalized Laplacian matrix considers both
the degree of the target node and its neighbors’ degrees. The larger the degree of the
neighbor, the smaller its contribution to the aggregation. The random walk-normalized
Laplacian matrix is constructed as follows:

Lrw = I − D̂−1 Â (1)

The symmetric normalized matrix is constructed as follows:

Lsym = I − D̂−
1
2 ÂD̂−

1
2 (2)

where Â = A+ I, D̂ is the degree matrix of Â. With these two types of normalized Laplacian
matrices, we construct two different views for the same feature matrix, as follows:

Hsym = I − Lsym (3)

Xsym = Hsym
tX (4)

Hrw = I − Lrw (5)

Xrw = Hrw
tX (6)

where t is the power of the filter operation.

3.3. Structure Alignment

After randomly sampling batches of nodes, we construct two different views for each
batch of nodes without augmentation and force them to be mapped into the same space.
For simplicity, we use a simple linear transformation as the encoder. First, we sample nodes
with an assigned batch size:

Xb
rw = Sample(Xrw) (7)

Xb
sym = Sample(Xsym) (8)

where Sample is a random sample operation, and b is the assigned batch size. Xb
rw, Xb

sym ∈
Rb× f . After sampling, nodes are input to the encoder in batches, as follows:

Zrw = Encoder(Xb
rw) (9)

Zsym = Encoder(Xb
sym) (10)

Ẑrw =
Zrw

‖Zrw‖
(11)

Ẑsym =
Zsym

‖Zsym‖
(12)

Z f =
1
2
(Ẑsym + Ẑrw) (13)



Entropy 2023, 25, 1432 6 of 16

To force the two views of sampled attributes to be mapped into the same embedding space,
we design a structure-aligning loss. Specifically, we build two similarity matrices using
the output of the encoder. By minimizing the alignment loss between the two similarity
matrices, we can map the embeddings to the same space and maintain the consistency of
their distribution. The processing is as follows:

Srw =< Ẑrw, Ẑrw > (14)

Ssym =< Ẑsym, Ẑsym > (15)

Lsl =
1
2b
‖Ŝrw − Ŝsym‖2

F (16)

where <> denotes the operation of the inner product, and Sim denotes a similar metric
function such as a cosine function.

3.4. High-Order Structure Contrastive Learning

Instead of performing contrastive learning on the first-order contrastive similarity,
we perform contrastive learning on the second-order contrastive similarity. Compared to
contrastive learning on the first-order similarity, contrastive learning on the second-order
similarity can provide a wider view. In a structure-based contrastive similarity matrix, Ŝij
denotes the structural similarity of node i and node j. Moreover, structure-based contrastive
learning is based on the similarity matrix; therefore, it also implies a similarity of features.
Inspired by [23], we implement contrastive learning as follows:

S̃ = Sim(Srw, Ssym) (17)

Lcl =
1
2b
‖S̃− I‖2

F (18)

where S̃ is the structure-based contrastive similarity matrix.

3.5. Joint Optimization

On the one hand, the alignment of the structure similarity matrices can force the
embeddings to map into the same space. On the other hand, contrastive learning on the
similarity matrices can naturally benefit the clustering task. By jointly optimizing these two
objective functions, we train our model as follows:

L = Lsl + Lcl

=
1
2b
‖Srw − Ssym‖2

F +
1
2b
‖S̃− I‖2

F

(19)

The details of the training process are shown in Algorithm 1.

3.6. Complexity Analysis

In this paper, we denote d as the dimension of the encoder, b as the sampled size of
the nodes, and f as the dimension of the raw features. The computational complexity of
our model is O(b f d + b2d + b3). Specifically, the complexity of the encoder is O(b f d), the
complexity of constructing a similarity matrix is O(b2d), and the complexity of constructing
the contrastive similarity matrix is O(b3). Thus, the entire computational complexity of the
proposed model is O(b f d + b2d + b3). The complexity of our model is dominated by the
scale of the batch size.



Entropy 2023, 25, 1432 7 of 16

Algorithm 1 Graph Clustering with High-Order Contrastive Learning
Input: Attribute matrix X, adjacency matrix A, training iteration T, identity matrix I,
number of clusters K, number of nodes n, hyperparameters t, b

1: Build two kinds of normalized Laplacian matrices using (1) and (2)
2: Build two views of the filtered attributes using (3)–(6)
3: for i = 1 to T do
4: for j = 1 to (n mod b) do
5: Randomly sample b nodes from each view using (7) and (8)
6: Generate the embeddings Ẑrw and Ẑsym using (9)–(12)
7: Build the similarity matrix using (14) and (15)
8: Build the contrastive similarity matrix using (17)
9: Calculate the alignment loss of the similarity matrices using (16)

10: Calculate the contrastive loss of the contrastive similarity matrix and an identity
matrix using (18)

11: Update the whole framework by minimizing (19)
12: end for
13: end for
14: Obtain the fusion embeddings Z f using (13)
15: Perform K-means clustering on Z f

Output: The clustering result O

4. Experiment
4.1. Dataset

We conducted extensive experiments on five widely used benchmark datasets: Cora,
Dblp, Amap, Corafull, and Reddit. More details can be found in Table 2.

• Cora [18] is a citation dataset. Each node denotes a machine learning paper, and
each edge denotes the citation relationship between two papers. The papers within
it are divided into seven classes: case-based, genetic algorithms, neural networks,
probabilistic methods, reinforcement learning, rule learning, and theory. Each node’s
feature is represented by a 0, 1 vector. Each dimension is a keyword from a specific
vocabulary.

• Dblp [24] is a cooperative network. The authors are categorized into four classes:
database, data mining, machine learning, and information retrieval. Each edge rep-
resents a collaborative relationship between authors. The node features consist of
elements from a bag-of-words method represented by keywords.

• Amap [33] is a co-purchase graph dataset. Each node denotes a type of good, and
each edge denotes the corresponding goods that are often purchased together. These
nodes are divided into eight classes according to the category of the goods.

• Corafull [33] is similar to Cora but is larger, and the papers within it are divided into
70 classes.

• Reddit [1] is constructed from Reddit posts from September 2014. Each node denotes a
post, and each edge denotes two posts commented on by the same user. The posts are
divided into 41 classes. The node features are the average of 300-dimensional GloVe
word vectors associated with the content of the posts, including the title, comments,
score, and number of comments.

Table 2. Benchmark datasets.

Dataset Nodes Dimensions Clusters Edges Scale

Cora 3327 3703 6 4732 small
Dblp 4058 334 4 7056 small

Amap 7650 745 8 119,081 small
Corafull 19,793 8710 70 63,421 medium
Reddit 232,965 602 41 23,213,838 large



Entropy 2023, 25, 1432 8 of 16

4.2. Experimental Setup

All experiments were run on a computer with a GeForce RTX 1080Ti GPU, 64 G
RAM, and Pytorch 1.8.1. We set the maximum number of iterations for training to 100
for all datasets. We optimized our model using the Adam optimizer. When the training
process stopped, we ran the K-means clustering algorithms on the learned embeddings. To
reduce the impact of randomness, we repeated each experiment 10 times and report the
average results.

4.3. Parameter Setting

In our model, we used a single-layer MLP as the encoder. The dimension of the output
was 100 for Reddit and 500 for the other datasets. For simplicity, we used no activation
function except for a linear transformation. In our model, instead of inputting the whole
feature matrix for training, we performed the training in batches with an assigned batch
size. Specifically, we denoted b as the batch size. For Amap and Reddit, we set b = 256;
for Cora and Corafull, we set b = 512; and the batch size for Dblp was 1024. Regarding
the compared baselines, we utilized the settings specified in their respective papers. The
details of the hyperparameters are shown in Table 3.

Table 3. Details of hyperparameters.

Dataset b t r

Cora 512 3 0.005
Dblp 1024 1 0.05

Amap 256 2 0.0001
Corafull 512 3 0.01
Reddit 256 5 0.05

4.4. Metrics

The clustering performance was evaluated on four widely used metrics: ACC (Accu-
racy) [34], NMI (Normalized Mutual Information) [35], ARI (Average Rank index) [36], and
F1 (macro-F1 score) [37].

4.5. Performance Comparison

In our experiments, we compared our model to 14 methods on five benchmark
datasets. Specifically, K-means is the classic clustering algorithm. GAE, VGAE, MGAE, and
DAEGC [12,13,18] are reconstructive learning methods. ARGE and ARVGE [14] are adver-
sarial regularization methods. AGCN, SDCN, and DFCN [16,24,25] are hybrid methods.
SCAGC, GDCL, MVGRL, AutoSSL, and Sublime [19,20,26,28,31] are contrastive learning-
based methods. Details on the performance comparison can be found in Tables 4–8. The
best results are marked in bold. From the information in these tables, we can make the
following observations:

• The proposed model achieved the best performance in most cases. For example, on
the Amap dataset, our model achieved ACC, NMI, ARI, and F1 scores of 79.18%,
70.37%, 62.22%, and 72.93%, respectively, We observed relative improvements of 1.1%,
1.5%, 2.7%, and 5.3% over the second-best baseline on the Cora, Dblp, Amap, and
Corafull datasets.

• K-means performed clustering directly on the raw features and could, to some degree,
indicate the quality of the attributes of the dataset. As can be seen, the attributes
of the Cora dataset demonstrated the highest quality for clustering. The baselines
from GAE to DFCN were classical deep graph clustering models and were mostly
trained by reconstructing the raw features or the given graphs. GAE, VGAE, MGAE,
ARGE, ARVGE, AGCN, and DAEGC were sub-optimal compared to our model
because they only used a single view for embeddings, which had a limitation in
providing diverse features for representation learning. SDCN and DFCN learned



Entropy 2023, 25, 1432 9 of 16

the representations through a cross-module approach, enriching the information for
learning. The reason our model outperformed SDCN and DFCN was that they heavily
relied on the provided graph, which could not fully reveal the complete connections
between nodes and may have misled representation learning. The utilization of a
similarity matrix in our model can greatly alleviate this.

• The baselines from SCAGC to Sublime are graph clustering models based on con-
trastive learning. All of them implemented contrastive learning at the feature level,
which could not effectively capture the neighborhood of each node, an important
aspect for clustering tasks. Our model directly performed contrastive learning at the
structural level. This allows the contrastive learning in our model to facilitate the
clustering task more effectively.

• On the Reddit dataset, most of the baselines struggled with the training cost, leading
to OOM (out-of-memory) issues. There are two reasons for this: (1) they usually
input the whole dataset into the model during training, and (2) the entire adjacency
matrix consistently participated during training. In our model, we input batches of
features into the model instead of the whole feature matrix, which greatly reduced
the computations.

Table 4. Clustering results (%) on Cora.

Method ACC NMI ARI F1

K-means 40.25 ± 0.47 25.08 ± 0.39 15.35 ± 0.33 40.62 ± 0.20
GAE 59.03 ± 2.31 46.83 ± 1.64 38.20 ± 1.15 56.09 ± 2.27

GVAE 34.37 ± 0.74 13.41 ± 0.36 9.12 ± 0.42 32.59 ± 0.69
MGAE 68.06 ± 2.17 48.92 ± 1.99 43.61 ± 1.56 53.12 ± 2.16
ARGE 64.0 ± 0.71 44.9 ± 0.36 35.2 ± 0.44 61.9 ± 1.27

ARVGE 63.8 ± 1.58 45.0 ± 0.65 37.4 ± 0.80 62.7 ± 0.76
DAEGC 66.42 ± 1.26 48.00 ± 0.75 42.21 ± 1.43 63.93 ± 1.76
SDCN 47.03 ± 2.43 25.54 ± 1.92 20.05 ± 1.46 40.46 ± 3.44
AGCN 60.56 ± 1.33 43.59 ± 1.81 35.46 ± 2.35 49.76 ± 1.34
DFCN 36.33 ± 0.49 19.36 ± 0.87 4.67 ± 2.10 26.16 ± 0.50

SCAGC 26.25 ± 0.25 12.36 ± 0.10 14.32 ± 0.11 30.20 ± 0.24
GDCL 70.83 ± 0.47 56.30 ± 0.36 48.05 ± 0.72 52.88 ± 0.97

MVGRL 70.47 ± 3.70 55.57 ± 1.54 48.70 ± 3.94 67.15 ± 1.86
AutoSSL 63.81 ± 0.57 47.62 ± 0.45 38.92 ± 0.77 56.42 ± 0.21
Sublime 71.30 ± 1.27 54.20 ± 0.97 50.30 ± 0.77 63.50 ± 1.26

Ours 72.46 ± 1.89 54.57 ± 1.39 49.75 ± 2.56 70.89 ± 2.03

Table 5. Clustering results (%) on Dblp.

Method ACC NMI ARI F1

K-means 38.35 ± 0.67 10.99 ± 0.47 6.68 ± 0.33 32.10 ± 0.57
GAE 53.42 ± 2.21 29.29 ± 1.13 16.83 ± 1.63 54.90 ± 1.58

GVAE 53.06 ± 0.17 28.87 ± 0.43 16.65 ± 0.11 54.34 ± 0.29
MGAE 74.49 ± 1.85 41.67 ± 1.23 45.81 ± 2.11 59.67 ± 1.67
ARGE 61.94 ± 0.41 25.63 ± 1.03 23.91 ± 0.81 60.57 ± 0.72

ARVGE 64.44 ± 0.56 30.21 ± 0.62 26.21 ± 0.85 64.32 ± 1.02
DAEGC 62.05 ± 0.48 32.49 ± 0.45 21.03 ± 0.52 61.75 ± 0.67
SDCN 68.05 ± 1.81 39.50 ± 1.34 39.15 ± 2.01 67.71 ± 1.51
AGCN 73.26 ± 0.37 39.68 ± 0.42 42.49 ± 0.31 72.80 ± 0.56
DFCN 76.00 ± 0.82 43.7 ± 1.14 47.00 ± 1.52 75.70 ± 0.81

SCAGC 47.55 ± 1.21 45.99 ± 0.34 12.00 ± 0.30 11.18 ± 1.22
GDCL 39.44 ± 0.55 12.88 ± 1.67 11.72 ± 2.12 10.06 ± 0.55

MVGRL 44.91 ± 1.10 18.75 ± 0.65 11.14 ± 0.50 44.80 ± 0.88
AutoSSL 40.52 ± 1.50 12.63 ± 0.72 5.41 ± 0.66 37.78 ± 1.48
Sublime 56.80 ± 0.44 27.25 ± 0.97 19.17 ± 0.74 51.05 ± 0.44

Ours 77.55 ± 0.85 46.81 ± 0.82 49.71 ± 1.56 77.33 ± 0.79



Entropy 2023, 25, 1432 10 of 16

Table 6. Clustering results (%) on Amap.

Method ACC NMI ARI F1

K-means 27.22 ± 0.76 13.23 ± 1.33 5.50 ± 0.44 23.96 ± 0.51
GAE 71.57 ± 2.48 62.13 ± 2.79 48.82 ± 4.57 68.08 ± 1.76

VGAE 74.26 ± 3.63 66.01 ± 3.40 56.24 ± 4.66 70.38 ± 2.98
MGAE 70.42 ± 2.56 63.30 ± 2.33 53.46 ± 4.36 60.35 ± 1.69
ARGE 69.28 ± 2.30 58.36 ± 2.76 44.18 ± 4.41 64.30 ± 1.95

ARVGE 61.46 ± 2.71 53.25 ± 1.91 38.44 ± 4.69 58.50 ± 1.70
DAEGC 76.44 ± 0.01 65.57 ± 0.03 59.39 ± 0.02 69.97 ± 0.02
SDCN 53.44 ± 0.81 44.85 ± 0.83 31.21 ± 1.23 50.66 ± 1.49
AGCN 58.53 ± 2.34 51.76 ± 2.28 41.15 ± 3.01 43.68 ± 3.30
DFCN 76.88 ± 0.23 69.21 ± 1.21 58.98 ± 0.74 71.58 ± 0.31

SCAGC 42.16 ± 0.15 21.86 ± 0.22 17.76 ± 0.32 31.87 ± 0.15
GDCL 43.75 ± 0.78 37.32 ± 0.28 21.57 ± 0.51 38.37 ± 0.29

MVGRL 45.19 ± 2.21 36.89 ± 2.75 18.79 ± 3.10 39.65 ± 4.76
AutoSSL 54.55 ± 0.97 48.56 ± 0.71 26.87 ± 0.34 54.47 ± 0.83
Sublime 52.73 ± 1.46 49.62 ± 2.33 33.15 ± 3.15 41.81 ± 1.84

Ours 79.18 ± 1.06 70.37 ± 1.38 62.22 ± 1.84 72.93 ± 1.49

Table 7. Clustering results (%) on Corafull.

Method ACC NMI ARI F1

K-means 16.62 ± 0.77 22.24 ± 0.69 1.94 ± 0.87 7.75 ± 0.67
GAE 29.06 ± 0.81 45.82 ± 0.75 17.84 ± 0.86 25.95 ± 0.75

VGAE 32.66 ± 1.29 47.38 ± 1.59 20.01 ± 1.38 29.06 ± 1.15
MGAE OOM OOM OOM OOM
ARGE 22.07 ± 0.43 41.28 ± 0.25 12.38 ± 0.24 18.85 ± 0.41

ARVGE 29.57 ± 0.59 48.77 ± 0.44 18.80 ± 0.57 25.43 ± 0.62
DAEGC 34.35 ± 1.00 49.16 ± 0.73 22.60 ± 0.47 26.96 ± 1.33
SDCN 26.67 ± 0.40 37.38 ± 0.39 13.63 ± 0.27 22.14 ± 0.43
AGCN OOM OOM OOM OOM
DFCN 37.51 ± 0.81 51.30 ± 0.41 24.46 ± 0.48 31.22 ± 0.87

SCAGC OOM OOM OOM OOM
GDCL OOM OOM OOM OOM

MVGRL 31.52 ± 2.95 48.99 ± 3.95 19.11 ± 2.63 26.51 ± 2.87
AutoSSL 36.67 ± 0.79 52.92 ± 0.62 24.61 ± 0.54 31.47 ± 0.85
Sublime OOM OOM OOM OOM

Ours 42.80 ± 0.83 55.93 ± 0.30 30.85 ± 0.84 34.72 ± 0.93

Table 8. Clustering results (%) on Reddit.

Method ACC NMI ARI F1

K-means 9.79 ± 0.05 9.61 ± 0.07 3.07 ± 0.05 6.96 ± 0.04
GAE OOM OOM OOM OOM

VGAE OOM OOM OOM OOM
MGAE OOM OOM OOM OOM
ARGE OOM OOM OOM OOM

ARVGE OOM OOM OOM OOM
DAEGC OOM OOM OOM OOM
SDCN OOM OOM OOM OOM
AGCN OOM OOM OOM OOM
DFCN OOM OOM OOM OOM

SCAGC OOM OOM OOM OOM
GDCL OOM OOM OOM OOM

MVGRL OOM OOM OOM OOM
AutoSSL OOM OOM OOM OOM
Sublime OOM OOM OOM OOM

Ours 81.92 ± 0.74 82.11 ± 0.27 84.20 ± 1.26 68.21 ± 1.97



Entropy 2023, 25, 1432 11 of 16

4.6. Ablation Study

We performed an ablation study from two perspectives: (1) To validate the effec-
tiveness of high-order contrastive learning, we implemented two experiments, one on
first-order contrastive learning and one on second-order contrastive learning. (2) To as-
sess the effectiveness of each component in our model, we conducted experiments by
individually removing the structure alignment and contrastive learning.

In Table 9, we can observe that the contrastive learning on the first-order similarity
matrix consistently underperformed compared to the second-order similarity matrix. This
is because first-order contrastive learning is based on feature similarity, which may lead to
representation bias. However, second-order contrastive learning is based on neighborhood
similarity, which can alleviate this bias. In addition, compared to first-order contrastive
learning, second-order contrastive learning can learn clustering-oriented representations
more effectively.

Table 9. Performance comparison of first-order contrastive learning and second-order contrastive
learning.

Dataset View ACC NMI ARI F1

Cora first-order 49.77 ± 5.21 35.64 ± 4.69 23.11 ± 5.08 51.82 ± 5.89
second-order 72.46 ± 1.89 54.57 ± 1.39 49.75 ± 2.56 70.89 ± 2.03

Dblp first-order 69.63 ± 6.15 39.98 ± 4.27 40.04 ± 6.60 69.51 ± 6.11
second-order 77.55 ± 0.85 46.81 ± 0.82 49.71 ± 1.56 77.33 ± 0.79

Amap first-order 77.00 ± 1.58 67.78 ± 2.39 58.80 ± 4.01 70.20 ± 2.38
second-order 79.18 ± 1.06 70.37 ± 1.38 62.22 ± 1.84 72.93 ± 1.49

Corafull first-order 39.29 ± 0.95 54.03 ± 0.50 25.03 ± 1.07 33.38 ± 1.28
second-order 42.80 ± 0.83 55.93 ± 0.30 30.85 ± 0.84 34.72 ± 0.93

Reddit first-order 70.68 ± 1.30 77.04 ± 0.35 68.37 ± 1.38 57.01 ± 2.54
second-order 81.92 ± 0.74 82.11 ± 0.27 84.20 ± 1.26 68.21 ± 1.97

In Table 10, we can observe that each component in our model contributed to the per-
formance. Specifically, when we removed the contrastive part, the performance decreased
significantly on all datasets. This is because without CL, the representation bias impacted
the performance across all datasets. When SA was omitted, the impact on the performance
for the Cora, Dblp, Amap, and Corafull datasets was minimal, but for the Reddit dataset,
it was significant. This was because CL carried a risk of reducing useful relationships,
which could harm performance, but SA could preserve these relationships, alleviating this
issue. The model conducted graph convolution five times on Reddit, and no more than
three times on the other datasets. By aggregating more neighbors, the number of similar
nodes to the target one increased in the embedding space. When the model performed
contrastive learning on the similarity matrices of the Reddit dataset, it reduced more useful
relationships compared to the other datasets. Therefore, the performance decreased more
on the Reddit dataset compared to the others.

4.7. Hyperparameter Analysis

In this paper, we introduced two hyperparameters b and t. b denotes the batch size of
the input features, and t is used to control the power of the Laplacian smoothing before
training.

In Figure 3, we show how the performance varied with changes in the batch size within
the range of {256, 512, 1024, 2048}. From this figure, we can see that the performance
fluctuation on the Amap, Cora, and Corafull datasets was not sensitive to changes in the
batch size. However, a larger batch size enhanced clustering performance on Dblp; when
the batch size was 1024, the clustering achieved the best results, whereas on Reddit, a
smaller batch size was more beneficial for representation learning. This is because Dblp



Entropy 2023, 25, 1432 12 of 16

aggregated the first-order neighborhood for its representation, whereas Reddit aggregated
the fifth-order neighborhood. A larger batch size facilitated the reduction of redundant
relationships in Dblp but increased the risk of reducing useful relationships in Reddit.

Table 10. The effectiveness of each component in our model. SA denotes second-order structure
alignment, and CL denotes second-order contrastive learning.

Dataset Module ACC NMI ARI F1

Cora
w/o CL 62.50 ± 2.68 44.38 ± 2.43 36.94 ± 3.03 54.19 ± 4.00
w/o SA 72.10 ± 1.87 54.18 ± 1.46 48.77 ± 2.41 71.09 ± 2.00

both 72.46 ± 1.89 54.57 ± 1.39 49.75 ± 2.56 70.89 ± 2.03

Dblp
w/o CL 50.01 ± 2.43 19.94 ± 3.18 19.15 ± 3.03 45.91 ± 5.07
w/o SA 77.08 ± 2.40 46.21 ± 2.48 49.63 ± 3.55 76.63 ± 2.42

both 77.55 ± 0.85 46.81 ± 0.82 49.71 ± 1.56 77.33 ± 0.79

Amap
w/o CL 65.41 ± 3.17 55.63 ± 3.71 44.86 ± 3.50 55.15 ± 3.60
w/o SA 78.37 ± 0.92 69.49 ± 1.45 60.29 ± 1.87 72.71 ± 1.83

both 79.18 ± 1.06 70.37 ± 1.38 62.22 ± 1.84 72.93 ± 1.49

Corafull
w/o CL 34.08 ± 1.19 49.18 ± 0.86 20.46 ± 1.25 25.29 ± 1.13
w/o SA 42.48 ± 0.84 56.00 ± 0.19 30.63 ± 0.87 34.39 ± 0.68

both 42.80 ± 0.83 55.93 ± 0.30 30.85 ± 0.84 34.72 ± 0.93

Reddit
w/o CL 30.51 ± 1.23 45.45 ± 0.68 21.75 ± 0.98 23.72 ± 0.48
w/o SA 37.64 ± 1.04 54.48 ± 0.84 31.06 ± 0.73 28.88 ± 1.16

both 81.92 ± 0.74 82.11 ± 0.27 84.20 ± 1.26 68.21 ± 1.97

In Figure 4, we illustrate how the performance varied with changes in the Laplacian
smoothing power. From this figure, we can see that the ACC stabilized when the power
reached 2, except for the Reddit dataset. On Reddit, the model achieved its best performance
when t was equal to 5, and it maintained stability within the range of [3, 6]. In summary,
our model demonstrated low sensitivity to these two hyperparameters, even when they
varied within considerable ranges.

Figure 3. The sensitivity of our model to the batch size.



Entropy 2023, 25, 1432 13 of 16

Figure 4. The sensitivity of our model to the power of smoothing.

4.8. Visualization Analysis

To demonstrate the effectiveness of our model in the clustering task, we illustrate a
series of similarity matrices in Figure 5, showing the quality of the learned representations
in each cluster. In Figure 5, we can observe that our model outperformed the other methods
with respect to both the number of clusters and the clarity of the clustering structure.

(a)
Figure 5. Cont.



Entropy 2023, 25, 1432 14 of 16

(b)

Figure 5. Two groups of similarity matrices with labels: (a) Cora, (b) Dblp. From top-left to bottom-
right, the methods depicted are GAE, DFCN, AGCN, AutoSSL, Sublime, and our proposed method.
The color scale ranges from 0 to 1, where brighter colors indicate higher similarity between corre-
sponding nodes. A diagonal block denotes a cluster. The quality of the representation can be assessed
from 2 perspectives: (1) whether the number of diagonal blocks equals the number of real clusters,
and (2) whether the diagonal blocks can be easily recognized. Considering these criteria, our model
can learn representations of the highest quality.

5. Conclusions

In this paper, we propose GCHCL, a high-order contrastive learning method for graph
clustering without manual augmentation. We contrast two high-order structures, con-
structed using two different Laplacian smoothing methods, to reveal the nodes’ similarity
at the structural level, and we align the high-order structures to force the corresponding
embeddings to map into the same space. After building a contrastive structure using
the high-order structures, we perform contrastive learning by aligning the contrastive
structure with an identity matrix. In this way, our model can naturally learn the clustering-
friendly representations. Extensive experiments on datasets of various scales validate the
effectiveness of the proposed model.

Author Contributions: Writing—original draft, W.L.; Writing—review & editing, E.Z., S.W. and X.G.;
Supervision, E.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China grant number
2022ZD0209103 and the National Natural Science Foundation of China grant number 62206054.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data available in a publicly accessible repository that does not issue
DOIs Publicly available datasets were analyzed in this study. This data can be found here: Available
online: https://github.com/yueliu1999/Awesome-Deep-Graph-Clustering (accessed on 8 May
2012).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1

The settings for the models can be found in the following references:

• GAE and VGAE [18]
• MGAE [12]
• ARGE and ARVGE [14]

https://github.com/yueliu1999/Awesome-Deep-Graph-Clustering


Entropy 2023, 25, 1432 15 of 16

• DAEGC [13]
• SDCN [24]
• AGCN [25]
• DFCN [16]
• SCAGC [20]
• GDCL [28]
• MVGRL [19]
• AutoSSL [31]
• Sublime [26]

Appendix A.2

Table A1. Definitions of acronyms.

Acronym Definition

AFGRL Augmentation-Free Self-Supervised Learning on Graphs
AGC Attributed Graph Clustering via Adaptive Graph Convolution
AGCN Attention-Driven Graph Clustering Network
AGE Adaptive Graph Encoder
AGAE Adversarial Graph Autoencoder
ARGV Adversarially Regularized Graph Autoencoder for Graph Embedding
AutoSSL Automated Self-Supervised Learning for Graphs
CommDGI Community Detection-Oriented Deep Graph Infomax
DAEGC Deep Attentional Embedded Graph Clustering
DCRN Dual Correlation Reduction Network
DFCN Deep Fusion Clustering Network
DGI Deep Graph Infomax
GAE Graph Autoencoder
GCN Graph Convolutional Network
GDCL Graph Debiased Contrastive Learning with Joint Representation Clustering
GNN Graph Neural Network
MGAE Marginalized Graph Autoencoder
MVGRL Contrastive Multi-View Representation Learning on Graphs
SAIL Self-Augmented Graph Contrastive Learning
SCAGC Self-Consistent Contrastive Attributed Graph Clustering with Pseudo-Label Prompt
SDCN Structural Deep Clustering Network
Sublime Structure Bootstrapping Contrastive Learning Framework

References
1. Hamilton, W.L.; Ying, Z.; Leskovec, J. Inductive Representation Learning on Large Graphs. In Proceedings of the 31st Conference

on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; pp. 1024–1034.
2. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the ICLR 2017,

Toulon, France, 24–26 April 2017.
3. Monti, F.; Boscaini, D.; Masci, J.; Rodolà, E.; Svoboda, J.; Bronstein, M.M. Geometric Deep Learning on Graphs and Manifolds

Using Mixture Model CNNs. In Proceedings of the CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 5425–5434.
4. Beck, D.; Haffari, G.; Cohn, T. Graph-to-Sequence Learning using Gated Graph Neural Networks. In Proceedings of the ACL

2018, Melbourne, Australia, 15–20 July 2018; pp. 273–283.
5. Bastings, J.; Titov, I.; Aziz, W.; Marcheggiani, D.; Sima’an, K. Graph Convolutional Encoders for Syntax-aware Neural Machine

Translation. In Proceedings of the EMNLP 2017, Copenhagen, Denmark, 9–11 September 2017; pp. 1957–1967.
6. Miwa, M.; Bansal, M. End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures. In Proceedings of the ACL

2016, Berlin, Germany, 7–12 August 2016.
7. Song, L.; Zhang, Y.; Wang, Z.; Gildea, D. N-ary Relation Extraction using Graph-State LSTM. In Proceedings of the EMNLP 2018,

Brussels, Belgium, 31 October–4 November 2018; pp. 2226–2235.
8. Battaglia, P.W.; Pascanu, R.; Lai, M.; Rezende, D.J.; Kavukcuoglu, K. Interaction Networks for Learning about Objects, Relations

and Physics. In Proceedings of the NeurIPS 2016, Barcelona, Spain, 5–10 December 2016; pp. 4502–4510.
9. Santoro, A.; Raposo, D.; Barrett, D.G.T.; Malinowski, M.; Pascanu, R.; Battaglia, P.W.; Lillicrap, T. A simple neural network

module for relational reasoning. In Proceedings of the NeurIPS 2017, Long Beach, CA, USA, 4–9 December 2017; pp. 4967–4976.
10. Tao, Z.; Liu, H.; Li, J.; Wang, Z.; Fu, Y. Adversarial Graph Embedding for Ensemble Clustering. In Proceedings of the IJCAI 2019,

Macao, China, 10–16 August 2019; pp. 3562–3568.



Entropy 2023, 25, 1432 16 of 16

11. Zhang, X.; Liu, H.; Li, Q.; Wu, X. Attributed Graph Clustering via Adaptive Graph Convolution. In Proceedings of the IJCAI
2019, Macao, China, 10–16 August 2019; pp. 4327–4333.

12. Wang, C.; Pan, S.; Long, G.; Zhu, X.; Jiang, J. MGAE: Marginalized Graph Autoencoder for Graph Clustering. In Proceedings of
the CIKM 2017, Macao, China, 6–10 November 2017; pp. 889–898.

13. Wang, C.; Pan, S.; Hu, R.; Long, G.; Jiang, J.; Zhang, C. Attributed Graph Clustering: A Deep Attentional Embedding Approach.
In Proceedings of the IJCAI 2019, Macao, China, 10–16 August 2019; pp. 3670–3676.

14. Pan, S.; Hu, R.; Long, G.; Jiang, J.; Yao, L.; Zhang, C. Adversarially Regularized Graph Autoencoder for Graph Embedding. In
Proceedings of the IJCAI 2018, Stockholm, Sweden, 13–19 July 2018; pp. 2609–2615.

15. Cui, G.; Zhou, J.; Yang, C.; Liu, Z. Adaptive Graph Encoder for Attributed Graph Embedding. In Proceedings of the KDD 2020,
San Diego, CA, USA, 23–27 August 2020; pp. 976–985.

16. Tu, W.; Zhou, S.; Liu, X.; Guo, X.; Cai, Z.; Zhu, E.; Cheng, J. Deep Fusion Clustering Network. In Proceedings of the AAAI 2021,
Virtually, 2–9 February 2021; pp. 9978–9987.

17. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507.
[CrossRef] [PubMed]

18. Kipf, T.N.; Welling, M. Variational Graph Auto-Encoders. arXiv 2016, arXiv:1611.07308.
19. Hassani, K.; Ahmadi, A.H.K. Contrastive Multi-View Representation Learning on Graphs. In Proceedings of the ICML 2020,

Virtual, 13–18 July 2020; Volume 119, pp. 4116–4126.
20. Xia, W.; Wang, Q.; Gao, Q.; Yang, M.; Gao, X. Self-consistent contrastive attributed graph clustering with pseudo-label prompt.

IEEE Trans. Multimed. 2022, 1–13. [CrossRef]
21. Velickovic, P.; Fedus, W.; Hamilton, W.L.; Liò, P.; Bengio, Y.; Hjelm, R.D. Deep Graph Infomax. In Proceedings of the ICLR 2019,

New Orleans, LA, USA, 6–9 May 2019.
22. Zhang, T.; Xiong, Y.; Zhang, J.; Zhang, Y.; Jiao, Y.; Zhu, Y. CommDGI: Community Detection Oriented Deep Graph Infomax. In

Proceedings of the CIKM 2020, Virtual, 19–23 October 2020; pp. 1843–1852.
23. Bielak, P.; Kajdanowicz, T.; Chawla, N.V. Graph Barlow Twins: A self-supervised representation learning framework for graphs.

Knowl. Based Syst. 2022, 256, 109631. [CrossRef]
24. Bo, D.; Wang, X.; Shi, C.; Zhu, M.; Lu, E.; Cui, P. Structural Deep Clustering Network. In Proceedings of the WWW 2020, Taipei,

Taiwan, 20–24 April 2020; pp. 1400–1410.
25. Peng, Z.; Liu, H.; Jia, Y.; Hou, J. Attention-driven Graph Clustering Network. In Proceedings of the MM’21, Chengdu, China,

20–24 October 2021; pp. 935–943.
26. Liu, Y.; Zheng, Y.; Zhang, D.; Chen, H.; Peng, H.; Pan, S. Towards Unsupervised Deep Graph Structure Learning. In Proceedings

of the WWW 2022, Lyon, France, 25–29 April 2022; pp. 1392–1403.
27. Liu, Y.; Tu, W.; Zhou, S.; Liu, X.; Song, L.; Yang, X.; Zhu, E. Deep Graph Clustering via Dual Correlation Reduction. In Proceedings

of the AAAI 2022, Arlington, VA, USA, 17–19 November 2022; pp. 7603–7611.
28. Zhao, H.; Yang, X.; Wang, Z.; Yang, E.; Deng, C. Graph Debiased Contrastive Learning with Joint Representation Clustering.

In Proceedings of the IJCAI 2021, Virtual, 19–26 August 2021; pp. 3434–3440.
29. Yu, L.; Pei, S.; Ding, L.; Zhou, J.; Li, L.; Zhang, C.; Zhang, X. SAIL: Self-Augmented Graph Contrastive Learning. In Proceedings

of the AAAI 2022, Arlington, VA, USA, 17–19 November 2022; pp. 8927–8935.
30. Lee, N.; Lee, J.; Park, C. Augmentation-Free Self-Supervised Learning on Graphs. In Proceedings of the AAAI 2022, Arlington,

VA, USA, 17–19 November 2022; pp. 7372–7380.
31. Jin, W.; Liu, X.; Zhao, X.; Ma, Y.; Shah, N.; Tang, J. Automated Self-Supervised Learning for Graphs. In Proceedings of the Tenth

International Conference on Learning Representations, ICLR 2022, Virtual, 25–29 April 2022.
32. Yang, X.; Liu, Y.; Zhou, S.; Wang, S.; Tu, W.; Zheng, Q.; Liu, X.; Fang, L.; Zhu, E. Cluster-guided Contrastive Graph Clustering

Network. arXiv 2023, arXiv:2301.01098.
33. Shchur, O.; Mumme, M.; Bojchevski, A.; Günnemann, S. Pitfalls of Graph Neural Network Evaluation. arXiv 2018,

arXiv:1811.05868.
34. Wu, M.; Schölkopf, B. A Local Learning Approach for Clustering. In Advances in Neural Information Processing Systems 19,

Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 4–7 December 2006;
MIT Press: Cambridge, MA, USA, 2006; pp. 1529–1536.

35. Strehl, A.; Ghosh, J. Cluster Ensembles—A Knowledge Reuse Framework for Combining Multiple Partitions. J. Mach. Learn. Res.
2002, 3, 583–617.

36. Hubert, L.; Arabie, P. Comparing partitions. J. Classif. 1985, 2, 193–218. [CrossRef]
37. Chinchor, N. MUC-4 Evaluation Metrics. In Proceedings of the Fourth Message Understanding Conference (MUC-4), McLean,

VA, USA, 16–18 June 1992.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662
http://dx.doi.org/10.1109/TMM.2022.3213208
http://dx.doi.org/10.1016/j.knosys.2022.109631
http://dx.doi.org/10.1007/BF01908075

	Introduction
	Related Works
	Deep Reconstructive Graph Clustering
	Deep Contrastive Graph Clustering

	Proposed Method
	Problem Definition
	Double Laplacian Smoothing
	Structure Alignment
	High-Order Structure Contrastive Learning
	Joint Optimization
	Complexity Analysis

	Experiment
	Dataset
	Experimental Setup
	Parameter Setting
	Metrics
	Performance Comparison
	Ablation Study
	Hyperparameter Analysis
	Visualization Analysis

	Conclusions
	
	
	

	References

