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Abstract: We studied the thermodynamic properties such as the entropy, heat (JQ), and work (JW)
rates involved when an atom passes through a Ramsey zone, which consists of a mode field inside a
low-quality factor cavity that behaves classically, promoting rotations on the atomic state. Focusing
on the atom, we show that JW predominates when the atomic rotations are successful, maintaining
its maximum purity as computed by the von Neumann entropy. Conversely, JQ stands out when the
atomic state ceases to be pure due to its entanglement with the cavity mode. With this, we interpret
the quantum-to-classical transition in light of the heat and work rates. Besides, we show that, for the
cavity mode to work as a Ramsey zone (classical field), several photons (of the order of 106) need
to cross the cavity, which explains its classical behavior, even when the inside average number of
photons is of the order of unity.

Keywords: quantum thermodynamics; cavity quantum electrodynamics; Ramsey zone

1. Introduction

Cavity Quantum Electrodynamics (CQED) studies the interaction between light confined
in cavities and atoms where the quantum nature of light and atoms is significant [1–3]. In
CQED, quantum operations reach the individual control of atomic levels and their interaction
with a single photon for engineering quantum states, in particular the qubits (two-level
systems) that are now being applied in the construction of quantum computers [4].

The specific case of a qubit composed by a single two-level atom interacting with
a cavity mode field is described, in the rotating-wave approximation (valid when the
atom–field coupling is much weaker than their natural oscillation frequency) by the Jaynes–
Cummings model [5], which promotes the so-called Rabi oscillations |g〉|n〉 ↔ |e〉|n + 1〉
between the atom ground (|g〉) and excited (|e〉) states and the cavity state (|m〉) through the
interaction term HJC = h̄g(σ+a + σ−a†), where a† (a) is the creation (annihilation) operator
for the cavity mode field and σ+ (σ−) is the raising (lowering) operator for the atom, while
g describes the strength of the Rabi frequency. If the cavity is on resonance with the atomic
transition |g〉 ↔ |e〉, among the fundamental operations between the atom and the field, we
can highlight, for example, the one in which a π/2 pulse promotes a coherent exchange of
photons between the state of the atomic qubit and the cavity mode field qubit, resulting in
the evolution (α|g〉+ β|e〉)|0〉 ↔ |g〉(α|0〉+ β|1〉). This type of interaction leaves the field
state inside the cavity in a superposition of vacuum and one-photon states. Likewise, π/4
pulses starting from |e〉|0〉 result in the maximum entangled state (|e〉|0〉 − i|g〉|1〉)/

√
2.

On the other hand, atomic superposition states as α|e〉+ β|g〉 can only be obtained using
some classical resource, such that the initial cavity mode |ψi〉 and atomic |a〉 states emerge,
at the end of the operation, in a product state |a〉|ψi〉 → (α|g〉+ β|e〉)

∣∣∣ψ f

〉
.

In the microwave frequency domain, for instance, such a superposition of atomic
states is generated using the so-called Ramsey zone [2,3,6,7], which is schematically
illustrated in Figure 1a. This technique employs a low-quality factor cavity cooled to
near absolute zero [2,3,8], which is continuously pumped by an external source modeled by
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Hp = ε(eiωpta + e−iωpta†), with ωp and ε being, respectively, the frequency and the strength
of the driving field, to compensate for the relatively short lifetimes of the photons, such
that the cavity mode field is described by a coherent steady state [9,10]. Interestingly, even
when the low-quality factor cavity has one photon on average, thus stressing the quantum
character of the cavity mode field [11], the action of the external field, which is the classic
resource necessary for the success of this interferometric technique, in addition to the strong
cavity–field dissipation, produces an effective atom–field interaction that results in a pure
atomic rotation, i.e., without entanglement with the cavity–field mode states [2], on the
atomic state only, without the atom–field entanglement that one would expect from purely
atomic quantum states or states of maximum purity, i.e., with null von Neumann entropy.

Figure 1. Thermodynamics of the Ramsey zone. (a) Experimental setup, where a two-level atom
interacts (coupling g) with a single mode when passing (with velocity ~v)) through a low-quality
factor cavity driven by an external source (strength ε) and with a decay rate κ. Panels (b,c) show the
atomic population inversion 〈σz〉 and the normalized von Neumann entropy S/ ln(2) as a function of
gt. Panels (d,e) show the normalized work flux JW /h̄ωg and the normalized heat flux JQ/h̄ωg also
as a function of gt. Panels (b,d) are for g = 10−3κ and ε = κ, resulting in null heat flux and non-null
work flux during the rotation process of the atomic state, thus characterizing a unitary evolution. On
the other hand, Panels (c,e) are for g = κ and ε = 10−3κ, which results in non-null heat flux and null
work flux during the rotation process of the atomic state, i.e., a purely non-unitary evolution (when
tracing over the mode variables). In all plots, we neglected the atomic decay (γ = 0) and considered
|e〉| 0〉 as the initial atom–field state (in the displaced picture).

In this work, we studied the physics of the Ramsey zone [8,10,11] from the perspective
of the burgeoning field of quantum thermodynamics, which has increasingly attracted the
attention of researchers in recent decades [12–24]. To this aim, we focused on the atom
as the system of interest to quantify the amount of heat JQ and work JW rates involved
during the atom–field–reservoir interaction [25,26]. The purity of the state is quantified
by von Neumann entropy, which vanishes for pure states and is maximum for maximally
mixed states. Furthermore, the von Neumann entropy has the remarkable property of being
maximized by Gibbs states, which describe systems in thermodynamic equilibrium. In the
present study, where we deal with an out-of-equilibrium system, von Neumann entropy
provides information about the purity of the atomic state, which is our system of interest.
As we shall see, while the work is associated directly with the field, a certain amount of
work is also indirectly associated with the pure atomic rotation, since heat alone, by its
very definition, would not be capable of producing an operation that results in coherence
in the final states. As discussed below, a key ingredient in all of this discussion is a unitary
transformation that allows us to work on a displaced picture of the field in the cavity,
thus enabling us to easily identify the work and the heat rates on the atom. Furthermore,
when studying the thermodynamic features of the Ramsey zone, we will demonstrate that,
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although, on average, there is only one photon inside the cavity, for a pure atomic rotation
to take place, it is absolutely necessary that millions of photons enter and exit the cavity
during the time necessary to produce the desired rotation. This huge amount of photons
corresponds to an energy that is absurdly greater than the work actually needed to produce
just the atomic rotation.

In the next section (Section 2), we introduce the model that describes the Ramsey zone
and present a method for calculating the work associated with the atom. In Section 3, we
present our results concerning the heat and work rates [25] in our system and revisit the
discussion of how the classical behavior of the field can occur in a cavity that contains
on average only one photon. As we will show, for the system to behave classically, it is
necessary that a large amount of photons cross the cavity. Finally, in Section 4, we present
our conclusions.

2. Model

The dynamics of a Ramsey zone is described by a master equation composed of a
unitary and a dissipative part [27]. The unitary part is governed by the Jaynes–Cummings
and driving field Hamiltonians (h̄ = 1) [10,11]:

H = ω

(
a†a +

1
2

)
+

ω

2
σz +

(
gσ+a + εeiωta + H.c.

)
, (1)

where the first term describes the cavity mode field of frequency ω, the second term
describes the two-level atom on-resonance with the cavity mode field with σz = |e〉〈e| −
|g〉〈g|, the third term describes the atom–cavity mode field interaction with g = g∗ being
the Rabi frequency, and the fourth term describes the resonant pumping (ωp = ω) on the
cavity mode field. This fourth term, as it appears in the equation above, indicates that the
work is associated with the cavity–field rather than directly with the atom, which is our
thermodynamic system of interest, and H.c. stands for the Hermitian conjugate. To obtain
a Hamiltonian that reveals the work that is indirectly associated with the atom, we proceed
as follows. First, we move to a rotating frame according to the interaction picture, such that
H → HI , with

HI = g
(

σ+a + σ−a†
)
+ ε
(

a + a†
)

. (2)

Assuming a weak interaction between the cavity mode field (atom) and the reservoir modes,
a weak interaction between the cavity mode field and the atom (g� ω), a weak driving
(ε� ω), and taking into account that experiments are performed by cooling the system to
near absolute zero, the dynamics of the whole system is governed by the master equation
in the interaction picture [27]:

ρ̇I = −i[HI , ρI ] + κLa(ρI) + γLσ−(ρI), (3)

where κ (γ) is the cavity mode field (atom) dissipation rate and Lβ(ρI) = 2βρI β† − β†βρI −
ρI β†β (β = a, σ−) [10,11]. After that, following [10], first, we write the master equation
in the displaced picture by applying the time-independent unitary operation D(α) =
exp(αa† − α∗a), with α = −iε/κ such that

˙̃ρI = −i
[
HJC + HSC, ρ̃I

]
+ κLa(ρ̃I) + γLσ−(ρ̃I), (4)

with ρ̃I = D†(α)ρI D(α), HJC = g
(
σ+a + σ−a†), and HSC = αgσ+ + α∗gσ−. The equation

above allows us to identify an effective classical field driving the atomic state, thus capable
of associating work with the atom [25], and another part, which can introduce non-unitarity
to the evolution of the atom, which consists, in addition to the atomic decay, of interaction
with the mode of the cavity together with the cavity dissipation. This can be clearly seen
when we deal with effective dynamics, by tracing over the cavity mode variables. For
instance, considering g � κ

√
〈nc〉+ 1, where 〈nc〉 is the intra-cavity average number of
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photons (in the displaced picture), we can adiabatically eliminate the field operators to
obtain the effective master equation to the atom only in the Schrödinger picture [10]:

ρ̇at = −i[Hat, ρat] + Γe f fLσ−(ρat), (5)

where Hat = (ω/2)σz − (iεg/κ)(σ+e−iωt − σ−eiωt) and Γe f f = g2/κ + γ.
From the master equation displayed in Equation (5), we can directly calculate the atomic

heat (JQ) and work (JW) rates using Alicki’s definitions (in the Schrödinger picture) [25]:

JQ = tr(Hatρ̇at) (6)

and
JW = tr(Ḣatρat). (7)

According to these definitions, the rate of change of the Hamiltonian is related to work, while
the dissipative part of the master equation is associated with heat. This approach inspired
the deduction of Equation (5), in which we were able to describe the dynamics of the atom
through an effective master equation, separating the unitary part from the dissipative one.
Thus, from Equation (5), we can directly calculate how much of the heat and work rates are
needed to make the Ramsey zone work properly, i.e., without generating entanglement
between the atom and the cavity–field mode states. With these definitions, JQ(W) > 0
(JQ(W) < 0) means the two-level atom is receiving (losing) energy. Although the definition
of heat and work remains a topic of discussion (see [28–30]), Alicki’s definitions are the
most widely used in the context of master equations, which is why we used them in the
present study.

Note that, for γ = 0 and g small enough, the dynamics is equivalent to that of an
atom pumped by a classical field, being approximately unitary, and therefore, only work
is associated with the atom during the evolution. On the other hand, by increasing g,
the dissipation term can take part in the dynamics, thus allowing the atom to exchange
heat with its environment. However, depending on the strength of the driving field ε,
one can have either work or heat flux dominating the dynamics (see the discussion in the
next section). Furthermore, it is worthwhile to mention that one of the central points in
thermodynamics is the definition of the system. By defining, therefore, what a system is
and what its surroundings are, we are able to calculate the energy flows into and out of the
system both in the form of heat and work. In the model we are considering here, the atom
is our system of interest, while the cavity–field, the laser field, and the thermal reservoirs
are the surroundings forming the effective thermal bath and external force for the atom.
Having this in mind, note that Equation (4) must be consistent with the effective master
equation (Equation (5)), thus producing the same result either for the heat JQ or work JW
rates [25]. Although useful for understanding the general aspects of our system, both the
heat and work rates calculated using Equation (5) will be limited in scope because of the
approximation we have made. However, if we now rewrite Equation (4) as

ρ̇at = −i[Hat, ρat] + Le f f (ρat), (8)

where ρat = U0tr f (ρ̃I)U†
0 and Le f f (ρat) = U0tr f {−i[HJC, ρ̃I ] + κL(a)ρ̃I + γL(σ−)ρ̃I}U†

0 ,
with U0 = e−iωσz/2, then we can clearly identify the terms responsible for both the heat
and work exchange between the atom and its surroundings. This is an important remark,
since, while Equation (5) restricts us to the regime g� κ

√
〈nc〉+ 1, Equation (8) allows us

to numerically investigate the heat JQ and work JW rates for all values of g and ε. To derive
Equation (8), we first trace Equation (4) over the cavity mode field and, then, transition
back to the Schrödinger picture. Here, the numerical calculation is performed using the
quantum optics toolbox [31,32], which allows us to easily integrate the master equation of
our system and calculate the desired quantities.
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3. Results
3.1. Heat and Work Fluxes in a Ramsey Zone

To investigate how the heat and the work rates behave, let us first analyze some
extreme cases, where our intuition can help us to understand our system. To this end, we
assumed the initial state in the displaced picture as |e〉|0〉 (i.e., the atom initially prepared
in the excited state and the cavity mode in the vacuum, which represents a coherent
state that would be reached in the steady state in the case without the atom and in the
Schrödinger picture).

The first case is the one where the atom–field coupling g is much smaller than the
cavity decay rate, i.e., g� κ, and for appreciable driving strength ε, the dynamics of the
system of whic is governed by Equation (5). In this case, the Jaynes–Cummings dynamics
can be ignored, and therefore, there will be no entanglement of the atom with the cavity–
field. This is clearly seen in Figure 1b, since the atom performs a complete rotation from
the excited to ground state (see the evolution of 〈σz〉), keeping the von Neumann entropy
S = −tr[ρat ln(ρat)] equal to 0 during the whole evolution. In this case, as we see in
Figure 1d, the heat flux JQ is null, while the work flux is non-null. Thus, the work flux JW
involved in the atomic rotation has been completely directed to successfully accomplish
this task.

In the second case, for intermediate or strong atom–field coupling, i.e., g & κ and
|ε/κ| � 1, the Jaynes–Cummings dynamics dominates and the atom–cavity mode state
becomes entangled, resulting in a mixed atomic state after tracing over the field variables.
Thus, only heat JQ is exchanged between the atom and its surroundings. This behavior
can be seen in Figure 1c, where the von Neumann entropy achieves its maximum value
(S = ln(2)) during the atomic evolution and the work (heat) flux is null (non-null), as can
be seen in Figure 1e.

Outside of the extreme cases above, i.e., for neither too small nor too large |g/κ|, and
intermediate values of |ε/κ|, the atom can perform work on the cavity–field, as well as
become entangled with it, thus indicating that both the heat JQ and work JW rates are
being exchanged with its surroundings. To analyze the thermodynamics of those cases,
we considered the evolution of the atomic state until it reaches a population in the excited
state Pe equal to the population in the ground state Pg, that is when 〈σz〉 = 0, considering
the atom–field initially in the state |e〉|0〉 (in the displaced picture). Then, at that time, we
calculate the heat and work rates for the atom and the von Neumann entropy S for the
atomic state. We calculated those quantities as a function of g/κ for different values of
driving strengths ε/κ, and the results are shown in Figure 2. As expected, for any non-null
value of ε/κ, the von Neumann entropy starts at minimal values for g → 0 since, in this
case, the influence of the quantum nature of the cavity mode on the atom is negligible (thus
resulting in pure rotations on the atomic state only, i.e., without entanglement with the
cavity mode field), and it increases for g → ∞. However, its maximum value depends
on the driving strength ε/κ: for weak driving, the von Neumann entropy reaches the
maximum value S = ln(2) for stronger atom–field couplings, as we see in Figure 2a, for
ε/κ = 0.25. This happens because, in this limit, we have basically an atom initially in the
excited state interacting with a cavity mode in the vacuum, whose final state is a maximally
entangled one: (|e〉|0〉 − i|g〉|1〉)/

√
2. On the other hand, for higher values of the atom–

field coupling and stronger driving strengths, the cavity mode reaches a coherent state
(with a non-null amplitude), which does not lead to a maximally atom–field entangled
state anymore, as we see in Figure 2c, ε/κ = 2.

Focusing on the heat and work rates for the atom, we can see that, for a fixed ε,
as we increase the atom–field coupling g/κ, the normalized heat (JQ/h̄gω) and work
(JW/h̄gω) rates always increase and decrease in modulus, respectively. However, a different
thermodynamic behavior appears depending on the value of the driving strength. For low
(high) values of ε/κ, we have (do not have) a crossing of the heat and work rates, as we
see in Figure 2a (Figure 2c) for ε/κ = 0.25 (ε/κ = 2). By solving our system numerically,
we were able to find the threshold between the crossing versus no crossing regimes, which
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happens for ε/κ ≈ 1.1, as we see in Figure 2b. Thus, for ε/κ below the threshold, we can
always find a range of atom–field coupling where the work flux goes to zero and the heat
flux is dominant, thus characterizing a purely quantum regime (since this allows for a
high degree of atom–field entanglement). On the other hand, for values of ε/κ above the
threshold, both the work and heat rates are non-null (with

∣∣JQ
∣∣ < |JW | for all values of g/κ),

making clear that both the quantum and classical aspects of the cavity–field contribute to
the atomic dynamics. As discussed above, for g < κ, the effective dynamics is governed by
Equation (5), which allows us to derive the heat and work rates expressions

JQ = −2ωg2

κ
〈σ+σ−〉 −

2εg3

κ2 Im[〈σ+〉], (9)

JW = −2ωεg
κ

Re[〈σ+〉]. (10)

Figure 2. Normalized rates of heat JQ/h̄ωg (red solid line) and of work JW /h̄ωg (blue dashed line) on
the atom and the normalized von Neumann entropy S/ ln(2) (black dashed–dotted line) as a function
of the atom–field coupling g/κ for different values of the driving field strength: (a) ε/κ = 0.25,
(b) ε/κ = 1.1 (critical driving strength), and (c) ε/κ = 2.0. The heat and work rates are computed
during the evolution of the system from the initial state |e〉|0〉 (i.e., the atom initially prepared in the
excited state and the cavity mode in the vacuum state, in the displaced picture, which represents
a coherent state defined by the driving field in the laboratory frame), until the atom reaches null
population inversion, i.e., 〈σz〉 = 0. For all values of ε/κ smaller (bigger) than the critical point ε/κ =

1.1, the heat and work rates always cross (do not cross), indicating two different thermodynamic
regimes. For g� κ, the crossing point C is given by Equation (11). In these plots, we also identify
three different regions: (I) the region g → 0, where the atom–field entanglement is negligible and,
therefore, the heat flux is also negligible; (II) the region where 10−1 . g/κ . 101, in which both
the normalized heat and work rates vary as a function of g (transient region); and (III) the region in
which g� κ and JQ/h̄gω and JW /h̄gω reach finite steady values (as a function of g), which depend
on the driving strength ε.

Considering the evolution till 〈σ+σ−〉 = Pe = Pg = 1/2 and keeping only the terms
proportional to ω (since, in the regime we are in, ω � g), we can find the condition for the
crossing point C in Figure 2a: JQ = JW , which reads

g
ε
= 2Re[〈σ+〉]. (11)

For all g � κ, we could numerically verify that Re[〈σ+〉] ' 0.22, and then, g ' 0.44ε
is the point where the heat flux equals the work flux. In Figure 2a, for ε = 0.25κ, the
crossing point C, determined numerically, is given by g ' 0.11κ, in total agreement with
Equation (11). However, for g & κ, Equation (5) is no longer valid and, then, the crossing
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point can no longer be analytically derived. However, even numerically, it is possible to
identify three different regions according to the atom–field coupling, which do not depend
on the driving field strength (see Figure 2): (I) the region in which g→ 0, where the atom–
field entanglement is negligible and, therefore, the heat flux is also negligible and there
is a steady behavior for the normalized work flux JW/h̄gω (as g → 0); in this region, the
value of the normalized work flux depends only on the driving field strength: the higher
the ε, the higher the module of normalized work flux |JW/h̄gω| is; (II) the region where
10−1 . g/κ . 101, in which both the normalized heat and work rates vary as a function
of g (transient region); and finally, (III) the region in which g � κ and the JQ/h̄gω and
JW/h̄gω reach steady values again (as a function of g); in this region, both the normalized
heat and work rates can exist, but their values depend again on the strength of the driving
field: for ε/κ � 1, the normalized work flux goes to zero while the normalized heat flux
becomes non-null. On the other hand, for ε/κ � 1, the normalized heat flux goes to zero
while the normalized work flux becomes non-null. We can understand the behavior of
the JW/h̄gω and JQ/h̄gω rates in Figure 2a–c in terms of entanglement generation. To
this end, note from Figure 2a that, when the von Neumann entropy reaches its maximum
value, meaning that the atom mode state approaches its maximum degree of entanglement,∣∣JQ/h̄gω

∣∣ increases to its maximum, while |JW/h̄gω| decreases to its minimum, to the
point that

∣∣JQ/h̄gω
∣∣ becomes greater than |JW/h̄gω|. Interestingly, increasing ε prevents

the maximum correlation from forming, as indicated by the von Neumann entropy in
Figure 2b,c. As the von Neumann entropy stabilizes at a value lesser than the maximum
possible (S = ln(2)) and, consequently, the correlation stabilizes at a value lower than
its maximum possible, the heat generation is also limited, to the point that

∣∣JQ/h̄gω
∣∣ no

longer exceeds |JW/h̄gω|, as indicated by Figure 2b,c, in which there is no crossover. Note
the dual role of ε: it is responsible for (indirectly) increasing the work performed by the
system (atom) and, at the same time, limits the creation of atom–field entanglement, thereby
limiting the amount of heat that flows from the system (atom).

As stated earlier, as our system of interest is only the atom, we did not conduct a
study detailing the work associated with the field or eventually stored in the atom–field
correlations [33–36]. An investigation to compare the work associated directly with the
field with the work associated indirectly with the atom, as well as with the atom–field
correlations could shed some light on the role of the cavity in the extraction process of work
from the atom. This will demand more refined definitions of thermodynamic quantities to
describe the exchange of heat and work involving interacting subsystems evolving under
independent reservoirs. This is an interesting point and will be investigated in the future.

3.2. On the Classical Behavior of the Cavity–Field

In this subsection, we discuss an important issue raised in [11], which is the fact
that one can have, on average, only one photon inside the cavity, and even so, the cavity
mode field can be treated from a classical perspective, since the atom–field entanglement
that would be expected between two quantum systems does not occur. As we see in
Figure 2, this happens when the heat flux becomes negligible, i.e., when g � ε. To
address this point more carefully, first note that during the time of the unitary operation,
the pumping term Hp = ε(a† + a) is responsible for taking the cavity state from |0〉 to
|α(t)〉 = exp

[
−iεt(a† + a)

]
|0〉, with α = −iεt in Equation (2). Therefore, the amount

of photons that cross the cavity while the unitary operation is taking place is given by
n̄ f lux = |εt|2. On the other hand, the number of photons that actually remain inside the
cavity is given by the difference between what is pumped into the cavity and what leaks
through the walls of the low-quality cavity, i.e., n̄cav = |ε/κ|2, resulting in n̄ f lux = κ2t2n̄cav.
Therefore, if we require n̄cav ∼ 1, then n̄ f lux ∼ k2t2. For the Ramsey zone to work properly,
the κ � g limit must be met. For cavities with a low-quality factor [2,3], we can estimate
not only how many photons actually go through the cavity during the time the atom crosses
the cavity, but how much energy E = h̄ωn f lux must be invested for the unit operation
U (i.e, the Ramsey zone) to be performed successfully. Now, if we note that a typical
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atom rotation occurs for εgt/κ ∼ π then n̄ f lux ∼ κ2/g2, and we can, therefore, estimate,
assuming κ/g ∼ 103, the total number of photons crossing the low-Q cavity as n̄ f lux ∼ 106

photons. This huge amount of photons helps to understand the emergence of the classical
behavior even when there is only one photon on average inside the cavity. As noted
in [11], there is nothing special about choosing n̄cav = |ε/κ|2 ∼ 1: the unitary operation
can be accomplished even for n̄cav = |ε/κ|2 � 1, provided the requirement κ � g is met.
However, this would require increasing the velocity of the atom crossing the cavity. This
large expenditure of energy Ē f lux = 106h̄ω is in contrast to the energy Ēcav that is actually
needed to produce work on the cavity–field, as shown in Figure 2. To better appreciate
how the total average number of photons inside the cavity changes with the parameters
involved, in Figure 3, we show, in a log scale on the left, the number of photons crossing the
cavity as a function of g/κ (purple solid line) for the evolution from 〈σz〉 ' 1 till 〈σz〉 ' 0
(π/2-rotation), which would represent, in a perfectly unitary evolution, a superposition
state (|e〉 − i|g〉)/

√
2. The von Neumann entropy (black dashed–dotted line) is also shown

on the left scale. Note that, to produce with high purity a rotation of π/2, i.e., with von
Neumann entropy close to zero, a high number of photons crossing the cavity is necessary,
on the order of 106.

Figure 3. Normalized von Neumann entropy S/ ln(2) (black dashed–dotted line) and average photon
number n̄ f lux (purple solid line) crossing the lossy cavity versus g/κ at time when the atom achieves the
state for Pe = 〈e|ρat|e〉 ' Pg = 〈g|ρat|g〉 ≈ 0.5, i.e., the populations of the ground and excited states are
the same for fixed n̄cav = |ε/κ|2 = 1, which is the average number actually found in the cavity.

4. Conclusions

In this work, using the approach employed in Section 2 to obtain Equations (5) and (8),
we studied the thermodynamic quantities’ entropy S, heat JQ, and work JW rates exchanged
by an atom and its environment in the functioning of a Ramsey zone, which is a device
employed to rotate atomic qubits. It is constituted by a field that interacts with the atom
in a lossy cavity, whose energy is kept constant due to a pumping field resonant with the
atom and the cavity mode. We showed that, for the parameters for which the Ramsey
zone works properly, i.e., without entanglement generation and, therefore, causing the
atomic state to evolve with a high degree of purity (minimal entropy), JW is the amount
that stands out. On the other hand, for parameters for which the Ramsey zone fails to
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function, the atom state becomes highly entangled with the cavity mode field state, and
therefore, there is a drastic decrease in the purity of the atomic state, as shown by the
von Neumann entropy, in which case the amount that stands out is JQ. Yet, for certain
parameters where the degree of entanglement between the atom state and the cavity mode
field state is finite, but not maximum and, therefore, the von Neumann entropy is neither
minimum nor maximum, both heat and work are present. In addition, we demonstrated the
existence of a specific value for ε beyond which entanglement generation no longer occurs
and, consequently, no more heat can be extracted from the system (atom). Furthermore,
our study revealed that the average amount of photons coming from the classical pump
and crossing the lossy cavity during the Ramsey zone operation is of the order of millions
of photons, which explains the classical behavior of the cavity mode, even if, on average,
the lossy cavity contains only one photon. The results presented here provided a way to
understand the dynamics of the Ramsey zone through quantum thermodynamics concepts,
being of interest to the quantum optical and thermodynamics community. Hence, the
Ramsey zone has potential application in quantum thermal machines that use the concepts
of heat and work as a figure of merit for the calculation of efficiency and performance.
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