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Abstract: Considering the uncertainty of game duration and periodic seasonal fluctuation, an n-player
switched pollution-control differential game is modeled to investigate a sustainable and adaptive
strategy for players. Based on the randomness of game duration, two scenarios are considered in
this study. In the first case, the game duration is a random variable, Tf , described by the shifted
exponential distribution. In the second case, we assumed that players’ equipment is heterogeneous,
and the i-th player’s equipment failure time, Tf i, is described according to the shifted exponential
distribution. The game continues until a player’s equipment breaks down. Thus, the game duration
is defined as Tf = min{Tf 1, . . . , Tf n}. To achieve the goal of sustainable development, an environ-
mentally sustainable strategy and its corresponding condition are defined. By using Pontryagin’s
maximum principle, a unique control solution is obtained in the form of a hybrid limit cycle, the
state variable converges to a stable hybrid limit cycle, and the total payoff of all players increases and
then converges. The results indicate that the environmentally sustainable strategy in the n-player
pollution-control cooperative differential game with switches and random duration is a unique
strategy that not only ensures profit growth but also considers environmental protection.

Keywords: differential game; cooperative game; switched system; random duration; sustainability

1. Introduction

Practical ecological, economic, and engineering problems comprise switching phe-
nomena [1–3]. All systems involving logical decision-making and continuous (smooth)
dynamics, such as robot systems [4], chemical control processes [5], etc., can be transformed
into hybrid systems with multiple regimes of dynamics.

Therefore, the hybrid dynamic system has gained considerable a research interest in
the environmental, economic, and engineering fields. In addition, changed systems, in the
form of time-driven and state-driven switches, are increasingly common. The up-to-date
contributions to those fields are [6–10]. In [9,11], an optimal solution in the form of a hybrid
limit cycle (HLC) was introduced as the best possible candidate for the infinite-horizon
optimization problem. However, the results were only about the optimal control of a single
agent and did not explore the optimal control strategy of multiple players.

In addition, in contrast to the general pollution-control problems with deterministic
terminal time [12,13] or with infinite horizon [10,14], the randomness of the game duration
cannot be ignored, because the game may end abruptly. The reasons behind this can be an
equipment break-down, an economic failure. or a natural disaster, among many others [15].
In [15,16], differential pollution-control games with random duration were thoroughly
analyzed. However, the impact of seasonal fluctuation on the system was not considered.

Thus, by combining the two aforementioned research directions, an n-player coop-
erative differential game was explored for pollution control. The game involves infinite
time-driven switches and encompasses random game duration.
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The contributions of this paper are summarized as follows:

1. A novel model is proposed to address challenges within the context of an n-player
cooperative differential game for pollution control with time-driven switches and
random duration. The time-driven switches within system are denoted by a periodic
piecewise-constant function. Taking into account the randomness of game duration
and the players’ equipment warranty period, the finite-horizon optimal control prob-
lem is reformulated as an infinite-horizon optimal control problem, in which the game
duration is modeled considering two scenarios based on shifted exponential distri-
butions. The proposed model introduces innovative concepts and refines previously
established methodologies, aiming to enhance its adaptability to real-world scenarios
and yield more practical outcomes.

2. In addition, this study proves the sustainability and uniqueness of the environmentally
sustainable solution upon the proposed model.

3. Solving the optimal pollution-control problem with time-driven switches and random
duration: We employed Pontryagin’s maximum principle and thoroughly analyzed
the adjoint variable dynamics to derive the shifted equilibrium value, resulting in
a unique environmentally sustainable solution in the form of an HLC, which is
environmentally friendly and guarantees the profit of all players.

The obtained results can be applied to the optimization problems of switched systems
with periodic switching signals, such as the formation control problem [17] and capital
investment problem [8]. Additionally, they can provide valuable insights on how agents
can effectively adapt to a rapidly changing and evolving environment, allowing them to
reap the benefits.

The remainder of this paper is structured as follows. In Section 2, the model of the n-
player pollution control differential game with time-driven switches and random duration
is formulated. In addition, considering different types of game durations, two case studies
were conducted. Section 3 presents a discussion of the cooperative game with identical
shifted exponential distribution and provides a the definition of the environmently sustain-
able control and determines the equilibrium value of adjoint variable that is used to derive
the unique solution. In Section 4, we discuss a cooperative game with different shifted
exponential distributions and obtain the corresponding equilibrium value and unique solu-
tion. Section 5 provides an illustration of a pollution-control differential game involving
two players, and optimal solutions for both scenarios are demonstrated numerically.

2. The Problem Statement

All notations used through the paper are summarized in Appendix A, Table A1.
In this study, we consider the optimal lake-pollution-control game model based

on [15,16,18]. The game involves n players (factories). Each player i manages his/her
emissions policy toward the lake, such that the dynamic of the pollution stock is governed
by the linear differential equation with the following initial condition:

ż =
n

∑
i=1

ξivi − δ(t)z, z(0) = z0, (1)

where z is the stock of pollution within a fixed natural reservoir (e.g., a lake),
vi ∈ [0, bi], i = 1, n denotes the emissions rate, bi is the maximal admissible emissions
rate of each player, ξi ∈ (0, 1) is the fraction of the emitted pollutants accumulated in the
reservoir from each player (e.g., factory), and δ(t) is the self-cleaning rate of the reservoir.
Furthermore, we have z0 ≥ 0 and the state z(t) is non-negative for all t ≥ 0.

The self-cleaning rate for lakes is widely acknowledged to vary throughout the year.
This could be due to the impact of various factors, including temperature and light fluctu-
ations, during specific periods (e.g., over the span of a year). Considering the impact of
external seasonal changes on the lake, it is reasonable to postulate that the self-cleaning rate
of the lake is not a fixed constant; however, it varies as a function of time. Thus, we further
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assumed that the self-cleaning rate of reservoir δ(t) is represented by a periodic piecewise-
constant function, which defined as the following mathematical expression:

δ(t) :=

{
δ1 > 0, t ∈ [kT, (k + τ)T],
δ2 > 0, t ∈ [(k + τ)T, (k + 1)T].

(2)

The whole time duration D = [0, Tf ] is divided into equal periods of length T, each of
which is subdivided into two parts: [kT, (k + τ)T] and [(k + τ)T, (k + 1)T], where τ ∈ (0, 1)
is the switching ratio and k ∈ N0. When the system is in the first subperiod, δ(t) = δ1,
whereas in the second subperiod, δ(t) = δ2 and δ1 6= δ2.

Note that the production is usually assumed to be linearly related to the emissionss.
Therefore, the revenue function can be expressed in terms of emissionss [18]. The revenue
function of each player Ri(vi) is strictly concave. The marginal revenue decreases with
the increasing emissions rate of each player vi(t) ∈ [0, bi]. However, zero emissions
(production) is unprofitable. Each player incurs a damage cost, Ci(z), for mitigating
their emissions at moment t, and this cost function is increasing and convex. Thus, a
quadratic revenue functional Ri(vi) = aivi(bi − vi/2) [19] and a linear cost functional form
Ci(z) = qiz are commonly derived to represent the instantaneous payoff of player i as
L(vi, z) = Ri(vi) − Ci(z).

Then, the general form of the integral payoff for player i is as follows:

Ji(z0, v1, v2, . . . , vn) =
∫ Tf

0
[aivi(bi − vi/2)− qiz] dt, (3)

where ai > 0 is a positive constant used to transform the emissions flow to the profit flow.
Coefficient qi > 0 is a positive constant, corresponding to the tax that a player must bear
(e.g., an ecotax).

Considering the randomness of the game duration, we assumed that the terminal time
of game Tf is a random variable. After simplifying the integral payoff [20], the expected
integral payoff of player i is obtained as follows:

Ji(z0, v1, v2, . . . , vn) = E(
∫ Tf

0
[aivi(bi − vi/2)− qiz] dt)

=
∫ ∞

0

∫ s

0
[aivi(bi − vi/2)− qiz] dt dF(s)

=
∫ ∞

0
(1− F(t))[aivi(bi − vi/2)− qiz] dt,

(4)

where F(t) is the cumulative distribution function of Tf .

3. Cooperative Game with Identical Shifted Exponential Distribution

If all players share common pollution-control equipment (e.g., filters), we assume that
the game duration is a realization of the random variable Tf (the time of equipment failure
is same for all players and coincides with the end of the game).

Assume that at the beginning of the game, all players use a new pollution-control
equipment, and this equipment comes with a warranty period. The warranty period
refers to a specified time frame after the sale of a product or service, during which the
manufacturer or supplier assures free repairs or replacements. During this period, if
the product experiences any quality issues or malfunctions, the consumer can avail free
repairs/replacement services. Hence, before the warranty period, there is no risk of
equipment breakdown, while after the warranty period, the equipment is subject to the
risk of potential damage. The game terminates when the equipment breaks down.

Therefore, we consider a cooperative game for pollution control, wherein the ran-
domness of game duration and consideration of the warranty period are represented by a
shifted exponential distribution.
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For the mathematical definition of random variable Tf , we applied a shifted exponen-
tial distribution, which is given by

F(t) =

{
1− eλ(θ−t), t > θ,
0, t ∈ [0, θ],

(5)

where θ > 0 is the shift parameter of the exponential distribution from the initiation of game
0, which represents the equipment warranty period. The equipment does not encounter
the risk of failure before the warranty period, and after this period, θ, the failure rate is
constant over time. In addition, λ > 0 is the parameter of distribution and E(Tf ) = θ + 1

λ .
By substituting (5) into (4), the whole time horizon is split into [0,+∞] as [0, θ]∪ (θ, ∞],

according to Bellman’s optimality principle, and the overall payoff functional, (4), can be
rewritten as a sum:

Ji(z0, v1, v2, . . . , vn) =
∫ θ

0
[aivi(bi − vi/2)− qiz] dt

+
∫ ∞

θ
eλ(θ−t)[aivi(bi − vi/2)− qiz] dt.

(6)

All players (factories) act together to maximize their joint payoff:

Jco(z0, v1, v2, . . . , vn) =
n

∑
i=1

Ji(z0, v1, v2, . . . , vn)

= Jco1(z0, v1, v2, . . . , vn) + Jco2(zθ , v1, v2, . . . , vn)

=
n

∑
i=1

∫ θ

0
[aivi(bi − vi/2)− qiz] dt+

n

∑
i=1

∫ ∞

θ
eλ(θ−t)[aivi(bi − vi/2)− qiz] dt.

(7)

By using Pontryagin’s maximum principle, the cooperative solution is obtained as
a result of the joint optimization problem. We solved this optimization problem sepa-
rately. First, the second interval (θ, ∞] is considered with respect to players’ joint payoff
Jco2(zθ , v1, v2, . . . , vn) = ∑n

i=1
∫ ∞

θ eλ(θ−t)[aivi(bi − vi/2)− qiz] dt, and then the first interval

[0, θ] is considered with respect to players’ joint payoff Jco1 = ∑n
i=1
∫ θ

0 [aivi(bi− vi/2)− qiz] dt.

3.1. Second Interval—(θ, ∞]

The payoff functional of the second interval (θ, ∞] is

Jco2(z0, v1, v2, . . . , vn) =
n

∑
i=1

∫ ∞

θ
eλ(θ−t)[aivi(bi − vi/2)− qiz] dt. (8)

Further, the Hamiltonian is given by

Hco2(t) = eλ(θ−t)
n

∑
i=1

[aivi(bi − vi/2)− qiz] + ψ2(
n

∑
i=1

ξivi − δ(t)z). (9)

Then, we have the canonical system:

ż =
n

∑
i=1

ξivi − δ(t)z,

ψ̇2 = eλ(θ−t)
n

∑
i=1

qi + δ(t)ψ2.
(10)
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Let ψ̃2 = e−λ(θ−t)ψ2. Then, we have

˙̃ψ2 =
n

∑
i=1

qi + (δ(t) + λ)ψ̃2. (11)

Based on the first order derivative of the Hamiltonian, the optimal control is obtained
as follows:

ṽ∗i =


bi, ψ̃2 > 0,
bi +

ξi
ai

ψ̃2, ψ̃2 ∈ [− aibi
ξi

, 0]

0, ψ̃2 < − aibi
ξi

.

(12)

For the payoff functional (8), which is defined in infinite horizon (θ, ∞] with infinite
time-driven switches, players should consider a sustainable development. Therefore, this
study aimed to find a sustainable decision-making pattern so that players can find an
optimal compromise between profit and penalty (e.g., ecotax).

Definition 1. The optimal control, v∗i , is environmentally sustainable if it does not take on bound-
ary values, except at isolated instances of time, i.e., ψ̃2 ∈ [− aibi

ξi
, 0], for all t ≥ θ.

This definition is based on the long-term economic interests of all players. For v∗i > bi,
the control (the rate of emissions) of player i remains at its maximum value. Evidently,
this is not profitable because player i bears high ecotax. In another situation v∗i < bi, the
revenue of player i cannot exceed the cost; therefore, the player must halt the production
after a certain time interval to allow the stock of pollution to decrease to a lower level.
Hence, both of these situations are not acceptable for sustainable production [21].

The following theorem and its proof are close to the result presented in [11]. The main
difference is that the condition for the adjoint variable was not set at the initial moment but
at moment θ. In addition, this value depends on the interval to which θ belongs.

Theorem 1. The solution to (10) satisfying z(0) = z0 and ψ2(θ) = ψhlc with

ψhlc =

{
L(1− ep2T(τ−1))ep1m − q

p1
, m ∈ [0, τT],

L(1− ep1τT)ep2(m−T) − q
p2

, m ∈ [τT, T]
(13)

is the unique optimal solution to (1)–(7). Here, q =
n
∑

i=1
qi, p1 = δ1 + λ, p2 = δ2 + λ,

m = θ − b θ
T cT, L = q(p1−p2)

p1 p2(ep2T(τ−1)−ep1τT)
.

Proof. To obtain a periodic solution, the following equation is first solved:

ψ̃2(θ) = ψ̃2(θ + T). (14)

Let k1 = b θ
T c; then, θ ∈ [k1T, (k1 + 1)T]. On interval [k1T, (k1 + 1)T], the solution

to (11) has the form

ψ̃2(t) =

{
c1ep1t − q

p1
, t ∈ [k1T, k1T + τT],

c2ep2t − q
p2

, t ∈ [k1T + τT, (k1 + 1)T].

If θ ∈ [k1T, k1T + τT] or m ∈ [0, τT], then ψ̃2(θ) = c1ep1θ − q
p1

, which is the same thing,
solving (14), we have

ψ̃2(θ) = L(1− ep2T(τ−1))ep1m − q
p1

.
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If θ ∈ [k1T + τT, (k1 + 1)T], or, which is the same thing, m ∈ [τT, T], then
ψ̃2(θ) = c2ep1θ − q

p2
. Solving (14) we have

ψ̃2(θ) = L(1− ep1τT)ep2(m−T) − q
p2

.

Then, the solution to (10) satisfying ψ2(θ) = ψ̃2(θ) = ψhlc is given by

ψ̃∗2 (t) =



(
ψhlc +

q
p1

)
ep1(t−θ) − q

p1
, t ∈ [θ, (k1 + τ)T],(

ψhlc +
q
p1

)
ep1(t−kT−θ) − q

p1
, t ∈ [(k1 + k)T, (k1 + k + τ)T], k ∈ N+,((

ψhlc +
q
p1

)
ep1((k1+τ)T−θ) − q

p1
+ q

p2

)
ep2(t−(k1+τ)T−kT) − q

p2
,

t ∈ [(k1 + τ + k)T, (k1 + 1 + k)T], k ∈ N0,

(15)

if θ ∈ [k1T, k1T + τT] and

ψ̃∗2 (t) =



(
ψhlc +

q
p2

)
ep2(t−θ) − q

p2
, t ∈ [θ, (k1 + 1)T],(

ψhlc +
q
p2

)
ep2(t−kT−θ) − q

p2
, t ∈ [(k1 + k + τ)T, (k1 + k + 1)T], k ∈ N+,((

ψhlc +
q
p2

)
ep2((k1+1)T−θ) − q

p2
+ q

p1

)
ep1(t−(k1+1)T−kT) − q

p1
,

t ∈ [(k1 + k)T, (k1 + τ + k)T], k ∈ N0,

(16)

if θ ∈ [k1T + τT, (k1 + 1)T]. As observed, ψ̃∗2 (t) = ψ̃∗2 (t+ kT) and ψ̃∗2 (t) ∈ [min(− q
p1

,− q
p2
),

max(− q
p1

,− q
p2
)]; therefore, this solution is periodic and bounded.

The boundedness of ψ̃∗2 (t) and the state z(t) guarantees the fulfillment of the transver-
sality condition

lim
t→+∞

in f eλ(θ−t)ψ̃∗2 (t)(z(t)− z∗(t)) ≥ 0, (17)

for any admissible solution z(t).
Thus, by considering the concavity of the Hamiltonian, we can conclude that v∗ is the

optimal control, where

v∗i =


bi, ψ̃∗2 (t) > 0,
bi +

ξi
ai

ψ̃∗2 (t), ψ̃∗2 (t) ∈ [− aibi
ξi

, 0],

0, ψ̃∗2 (t) < −
aibi
ξi

.

(18)

The uniqueness of the obtained optimal solution follows from the concavity of the
Hamiltonian. Note that the Hamiltonian is a concave function with respect to the state z
and strictly concave with respect to the control vi, thus following the uniqueness of the
obtained optimal solution. This completes the proof of the theorem.

Lemma 1. If ψ̃2(θ) 6= ψhlc, then lim
t→+∞

‖ψ̃2(t)‖ = ∞.

Proof. When ψ̃2(θ) deviates from the equilibrium initial value ψhlc, let ψ̃2(θ) = ψhlc + c.
Then, from the moment θ, the difference of each period can be obtained:

ψ̃2(θ + kT)− ψ̃2(θ + (k− 1)T) = cekT(p2(1−τ)+p1τ).

For k ∈ N+ and kT(p2(1− τ) + p1τ) > 0, the value difference cekT(p2(1−τ)+p1τ) varies
monotonically. Thus, the value of ψ̃2 diverges with time. This implies that when t→ +∞ ,
if c > 0, ψ̃2(t) approaches +∞, and if c < 0, ψ̃2(t) approaches −∞.
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Lemma 2. Optimal control v∗i is environmentally sustainable when the following inequalities
are satisfied:{

(ψhlc +
q
p1
)ep1((k1+τ)T−θ) − q

p1
≥ − aibi

ξi
, θ ∈ [k1T, (k1 + τ)T],

((ψhlc +
q
p2
)ep2((k1+1)T−θ) − q

p2
+ q

p1
)ep1(1−τ)T − q

p1
≥ − aibi

ξi
, θ ∈ [(k1 + τ)T, (k1 + 1)T],

(19)

if δ1 > δ2, k1 = b θ
T c, and{

((ψhlc +
q
p1
)ep1((k1+τ)T−θ) − q

p1
+ q

p2
)ep2(1−τ)T − q

p2
≥ − aibi

ξi
, θ ∈ [k1T, (k1 + τ)T],

(ψhlc +
q
p2
)ep2((k1+1)T−θ) − q

p2
≥ − aibi

ξi
, θ ∈ [(k1 + τ)T, (k1 + 1)T],

(20)

if δ1 < δ2.

Proof. For δ1 > δ2, the dynamic of adjoint variable ψ̃∗2 (t) decreases in the first subperiod
and increases in the second subperiod. In addition, according to Theorem 1,
ψ̃∗2 (t) ∈ [min(− q

p1
,− q

p2
), max(− q

p1
,− q

p2
)]. Then, we have ψ̃∗2 (t) < max(− q

p1
,− q

p2
) < 0.

Hence, to ensure that optimal control v∗i is environmentally sustainable, the condition
mint≥0 ψ̃∗2 (t) ≥ −

aibi
ξi

must be satisfied. As such, we have{
mint≥0 ψ̃∗2 (t) = ψ̃∗2 ((k1 + τ)T) ≥ − aibi

ξi
, θ ∈ [k1T, (k1 + τ)T],

mint≥0 ψ̃∗2 (t) = ψ̃∗2 ((k1 + τ + 1)T) ≥ − aibi
ξi

, θ ∈ [(k1 + τ)T, (k1 + 1)T].
(21)

Similarly, the condition for δ1 < δ2 can be obtained.

Figure 1 illustrates the dynamics of ψ̃2 with different initial values in two situations:
when distribution shift parameter θ is located before and after the switching time in
one period. Without loss of generality, period T and switching ratio τ can be assigned
randomly because these two parameters do not affect the overall result. Hence, we denote
T = 1; τ = 0.5. In addition, for parameter λ, which directly determines the expectation
of the game-termination time, we denote λ = 0.5. The other parameters are set as
δ1 = 0.9, δ2 = 0.45, and q = 6.

The blue line, the initial value ψ̃2(θ) which is equal to the equilibrium value ψhlc,
denotes an equilibrium solution of the adjoint variable, which varies periodically with
equal amplitude within interval [ψ∗22, ψ∗21], where ψ∗2i = − q

pi
, i = 1, 2 are equilibrium

positions for each mode, depending on the change of δ. The equilibrium positions are
represented by the sky-blue dash lines, and the red lines indicate nonequilibrium solutions;
their initial values slightly deviate from the equilibrium value. Thus, the application of a
small deviation to the initial value can cause the solution to diverge over time, either going
into +∞ or −∞. The solution can then escape from two equilibrium points [ψ∗22, ψ∗21].

In this way, an equilibrium solution is uniquely determined, forming an HLC as time
approaches an infinite horizon with infinite time-driven switches.
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(a) T ≤ θ ≤ T + τ. (b) T + τ ≤ θ ≤ 2T.

Figure 1. Dynamics of the ψ̃2 with different initial values.

3.2. First Interval—[0, θ]

The payoff functional of the first interval, [0, θ], is denoted as

Jco1(z0, v1, v2, . . . , vn) =
n

∑
i=1

∫ θ

0
[aivi(bi − vi/2)− qiz] dt. (22)

The Hamiltonian is given by

Hco1(t) =
n

∑
i=1

[aivi(bi − vi/2)− qiz] + ψ1(
n

∑
i=1

ξivi − δ(t)z) (23)

Then, we have the canonical system:

ż =
n

∑
i=1

ξivi − δ(t)z,

ψ̇1 =
n

∑
i=1

qi + δ(t)ψ1, ψ1(θ) = ψ̃2(θ) = ψhlc.
(24)

Moreover, the continuity condition ψ1(θ) = ψ̃2(θ) = ψhlc is based on the continuity of
the optimal control, which is directly driven by the adjoint variable, based on the fact that
the switching instants depend on time, i.e., are autonomous or time-driven [9,22].

According to the first order derivative of the Hamiltonian, the optimal control is
obtained as follows:

v∗i =


bi, ψ1 > 0,
bi +

ξi
ai

ψ1, ψ1 ∈ [− aibi
ξi

, 0],

0, ψ1 < − aibi
ξi

.

(25)

As the terminal value of ψ1(t) is determined, we consider the backward time dynamics
of ψ1(t), which is described by the following system:

ψ̇1(t) =

{
−∑n

i=1 q1 − δ(t)ψ1, t ∈ [hT, (h + τ)T),
−∑n

i=1 q2 − δ(t)ψ1, t ∈ [(h + τ)T), (h + 1)T)],
(26)

where h ∈ N0, with ψ1(θ) = ψhlc. Each subsystem of (26) has a single stable equilibrium at
ψ∗1i = −

qi
δi

, i = 1, 2.
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Note the equilibrium points of adjoint variables in the first interval are less than those
in the second interval; thus, the overall trend of adjoint variable ψ1(t) in the first interval,
[0, θ], increases in the backward time.

Accordingly, back to the forward time point of view, the optimal control in the first
interval, [0, θ], may first retain around the maximal admissible value and then decreases to
the HLC.

3.3. Numerical Overall Adjoint Variable

The initial value of adjoint variable ψhlc in the second interval is uniquely determined,
and this is used as the terminal value in the first interval. Now, we can solve the cooper-
ative adjoint variable, denoted by ψco(t), in the whole time horizon [0,+∞]. Herein, the
parameter settings were similar to those in Section 3.1.

Figure 2 shows the situation when distribution shift parameter θ is located before the
switching time in the second period, T ≤ θ ≤ T + τ, where

ψco(t) =

{
ψ1(t), t ∈ [0, θ],
ψ̃2(t), t ∈ [θ, ∞],

ψ1(θ) = ψ̃2(θ) = ψhlc. (27)

Figure 2. Dynamics of the ψco if kT ≤ θ ≤ (k + τ)T.

Figure 3 shows the situation when distribution shift parameter θ is located after the
switching time in the second period, T + τ ≤ θ ≤ 2T.

The blue lines in the figure represent for the cooperative adjoint variable, ψco(t);
the sky-blue dash lines represent the equilibrium points of two intervals, and the green
lines show the distribution shift parameter θ. From Figures 2 and 3, we can conclude that
regardless of whether shift instant θ is located before or after the switching time in a period,
the overall trend of ψco(t) does not change.

Consequently, the overall optimal control of player i in the whole time duration [0, ∞]
is derived as:

v∗i =


bi, ψco > 0,
bi +

ξi
ai

ψco, ψco ∈ [− aibi
ξi

, 0],

0, ψco < − aibi
ξi

.

(28)
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Figure 3. Dynamics of the ψco if kT + τ ≤ θ ≤ (k + 1)T.

4. Cooperative Game with Different Shifted Exponential Distributions

In reliability engineering, the pollution-control equipment used by each player is dif-
ferent and with a different warranty period. The duration of the warranty period may vary
depending on factors such as product type, brand, and contract terms, etc., and it is usually
measured in months or years. Hence, the i-th player’s equipment fails abruptly at moment
Tf i as a random variable with a known probability distribution function Fi(t), i = 1, n,
and the equipment may break down owing to the end of its lifetime or other natural disas-
ters. The game lasts until one of the players’ equipments breaks down. Hence, this study
also considered an n-player cooperative game of pollution control with different shifted
exponential distributions. Furthermore, each player is assumed to possess specific equip-
ment used in pollution control. Moreover, {Tf i}n

1 are assumed to be independent random
variables. Thus, the game duration is defined as Tf = min{Tf 1, . . . , Tf n}.

In this case, players’ equipment is heterogeneous, and {Tf i}n
1 adopts different shifted

exponential distributions, as well as different distribution parameters, {λi}n
1 . Without

loss of generality, we assumed that θ1 ≤ θ2 . . . ≤ θn, where θn is the shifted parameter of
player n, and it represents the largest shifted parameter among all players. Then, we have
F(t) = P{Tf < t} = 1−∏n

i=1(1− Fi(t)), see [15], where Fi(t) is defined as

Fi(t) =

{
1− eλi(θi−t), t > θi,
0, t ∈ [0, θi].

(29)

The duration of the game is a random variable with composite distribution func-
tion [23]. Thus, the cumulative distribution function, F(t), with different shifted exponential
distributions is denoted as

F(t) =



0, t ∈ [0, θ1],
1− eλ1(θ1−t), t ∈ [θ1, θ2],
. . .

1− e∑
j
i=1[λi(θi−t)], t ∈ [θj, θj+1],

. . .
1− e∑n

i=1[λi(θi−t)], t > θn.

(30)
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The cooperative payoff functional, (4), in this case, can be rewritten as the follow-
ing sum:

Jco(z0, v1, v2, . . . ,vn) = J1(z0, v1, v2, . . . , vn) + J2(z0, v1, v2, . . . , vn) + . . . + Jn(z0, v1, v2, . . . , vn)

=
n

∑
i=1

[
∫ θ1

0
[aivi(bi − vi/2)− qiz] dt +

∫ θ2

θ1

eλ1(θ1−t)[aivi(bi − vi/2)− qiz] dt

+ . . . +
∫ ∞

θn
e∑n

i=1[λi(θi−t)][aivi(bi − vi/2)− qiz] dt].

(31)

4.1. The Last Interval—(θn, ∞]

The payoff functional in the last interval, (θn, ∞], is

Jcon(z0, v1, v2, . . . , vn) =
n

∑
i=1

∫ ∞

θn
e∑n

i=1[λi(θi−t)][aivi(bi − vi/2)− qiz] dt. (32)

The Hamiltonian is given by

Hcon(t) = e∑n
i=1[λi(θi−t)]

n

∑
i=1

[aivi(bi − vi/2)− qiz] + ψn(
n

∑
i=1

ξivi − δ(t)z). (33)

Then, we have the following canonical system:

ż =
n

∑
i=1

ξivi − δ(t)z,

ψ̇n = e∑n
i=1[λi(θi−t)]

n

∑
i=1

qi + δ(t)ψn.
(34)

Let ψ̃n = e−∑n
i=1[λi(θi−t)]ψn; then, we have ˙̃ψn = ∑n

i=1 qi + (δ(t) + ∑n
i=1 λi)ψ̃n.

As the differential equation of ψ̃n(t) is similar to the identical shift case, ψ̃2(t), in the
Section 2, we can still uniquely determine the equilibrium initial value, ψ̃n(θn) = ψhlcN ,
that forms a unique HLC.

ψhlcN =

{
L̄(1− ep2N T(τ−1))ep1N mn − q

p1N
, mn ∈ [0, τT],

L̄(1− ep1N τT)ep2N(mn−T) − q
p2N

, mn ∈ [τT, T],
(35)

where q = ∑n
i=1 qi, λN = ∑n

i=1 λi, p1N = δ1 + λN , p2N = δ2 + λN , mn = θn − b θn
T cT,

L̄ = q(p1N−p2N)

p1N p2N(ep2N T(τ−1)−ep1N τT)
.

4.2. Former Intervals—[0, θ1] ∪ (θ1, θ2] ∪ . . . ∪ (θn−1, θn].

Next, the equilibrium value of the adjoint variable at moment θn is uniquely deter-
mined. Thus, the dynamics of ψi(t), i = 1, n− 1 are also uniquely determined in back-
ward time.

The payoff functional of player j , j ∈ [1, n− 1], j ∈ N0, is given by

Jcoj(z0, v1, v2, . . . , vn) =
n

∑
i=1

∫ θj+1

θj

e∑
j
i=1[λi(θi−t)][aivi(bi − vi/2)− qiz] dt. (36)

Furthermore, the Hamiltonian is denoted as

Hcoj(t) = e∑
j
i=1[λi(θi−t)]

n

∑
i=1

[aivi(bi − vi/2)− qiz] + ψj(
n

∑
i=1

ξivi − δ(t)z). (37)
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The differential equation of ψj(t) is given as

ψ̇j = e∑
j
i=1[λi(θi−t)]

n

∑
i=1

qi + δ(t)ψn. (38)

Let ψ̃j = e−∑
j
i=1[λi(θi−t)]ψj; then, we have

˙̃ψj =
n

∑
i=1

qi + (δ(t) +
j

∑
i=1

λi)ψ̃j, ψ̃j(θj+1) = ψ̃j+1(θj+1).

In addition, for the first interval [0, θ1], we have ψ̇1(t) = ∑n
i=1 qi + δ(t)ψ1(t),

ψ1(θ1) = ψ̃2(θ1).
Consequently, the overall cooperative adjoint variable with different shifted distribu-

tions is obtained as follows:

ψco(t) =



ψ1(t), t ∈ [0, θ1],
ψ̃2(t), t ∈ [θ1, θ2],
. . .
ψ̃j(t), t ∈ [θj, θj+1],
. . .
ψ̃n(t), t > θn.

(39)

5. Numerical Optimal Solution

For simplicity, we considered an example of a two-player cooperative game-theoretic
model of pollution control. As the overall cooperative adjoint variable is uniquely obtained
in each case, optimal solutions are shown below.

To meet the condition of environmentally sustainable control, the parameters settled
were set as follows: δ1 = 0.9; δ2 = 0.45; T = 1; τ = 0.5; λ = 0.5; q = 6; ξ1 = 0.8;
ξ2 = 0.7; a1 = 1; a2 = 1.2; b1 = b2 = 10; z0 = 0; θ = 1.2; θ1 = 1; θ2 = 2.2; λ1 = 0.3; and
λ2 = 0.5.

5.1. Solution of Identical Shifted Exponential Distribution

The optimal control, state trajectory, and corresponding cooperative payoff are demon-
strated in Figure 4.

The solution shows that the optimal emissions of each player change periodically after
the distribution shift instant θ = 1.2. Further, the stock of pollution converged to a unique
HLC and stabilized, and the cooperative payoff increased and then converged.

In some cases, before time instant θ, there may exist a period of radical emissions.
This could be interpreted as a more intense use of equipment by players during the
warranty period.

5.2. Solution of Different Shifted Exponential Distributions

The optimal control, state trajectory, and corresponding cooperative payoff in this case
are shown in Figure 5.

Figure 5 shows that after the expiration of each piece of equipment’s warranty period
(θi), the control strategy of player i tends to be increasingly conservative. After the maximal
warranty period θ2, the control strategy of each player transforms to a periodic solution in
the form of an HLC. The stock of pollution also converges to a unique HLC and stabilizes,
while the cooperative payoff increases and then converges. This result indicates that the
proposed control strategy can still maintain profitability when the equipment of each player
is nonhomogeneous with seasonal fluctuation (δ(t)).
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(a) Optimal emissions and the stock of pollution. (b) Cooperative payoff.

Figure 4. Optimal solution and cooperative payoff with identical shifted exponential distribution.

(a) Optimal emissions and the stock of pollution. (b) Cooperative payoff.

Figure 5. Optimal solution and cooperative payoff with different shifted exponential distributions.

For the dynamic switched system of pollution levels of a lake considered in this
paper, based on the obtained results and coupled with the random duration of the process,
we proposed that, within the framework of a cooperative game, players may adopt a
production strategy transitioning from aggressive to conservative (gradually decreasing
output) before the maximum warranty period θ2. This strategy reaches its equilibrium
value at θ2. Moreover, after θ2, players adopt a production strategy following an HLC
pattern. This involves the gradual increase and progressive decrease in production during
periods of relatively high and low lake self-cleaning rates, respectively. Consequently, this
approach ensures the attainment of an optimally controlled outcome from the context of
sustainable development.

Therefore, based on the considerations of real-world issues, the obtained results exhibit
uniqueness, theoretical applicability, and practical relevance.

6. Conclusions

In this study, we analyzed the cooperative differential game for a typical hybrid
optimal pollution-control problem with two types of time-driven switches: the seasonal
fluctuation(self-cleaning rate of the lake) and the shifted parameter of exponential dis-
tributions due to the random game duration. A random terminal duration problem was
transformed into a combination of an infinite horizon and a finite horizon(s) optimal
control problem.
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Further, we first considered a scenario with identical game duration and then examined
another scenario with joint probability distribution of game duration resulting from the
heterogeneity of players’ equipment. This paper discussed these two scenarios in detail
and presented the results of each scenario analytically and numerically. Furthermore, an
environmentally sustainable solution in the form of an HLC was uniquely determined for
each scenario, ensuring both sustainable production revenue and environmental protection.

In a subsequent study, we will delve into the optimal control problem of each player in
a noncooperative game featuring infinite time-driven switches and random game duration.
In addition, we will provide comparisons of the results obtained from the noncooperative
game with those obtained from the cooperative game to establish a justifiable allocation rule.
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Appendix A

Table A1. Notations.

Symbols Descriptions

Tf the game duration
Tf i the i-th player’s equipment failure time
T the period time
τ the switching ratio
z the stock of pollution within a fixed natural reservoir (e.g., a lake)
vi the emissions rate of player i
bi the maximal admissible emissions rate of player i

ξi
the fraction of the emitted pollutants accumulated in the reservoir
from each player (e.g., factory)

δ(t) the self-cleaning rate of the reservoir in time t
Ci(z) the damage cost of player i
Ri(vi) the revenue functional of player i
L(vi, z) the instantaneous payoff of player i

ai
the positive constant used to transform the player i’s emissions
flow to the profit flow

qi
the positive constant, corresponding to the tax that player i
must bear

Ji(z0, v1, v2, . . . , vn) the integral payoff of player i
Jco(z0, v1, v2, . . . , vn) the joint payoff

θ
the shift parameter of the exponential distribution from the
initiation of game

λ the parameter of distribution
θi the shifted parameter of player i
λi the distribution parameter of player i
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