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Abstract: Circular data are extremely important in many different contexts of natural and social
science, from forestry to sociology, among many others. Since the usual inference procedures based on
the maximum likelihood principle are known to be extremely non-robust in the presence of possible
data contamination, in this paper, we develop robust estimators for the general class of multinomial
circular logistic regression models involving multiple circular covariates. Particularly, we extend the
popular density-power-divergence-based estimation approach for this particular set-up and study
the asymptotic properties of the resulting estimators. The robustness of the proposed estimators is
illustrated through extensive simulation studies and few important real data examples from forest
science and meteorology.

Keywords: circular regression; robust estimation; density power divergence

1. Introduction

One of the most representative examples in the area of directional statistics are circular
data, which are characterized as points in the unit circle. Once the origin and the direction
of rotation have been fixed, the observations are measured by their direction represented
as an angle θ (from 0 to 2π if measured in radians), a unit vector (cos θ, sin θ), or even a
complex number with unit modulus, eiθ . These data represent periodic phenomena, such
as directions or measurements over time (time of day, month, lunar cycle. . . ). For a detailed
survey of directional statistics we refer to reference [1].

Circular statistics is fast becoming a key instrument in many fields because of its
applicability. In biology, for example, it has been applied to the study of avian migra-
tion routes [2–4] or animal movement [5,6], and to the analysis of mammalian circadian
timekeeping [7]. Other examples include leaf inclination angles [8,9]. In atmospheric
sciences, circular statistics has been widely applied to the analysis of wind directions [8–11].
Following this idea, ref. [12] used circular data in the study of wind and solar energy. Other
examples include medicine [13] or astrophysics [14]. Circular data are also found in social
sciences, such as policy making [15], sociology [16], economics [17] or criminology [9,18].

There are many approaches to model circular data that model the data using a circular
distribution. The simplest one is the circular uniform distribution, which assigns equal
probabilities to all the points of the circumference. The von Misses (vM) distribution is
among the oldest and most used circular distributions. Originally introduced in refer-
ence [19] and deeply analyzed in reference [20], the vM distribution has been applied in
numerous contexts [15,21,22]. In recent years, some extensions or alternatives to vM distri-
butions have been developed, among which the spherical normal (SN) distribution [23–25]
has become quite popular.

When we have additional covariates to explain the variations or predict the response
data, appropriate regression models involving circular variables have been developed in
recent years. The circular–circular regression model relates a circular response variable
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with a circular explanatory variable [26], while circular–linear regression relates a circular
response variable linearly with a vector of given covariates; see, e.g., reference [27] and
references therein. On the other hand, the linear–circular regression [28] assumes a linear
response variable and circular explanatory variables. The circular logistic regression,
introduced by reference [29] and analyzed by references [8,30,31] among others, relates a
binary response variable and one circular covariate. Recently, Ref. [9] extended this model
to a multinomial response, in the so-called multinomial circular logistic regression (MCLR).
The MCLR is an adaptation of the classical multinomial logistic regression (MLR) model,
where covariates are not assumed to be circular [32]. Usually the maximum likelihood
estimator (MLE) is used to perform inferences for such circular regression models, which
is known to be asymptotically most efficient but highly non-robust under possible data
contamination [33].

In this paper, we develop robust inference for the general class of MCLR models al-
lowing multiple circular covariates. In particular, a new family of estimators, the minimum
density power divergence (DPD) estimators, are defined as a generalization of the classical
MLE and its asymptotic properties are studied. An extensive simulation study illustrates
the improved robust performance of the proposed method over the existing MLE. The
applicability and importance of our proposal is further justified through a few interesting
real data examples. Finally, the paper ends with some concluding remarks and future
direction for work.

2. Model Description

Let us consider that our response variable η has d + 1 categories, η ∈ {1, . . . , d + 1},
and that it depends on k circular explanatory variables u = (u1, . . . , uk)

T . If πj(β) de-
notes the probability that η belongs to the j-th category, the multinomial circular logistic
regression model is given by

πj(β|u) =
exp

{
β j0 + ∑k

l=1

[
β
(1)
jl cos ul + β

(2)
jl sin ul

]}
1 + ∑d

s=1 exp
{

βs0 + ∑k
l=1

[
β
(1)
sl cos ul + β

(2)
sl sin ul

]} (1)

=
exp{β j0 + β

(1)
j1 cos u1 + β

(2)
j1 sin u1 + · · ·+ β

(1)
jk cos uk + β

(2)
jk sin uk}

1 + ∑d
s=1 exp{βs0 + β

(1)
s1 cos u1 + β

(2)
s1 sin u1 + · · ·+ β

(1)
sk cos uk + β

(2)
sk sin uk}

,

for j = 1, . . . , d, and πd+1(β|u) = 1−∑d
j=1 πj(β|u). Here, βj = (βj0, β

(1)
j1 , β

(2)
j1 , . . . , β

(1)
jk , β

(2)
jk )T

and β = (βT
1 , . . . , βT

d )
T ∈ Rd(2k+1) is the model parameter vector representing the associa-

tion between the circular predictors and the multinomial response variable.
Suppose that we observe n independent observations divided in I covariate patterns,

each one with ni observations (∑I
i=1 ni = n), and an associated vector of explanatory

variables ui = (ui1, . . . , uik)
T . For the i-th covariate pattern, let us consider that the number

of response variables that fall in the j-th category is denoted by νij. For simplicity, we will
also denote πij(β) ≡ πj(β|ui). Then, the likelihood associated with the model is given by
L(β) ∝ ∏I

i=1 ∏d+1
j=1 πij(β)νij , and the log-likelihood

`(β) = logL(β) ≡ c +
I

∑
i=1

d+1

∑
j=1

νij log πij(β), (2)

for any positive constant c; see reference [9] for details.

Definition 1. Given the multinomial circular logistic regression model (1), the maximum likelihood
estimator (MLE) of model parameters β is defined as

β̂MLE = arg max
β∈Rd(2k+1)

`(β),
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where `(β) is the log-likelihood based on the observed data as defined in Equation (2).

Let us introduce the following notation. For the i-th covariate pattern, let
νi = (νi1, . . . , νi(d+1))

T denote the vector of the number of responses within each cat-
egory, and let πi(β) = (πi1(β), . . . , πi(d+1)(β))T denote the vector of model probabilities.
With superscript ∗ along with a vector (or matrix), we will denote the truncated vector
(matrix) obtained by deleting the last value (row) from the initial vector (matrix). Thus,
ν∗i = (νi1, . . . , νid)

T , πi(β)∗ = (πi1(β), . . . , πid(β))T and so on. Let p be a vector and let
us denote ∆(p) = diag(p)− ppT , where diag(p) denotes the matrix with the entries of p
along the diagonal. Finally, let us denote

ωi = (1, cos ui1, sin ui1, . . . , cos uik, sin uik)
T , i = 1, . . . , I.

Note that, for j = 1, . . . , d, we have

∂πij(β)

βj
= πij(β)(1− πij(β))ωi. (3)

Computing the derivative of (2) with respect to β and using (3), the estimating equa-
tions associated to the MLE are then given, as in the following result. The subsequent
result presents the asymptotic distribution of the MLE for the multinomial circular logistic
regression model (1); see reference [9] for proofs of both results.

Proposition 1. Given the multinomial circular logistic regression model (1), the MLE (β̂MLE)
of the parameter vector β as defined in Definition 1 can be equivalently obtained by solving the
following system of estimating equations:

I

∑
i=1

(ν∗i − niπ
∗
i (β))⊗ωi = 0d(2k+1), (4)

where ⊗ denotes the Kronecker product.

Proposition 2. Given the multinomial circular logistic regression model (1), the asymptotic distri-
bution of the MLE of the parameter vector β, as defined in Definition 1, is given by

√
n
(

β̂MLE − β0
) L−→

n→∞
N
(

0d(2k+1), Ω−1(β0)
)

,

where β0 denotes the true value of β and

Ω(β) = lim
n→∞

I

∑
i=1

ni
n

∆(π∗i (β))⊗ωiω
T
i .

Since the above MLE is known to be highly non-robust (see Sections 4 and 5 as well
for numerical illustrations), we propose a general class of robust minimum density power
divergence estimator under the MCLR models in the following section. Note that, in this
paper, we refer to robust estimators to those insensitive to outliers. While outliers can
provide meaningful information concerning potential model misspecification, these may
also stem from measurement or input errors. These failed observations may make a large
difference in the results of regression analysis when following the classical maximum
likelihood procedures [33], and the development of alternative robust estimators becomes
necessary. When outliers come from model misspecification, the problem of outliers may
also be solved through an adequate modification on the model describing our data. Other
types of robustness, for example to model misspecification, are not discussed here.
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3. The Minimum DPD Estimators under the MCLR Models

The minimum density power divergence estimator (MDPDE), originally introduced
by Basu et al. [34] for independent identically distributed (IID) data, has become extremely
popular as a robust generalization of the classical MLE that produces desired robustness
under possible data contamination without significant loss in efficiency under clean data.
The MDPDE is obtained by minimizing a suitable estimate of a density-based statistical di-
vergence, namely the DPD, between the observed data and the model density. In particular,
if we observe IID data X1, . . . , Xn from a population having true (unknown) density g, that
we model by a family of parametric densities fθ with θ ∈ Θ ⊆ Rp, then the MDPDE of the
unknown parameter θ is to be obtained by minimizing an estimate of the DPD between g
and fθ, which is defined as [34]

dα(g, fθ) =
∫

f 1+α
θ −

(
1 +

1
α

) ∫
f α
θ g +

1
α

∫
g1+α,

where α > 0 is a robustness tuning parameter that controls the trade-off between robustness
and efficiency. Since the third term in the form of the DPD does not depend on the parameter
of interest (θ), estimating the second term using the empirical distribution function based on
the observed data X1, . . . , Xn, we get the final MDPDE objective function to be minimized
as given by

Hn,α(θ) =
∫

f 1+α
θ −

(
1 +

1
α

)
1
n

n

∑
i=1

f α
θ (Xi) +

1
α

. (5)

As α → 0, the DPD measure coincides, in a limiting sense, to the Kullback–Leibler
divergence and the associated minimizer (the MDPDE at α = 0) is then nothing but the
MLE, the most efficient but highly non-robust MLE. This can also be seen by noting that,
as α→ 0, Hn,α(θ) converges to the negative log-likelihood (ensured by the addition of the
constant 1/α). Thus, the MDPDEs provide increased robustness at a cost of slight loss in
efficiency as α increases. Please refer to references [34,35] for more details and examples.

Due to various favorable properties of the MDPDE, it has now been extended to
several important complex data structures and problem set-ups. In particular, the authors
of reference [36] extended the definition and properties of the MDPDE for independent but
non-homogeneous set-ups, which is later utilized to study the MDPDEs for many different
regression models [36–38]. Castilla et al. [39,40] have used the same idea to study the MD-
PDE for MLR models based on data obtained using simple random sampling and complex
survey sampling, respectively. In the present set-up of MCLR models also, the observed
responses are independent but each follows a different multinomial distribution depending
on the given (or observed) value of the circular predictor variables, and so we will define
the MDPDE of the parameters of the MCLR model (1) in the line of references [36,39],
which is formally presented in the following definition.

Definition 2. Given the multinomial circular logistic regression model (1), the MDPDE of model
parameters β with tuning parameter α > 0 is defined as

β̂n,α = arg min
β∈Rd(2k+1)

Hn,α(β),

where we now have

Hn,α(β) =
1

n1+α

I

∑
i=1

d+1

∑
j=1

[
n1+α

i πij(β)1+α −
(

1 +
1
α

)
νijnα

i πij(β)α +
1
α

ν1+α
ij

]
. (6)

Note that, as α→ 0, Hn,α(β) converges to the symmetric log-likelihood value defined
in (2), plus a constant, so that β̂n,0 is nothing but the MLE defined in Definition 1. The
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MDPDEs thus again provide a robust generalization of the MLE under the MCLR models
with increased robustness under data contamination as α increases with only a little loss
in efficiency under pure data; see Sections 4 and 5 for numerical illustrations justifying
this claim. For the computation of the MDPDE under the MCLR models, we can either nu-
merically minimize the objective function given in (6) or, alternatively, solve the associated
estimating equations given in the following theorem.

Theorem 1. Given the multinomial circular logistic regression model (1), the MDPDE β̂n,α of the
parameter vector β with tuning parameter α ≥ 0, as defined in Definition 2, can be equivalently
obtained by solving the following system of estimating equations:

I

∑
i=1

nα
i

[
∆̃(πi(β))diagα−1(πi(β))(νi − niπi(β))

]
⊗ωi = 0d(2k+1), (7)

where ∆̃(πi(β)) = (Id|0d×1)∆(πi(β)).

Proof. The proof follows by the standard differentiation of the objective function Hn,α
given in (6) with respect to the parameter vector β and using Equation (3). Details are
omitted for brevity.

It may be noted that the estimating equations of the MDPDE given in (7) coincide
exactly with the estimating equations of the MLE in (4) at α = 0. So, the above theorem is a
generalization of Proposition 1 covering both the cases of the existing MLE and our newly
proposed MDPDEs under the MCLR models.

Next, we derive the asymptotic properties of the proposed MDPDE under the MCLR
models using the general results from reference [36]. For this purpose, we will assume
that Assumptions (A1)–(A7) of reference [36] hold true for our MCLR models as given in
(1), which we will refer to as the Ghosh–Basu Conditions. Under these conditions, it can
be seen that the MDPDE is asymptotically consistent as n→ ∞, having a nice asymptotic
normal distribution as formally presented in the following theorem.

Theorem 2. Suppose that the Ghosh–Basu Conditions hold true for the given multinomial circular
logistic regression model (1) with the true value of parameter vector β being β0. Then, the asymptotic
distribution of the MDPDE β̂n,α with tuning parameter α ≥ 0, as defined in Definition 2, is given by

√
n(β̂n,α − β0)

L−→
n→∞

N
(

0d(2k+1), Ψ−1
α

(
β0
)

Ωα

(
β0
)

Ψ−1
α

(
β0
))

, (8)

where Ψα(β) = lim
n→∞

Ψn,α(β) and Ωα(β) = lim
n→∞

Ωn,α(β) with

Ψn,α(β) =
I

∑
i=1

(ni
n

)1+α
∆̃(πi(β))diagα−1(πi(β))∆̃

T
(πi(β))⊗ωiω

T
i ,

Ωn,α(β) =
I

∑
i=1

(ni
n

)1+α
∆̃(πi(β))diagα−1(πi(β))∆(πi(β))diagα−1(πi(β))∆̃

T
(πi(β))⊗ωiω

T
i .

Proof. The proof follows from the general result of reference [36] in a manner similar to
the proof of Theorem 1 in reference [39]. Details are omitted for brevity.

Remark 1. After some algebraic manipulations detailed in Appendix A, it can be seen that
Ψ0(β) = Ω0(β) = Ω(β), so that Proposition 2 can be recovered directly from Theorem 2 at
α = 0.

Theorem 2 is thus applicable, again, for the whole class of MDPDE, including the MLE
at α = 0, and can be used to obtain the standard error of these estimates under the MCLR
models. For this purpose, the asymptotic variance matrix of β̂n,α can be directly estimated
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by n−1Ψ−1
n,α

(
β̂n,α

)
Ωn,α

(
β̂n,α

)
Ψ−1

n,α

(
β0
)

, from which the standard errors of the estimates of
each component parameter can be obtained by taking the square root of the corresponding
diagonal entries of this estimated (asymptotic) variance matrix. This asymptotic variance
estimates of the MDPDEs, along with the estimators themselves, can also be used to develop
a robust test of statistical hypothesis under the MCLR models in a routine manner.

4. Simulation Studies

We consider a simulation scheme with d + 1 = 3 categories and one circular explana-
tory variable (k = 1). The true value of the parameters is taken to be β = (0, 2, 2, 0.2, 2.5, 1.5)T .
To generate the data, we consider different numbers of covariate patterns (I), different
sample sizes (ni, i = 1, . . . , I), and three different generating distributions: the uniform
distribution, the vM distribution with mean 60◦ and concentration parameter κ = 2, and
the SN distribution with mean 60◦ and concentration parameter κ = 6. These samples are
generated with libraries circular and Riemann in R (see Appendix B for more details on
the circular distributions used here).

The robustness of the proposed estimators is evaluated by introducing 10% outliers in
the data. These are artificially classified in the first category, independent from the value of
their explanatory variables.

For 500 replications, the vector of parameters β is estimated for different tuning param-
eters α, and the mean absolute error (MAE) of the estimated probabilities (obtained based
on the estimated vector of parameters) is computed for each one of the following scenarios:

• Scenario 1: I ∈ {10, 20, 50}, ni ∈ {1, . . . , 20} for i = 1, . . . , I. Explanatory variables
generated from uniform distribution (Figure 1).

• Scenario 2: I ∈ {20, . . . , 100}, ni ∈ {1, 5, 10} for i = 1, . . . , I. Explanatory variables
generated from uniform distribution (Figure 2).

• Scenario 3: I = 50, ni ∈ {1, . . . , 20} for i = 1, . . . , I. Explanatory variables generated
from vM distribution (top of Figure 3).

• Scenario 4: I = 50, ni ∈ {1, . . . , 20} for i = 1, . . . , I. Explanatory variables generated
from SN distribution (bottom of Figure 3).

• Scenario 5: I ∈ {20, . . . , 100}, ni = 5 for i = 1, . . . , I. Explanatory variables generated
from vM distribution (top of Figure 4).

• Scenario 6: I ∈ {20, . . . , 100}, ni = 5 for i = 1, . . . , I. Explanatory variables generated
from SN distribution (bottom of Figure 4).

• Scenario 7: I ∈ {20, . . . , 100}, ni = 10 for i = 1, . . . , I. Explanatory variables generated
from vM distribution (top of Figure 5).

• Scenario 8: I ∈ {20, . . . , 100}, ni = 10 for i = 1, . . . , I. Explanatory variables generated
from SN distribution (bottom of Figure 5).

The resulting values of the MAEs are plotted in Figures 1–5 for each of the above
simulation set-ups. An increment on the sample size increases the confidence levels of our
estimates, as observed in Figures 1–5, where MAE decreases, generally, as I or ni increases.
It can be seen that MDPDEs generally outperform the MLE when data are contaminated
for all the generating distributions and the sample sizes considered. In particular, when vM
and SN distributions generate the explanatory variables, the MDPDEs even outperform
the MLE when no contamination is introduced in our simulated data.

When data are generated under the uniform distribution, an increment on the tuning
parameter α increases the robustness but also decreases the efficiency when pure data are
considered. A high value of α may also lead to greater errors when data are generated
under vM and SN distributions, both for pure and contaminated data. If we suspect our
data are not highly contaminated, a value of α ∈ (0, 0.4] may present a good trade-off
between efficiency and robustness. If we detect important outliers in our data, a higher
value of α may be preferable. In Section 5, we present some numerical examples which
confirm this idea.
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Figure 1. MAE of estimated probabilities when data are generated using uniform distribution for
different values of I and ni, i = 1, . . . , I.
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Figure 5. MAE of estimated probabilities when data are generated using vM distribution (above) or
SN distribution (below) for ni = 10 , i = 1, . . . , I, and different values of I.

5. Applications to Real Data
5.1. Application to Forest Science

For this application, we use the leaf inclination dataset recorded in reference [41] and
analyzed in reference [8,9]. These data contain the leaf inclination angles of 138 plant
species. With only this circular variable and applying the circular logistic regression model
presented here, we want to classify these species of plants. In particular, we focus on the
following examples that have a binary response variable. For each one, we compute the
accuracy of the model under different tuning parameters. Contamination in the data is also
induced in order to see the effect on our model.
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5.1.1. First Example [Alnus incana vs. Alnus glutinosa]

These data contain 160 observations of the leaf inclination of Alnus incana and Alnus
glutinosa (80 of each type), which are illustrated in the top left of Figure 6. The circular
logistic model with only this covariate has more than 76% of accuracy for the MLE, which is
increased by 2% for the proposed MDPDEs (see Table 1). Further, we artificially introduce
16 extreme samples (a 10% of total observations) of Alnus incana with null inclination angle,
as can be seen in Figure 6; then, the accuracy of all estimations decays but our MDPDEs
with α > 0 provide significantly higher accuracy than the MLE (Table 1), illustrating their
claimed robustness.
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Figure 6. Above: Application to forest science (leaf inclinations). Below: Application to meteorologi-
cal science (hours) for original (left) and new data (right).
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Table 1. Accuracy of the multinomial circular regression model for forest and meteorological data.

Dataset→ First Forest Example Second Forest Example Meteorological Example

α ↓ OriginalContaminated Original Contaminated OriginalContaminated New

0 (MLE) 0.7625 0.7486 0.7339 0.6705 0.7135 0.6120 0.7208
0.2 0.7812 0.7486 0.7350 0.6727 0.7135 0.6218 0.7208
0.4 0.7812 0.7600 0.7350 0.7223 0.7135 0.6387 0.7208
0.6 0.7812 0.7771 0.7350 0.7307 0.7135 0.6387 0.7208
0.8 0.7812 0.7771 0.7350 0.7381 0.7135 0.6639 0.7208

5.1.2. Second Example [Betula pendula vs. Aesculus hippocastanum]

These data, presented in the top right of Figure 6, contain 902 observations of the
species Betula pendula and Aesculus hippocastanum, and were also analyzed in references [8,9].
The circular logistic model with only this covariate has more than 73% of the accuracy
with the MLE, which is increased again for the MDPDEs with α > 0 (see Table 1). When
we manually introduced 45 extreme observations (5% of total observations) of Aesculus
hippocastanum with null inclination angle, the higher robustness of the proposed MDPDEs
are, again, clearly evident from the results presented in Table 1.

5.2. Application to Meteorological Science

We now apply the MCLR model to a meteorological dataset, obtained from the “Portale
Open Data della Regione Siciliana” (https://dati.regione.sicilia.it/) (accessed on 1 April
2023) containing the temperature of wind at two meters of height in June 2022 in the region
of Caltanissetta, a commune capital of the Province of Caltanissetta (Sicilia, Italy), during
the whole day with a total of 684 observations. Our response variable is the temperature
associated to the hour, divided into three categories: (i) lower than 22◦, (ii) between 22◦ and
29◦ and (iii) greater than 29◦. Then, we have balanced data with approximately one third
of the observations in each group (See Figure 6). The results of the accuracy of the model
are presented in Table 1. As observed, more than 70% of the cases are correctly classified,
without a significant difference between estimates. Let us now introduce some outliers
to our data. In particular, let us introduce 5% of the low temperatures at 12 noon. The
accuracy of MLE and minimum DPD with low values of the tuning parameter decreases
significantly, but remains stable for higher values of the tuning parameter.

Finally, we also consider the wind temperatures in the same dates of two other com-
munes in Caltanissetta: Delia and Gela (see Figure 6). If we predict the wind temperature
of these 1368 new observations with the model estimated for the first region, we obtain
more than 72% accuracy.

6. Conclusions

In this paper, we have studied a class of robust minimum divergence estimators, based
on the popular density power divergence measure, for the multinational circular logistic
regression models, which is extremely important for the circular data frequently occurring
in ecological and environmental sciences, among other domains. We have defined the
minimum DPD estimators for the multinomial circular logistic regression models as a robust
generalization of the classical MLE and derived its asymptotic distribution. The improved
performances of the proposed MDPDE under the multinational circular logistic regression
models are illustrated numerically with extensive simulation studies and important real-
life applications. Our proposed estimators present an increase of up to 6% in accuracy
compared to MLE when artificial outliers are introduced in our data sets.

We have also discussed the estimation of the asymptotic variance of the MDPDEs, and
hence their standard errors, which can further be used to conduct statistical hypothesis
testing robustly under the multinational circular logistic regression models. Along with

https://dati.regione.sicilia.it/
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further study on such hypothesis testing problems, we would also like to extend the
MDPDE further for more complex important model set-ups involving circular and general
directional data in our future works.
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DPD Density Power Divergence
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MCLR Multinomial Circular Logistic Regression
MDPDE Minimum Density Power Divergence Estimator
MLE Maximum Likelihood Estimator
MLR Multinomial Logistic Regression
vM Von Mises (distribution)
SN Spherical Normal (distribution)

Appendix A. Proof of Remark 1

For each i = 1, . . . , I, we have

∆̃(πi(β))diag−1(πi(β))∆̃
T
(πi(β))

= (Id|0d×1)∆(πi(β))diag−1(πi(β))∆(πi(β))(Id|0d×1)
T

= (Id|0d×1)[diag(πi(β))−πi(β)πT
i (β)]diag−1(πi(β))

× [diag(πi(β))−πi(β)πT
i (β)](Id|0d×1)

T

= (Id|0d×1)[Id+1 −πi(β)πT
i (β)diag−1(πi(β))]

× [diag(πi(β))−πi(β)πT
i (β)](Id|0d×1)

T

= (Id|0d×1)[Id+1 − 2πi(β)πT
i (β) + πi(β)πT

i (β)diag−1(πi(β))πi(β)πT
i (β)](Id|0d×1)

T

= (Id|0d×1)[diag(πi(β))−πi(β)πT
i (β)](Id|0d×1)

T = ∆̃(πi(β))(Id|0d×1)
T = ∆(π∗i (β)).

Therefore,

Ψ0(β) = lim
n→∞

I

∑
i=1

(ni
n

)
∆̃(πi(β))diag−1(πi(β))∆̃

T
(πi(β))⊗ωiω

T
i

= lim
n→∞

I

∑
i=1

(ni
n

)
∆(π∗i (β))⊗ωiω

T
i = Ω(β).

In a similar manner, Ω0(β) = Ω(β).
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Appendix B. Details on Circular Distributions

Let us consider data distribution x ∈ S1 (i.e., x ∈ R2 and ||x||2 = 1). The unifrom distri-
bution assigns equal probability to all points of the circle, with probability density function

fUniformS1 (x) =
1

2π
.

On the other hand, for the unit circle, the vM distribution with mean µ ∈ S1 and
concentration κ ∈ R+ has probability density function

fvM(x; µ, κ) =
1

2πI0(κ)
exp(µTx),

where I0(κ) is the modified Bessel function of the first kind of order 0. The vM distribution
is a particular case of the vM–Fisher distribution on the n-sphere [20].

Finally, the SN distribution [24] with mean µ ∈ S1 and concentration κ ∈ R+ is defined
in the unit circle by

fSN(x; µ, κ) =
1
Z(κ) exp

(
−κ

2
d2(x, µ)

)
,

where d2(·, ·) is the geodesic distance and Z(κ) is a normalizing parameter

Z(κ) =
∫
S1

exp
(
−κ

2
d2(x, µ)

)
dx.

Note that, for both vM and SN distribution, the mean µ and concentration κ are
measures of direction and concentration, respectively. For small κ both distributions are
close to the uniform and, in particular,

vMS1(µ, κ = 0) = SNS1(µ, κ = 0) = UniformS1 .

For more details on these distributions, one may refer to reference [25].
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