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Abstract: The integration of information from multiple modalities is a highly active area of research.
Previous techniques have predominantly focused on fusing shallow features or high-level repre-
sentations generated by deep unimodal networks, which only capture a subset of the hierarchical
relationships across modalities. However, previous methods are often limited to exploiting the
fine-grained statistical features inherent in multimodal data. This paper proposes an approach that
densely integrates representations by computing image features’ means and standard deviations.
The global statistics of features afford a holistic perspective, capturing the overarching distribution
and trends inherent in the data, thereby facilitating enhanced comprehension and characterization
of multimodal data. We also leverage a Transformer-based fusion encoder to effectively capture
global variations in multimodal features. To further enhance the learning process, we incorporate
a contrastive loss function that encourages the discovery of shared information across different
modalities. To validate the effectiveness of our approach, we conduct experiments on three widely
used multimodal sentiment analysis datasets. The results demonstrate the efficacy of our proposed
method, achieving significant performance improvements compared to existing approaches.

Keywords: multimodal representation; contrastive learning; attention bottleneck fusion; attentive
statistics features

1. Introduction

Multi-modal fusion, which integrates information from multiple modalities into a
compact and informative representation, poses a significant challenge as it requires effec-
tively correlating the semantics of diverse modalities. In recent years, several approaches
have been developed to learn the joint embeddings of multiple modalities [1,2]. However,
each modality exhibits distinct representations and statistical features, making it difficult to
capture complex intermodal correlations.

Deep learning techniques have demonstrated remarkable success in generating useful
feature representations [3,4]. Consequently, these approaches learn a shared representation
across the top layers of modality-specific networks, assuming that high-level representa-
tions contain sufficient semantic information and that common patterns across modalities
exist at the semantic level.

However, there are two remaining issues with this method. Firstly, relying solely
on high-level representations may not provide sufficient information. We employ a
controlled cross-modal attention flow among the tokens within a layer to address this
concern—namely, crafted features. Secondly, whether common patterns occur at the se-
mantic level or a specific single layer of representation is unclear. In practice, fusion based
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on high-level representations functions similarly to traditional late fusion, which combines
semantic notions from unimodal features. However, late fusion, in contrast to other fusion
algorithms such as early fusion, can only capture connections at the semantic level and
fails to harness other types of correlations, such as covariation at the early feature level [5]
or hierarchical supervision over the entire network [6]. Consequently, statistics fusion is
anticipated to capture the intricate relationships across modalities more effectively.

The ‘Early fusion’ model permits unrestrained attention flow across an image’s various
spatial and temporal regions. Although theoretically promising, comprehensive pairwise
attention across all model layers may be superfluous due to the high-density, fine-grained,
yet largely redundant information within visual inputs. Additionally, such a model would
struggle to effectively scale to longer videos, given the quadratic complexity of pairwise
attention with token sequence length. To address these concerns, we employ a controlled
cross-modal attention flow among the tokens within a layer. This is achieved by allowing
unrestrained attention within a modality but obliging our model to gather and ‘condense’
information from each modality before exchanging it with another. At the heart of this
proposal is introducing a limited number of latent fusion units, forming an ‘attention
bottleneck.’ These units serve as mandatory conduits for all cross-modal interactions
within a layer.

Contrastive learning has gained popularity as a paradigm for learning feature rep-
resentations by solving an instance discrimination task [7–9]. Recent research has also
explored its use for acquiring multimodal representations [10–12]. However, most of these
studies focus on learning a cross-modal embedding space [10,11], aiming to identify knowl-
edge transferred across modalities. Unfortunately, they do not explicitly investigate the
fusion type of multiple modalities, thereby failing to exploit the synergistic potential of
multimodal data fully.

We propose a fusion approach called Attentive Statistics Fusion to address these issues.
As shown in Figure 1, this approach incorporates significance-weighted standard devia-
tions and weighted means for image features, leveraging an attention mechanism to assess
their importance. By doing so, our method enables embeddings to more accurately and
effectively capture multimodal elements with long-term fluctuations. Furthermore, we em-
ploy a Transformer-Encoder to combine the statistical modal features, allowing interactions
among data vectors to be captured. This approach benefits from allocating greater attention
weights to image patches and text tokens with explicit and latent associations, enabling the
Transformer module to better align and fuse image and text features at the token level. As a
multi-layer encoder, the Transformer-Encoder enhances the model’s abstraction capability
and facilitates extracting deep features from multimodal input. To promote multimodal
fusion explicitly, we apply a supervised contrastive loss (SupCon) specifically designed
for this purpose. SupCon leverages positive samples created by enhancing anchors and
utilizes hard negative samples with non-correspondent components. This ensures that the
synergy between modalities and weak modalities is not overlooked.

The contributions of this paper can be summarized as follows:

• To address the ignorance of context statistics in the existing tensor-based fusion
methods in image feature extraction, we propose statistics fusion, which correlates
the features of different statistics features of images. Context statistics fusion provides
a holistic perspective by integrating standard deviations and features. This enables
embedding vectors to capture correlation variations efficiently and accurately.

• Attention bottlenecks are used to fuse statistical modal global features. Our model
strategically curtails the cross-modal information flow between latent units via well-
defined fusion ‘bottlenecks.’ These bottlenecks compel the model to collate and
‘condense’ the most pertinent inputs from each modality, ensuring that only the
necessary information is shared with the other modalities. Multi-headed self-attention
may assist in aligning and fusing token-level image and text features, which increases
model abstraction capability.
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• We aim for representation learning utilizing contrastive learning for multimodal
data. The central concept is to compare multimodal anchor tuples with hard negative
samples that disrupted modalities with improved positive samples acquired using an
optimizable data augmentation procedure. Multiple positive samples are permitted
per anchor via a supervised contrastive loss function.
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Figure 1. Illustration of our basic idea.

2. Related Work
2.1. Multimodal Fusion

Extensive research has been conducted in multimodal fusion to explore diverse ap-
proaches to integrate and fuse information from multiple sensors, including images, videos,
speech, and text.

One common strategy is feature-level fusion, where features from different sensors
are extracted and combined to form a comprehensive representation [13,14]. This approach
often utilizes traditional feature extraction algorithms such as Convolutional Neural Net-
works (CNNs) and Recurrent Neural Networks (RNNs) to extract useful features from
image, audio, and textual data.

Another prevalent fusion strategy is decision-level fusion, where decisions or pre-
dictions from different sensors are combined to make a final decision [15,16]. Ensemble
learning algorithms, such as voting or weighted voting, are commonly employed to integrate
outputs from multiple sensors. Decision-level fusion techniques allow for combining the
complementary strengths of different modalities to improve overall system performance.

Moreover, hybrid fusion techniques have also been explored, combining feature-level
and decision-level fusion approaches [17–19]. These techniques aim to leverage the benefits
of both strategies by fusing low-level sensory features and high-level decision outputs.
Sophisticated algorithms, including deep neural networks and attention mechanisms,
often employ hybrid fusion techniques to effectively integrate multimodal information at
multiple levels.

2.2. Contrastive Learning

In recent years, numerous researchers have drawn their attention to contrastive
Learning [20–25], owing to its extraordinary performance in sentiment analysis [26–28].
Many models, underpinned by contrastive learning, have been introduced in natural lan-
guage processing and computer vision. Studies such as ConSERT [29], SimCSE [30], and
CLEAR [31] demonstrate the applicability of contrastive learning within the sphere of
natural language processing. MoCo [8], SimCLR [9], SimSiam [32], and CLIP [33] exhibit
natural language processing’s deployment within the field of computer vision, showcasing
considerable progress in zero-shot and few-shot learning.

More recently, contrastive learning has seen increasingly wide applications in mul-
timodality. Huang et al. [34] leveraged intra-modal, inter-modal, and cross-lingual con-
trastive learning, significantly elevating video search performance. Yuan et al. [35] capi-
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talized on the intrinsic data properties within each modality and cross-modal semantic
information, enhancing the quality of learned visual representations.

In contrast with these works, we focus on aligning and fusing token-level features and
learning their common sentiment-related features to elevate model performance further.

3. Methodology

To capture the correlation across different modalities more effectively, a commonly
used approach is to directly concatenate the distinct characteristics of each modality and
subsequently apply multiple layers of nonlinear transformations to construct a high-level
joint representation [36]. This fusion technique is known as early multimodal fusion. How-
ever, it should be noted that while this concatenation-based fusion method adds dimension,
it falls short in capturing intricate correlations that may exist across modalities [3].

To address the limitations of early multimodal fusion and better capture the complex
correlations between modalities, a primary strategy involves reducing the impact of indi-
vidual differences and emphasizing common meanings within the fused representation [4].
This is achieved by introducing a common layer at the center of the multimodal network,
giving rise to what is known as intermediate multimodal fusion [37].

Building upon previous multimodal networks, it can be deduced that their fusion strat-
egy typically involves incorporating one common layer alongside two modality-specific
layers. These multimodal units effectively capture the correlations between different lay-
ers [3,38]. In our research, we adopt a dense multimodal fusion approach to uncover the
intricate hierarchical relationships present within the representations of various modalities.

To enhance the representations, we employ contrastive learning, which aims to maxi-
mize agreement across multiple enhanced views of the same data by utilizing a contrastive
loss in the latent space. Our framework is illustrated in Figure 2.
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Figure 2. Our model leverages statistical features and Transformer for supervised contrastive learning.
An embedding space is learned in which the same-sample pairs stay close to each other while
different-sample pairs remain far apart.

3.1. Data Augmentation

To enhance the diversity and richness of our input samples, we apply random aug-
mentation to each sample, resulting in a modified representation denoted as x̂ = Aug(x).
Each augmentation operation provides a distinct perspective and contributes a subset of
the original sample’s information. Specifically, for image data, we employ a range of trans-
formations such as cropping, rotation, contrast adjustment, inversion, flipping, solarization,
posterization, brightness adjustment, and sharpness adjustment. On the other hand, for
text data, we incorporate a random masking technique to introduce variability.

3.2. Encoder Network

Our objective is to train an encoder network denoted as fθ(·) using a set of labeled
samples X = {x1, x2, . . . , xn}. The role of fθ(·) is to transform each input text or image xi
into an embedding vector hi = fθ(xi) ∈ Rd, where d represents the output dimension.
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We employ the same encoder network for the original and augmented samples to
achieve this, generating two separate representation vectors. Our approach uses BERT and
ViT as encoders to extract hidden representations from the text and image inputs. These
models are specifically chosen to capture the intricate features within the text data.

3.3. Channel Attention-Based Global Statistics Image Features

We compute the statistical properties of the extracted feature vectors to capture im-
portant characteristics. Specifically, we calculate the standard deviation and mean for
each feature.

µi =
1
n

n

∑
j=1

hi (1)

σ =
1
n

n

∑
j=1

(hi − µi)
2 (2)

GI = concat(hi, µ, σ) (3)

where hi represents the ith image element and n denotes the number of samples. These
global statistics features GI provide insights into the distribution and central tendency of
the features, aiding in capturing salient information.

We introduce a channel attention mechanism to enhance the aggregated features’
representation power. This mechanism dynamically assigns weights to each channel in the
aggregated feature vector, and the attention weight is calculated as follows:

A = Softmax(Wg · ReLU(W f · GI)) (4)

where W f and Wg are learnable weight matrices, Softmax represents the Softmax function,
and ReLU denotes the rectified linear unit function.

The attention weights A reflect the importance of each channel in the aggregated fea-
ture vector GI . By performing element-wise multiplication between the attention weights
and the aggregated features, we obtain an attention-weighted feature vector:

FI = A�GI (5)

where� represents the element-wise multiplication operation. Incorporating the channel at-
tention mechanism allows our model to focus on discriminative features while suppressing
less informative ones, resulting in an enhanced feature representation for downstream tasks.

We consider the standard deviation a significant factor in our approach, encompassing
the modal features related to long-term context variability. By incorporating the standard
deviation, we aim to address the limitation of neural networks in fully capturing the
expansive scope of information. While the vanishing gradient issue may restrict the
network’s ability to comprehend global features effectively, introducing the standard
deviation can help overcome this limitation by providing a measure of contextual distance
and capturing broader, more encompassing features.

3.4. Multimodal Fusion via Transformer Bottlenecks

Human cognition seamlessly integrates high-dimensional inputs like sight and sound
from multiple sources. In stark contrast, traditional machine perception models usually
focus on single modalities optimized for unimodal benchmarks. Consequently, a prevalent
approach for multimodal video classification is the ‘late-fusion’ technique, where each
modality’s final representations or predictions are integrated later.

We employ a new Transformer-based architecture, using ‘fusion bottlenecks’ at multi-
ple layers for modality integration. Unlike traditional pairwise self-attention, our model
mandates that information from various modalities navigate through a limited number of
latent bottlenecks. This strategy compels the model to consolidate and compress relevant
data from each modality and disseminate only what is indispensable.
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To mitigate the quadratic complexity inherent to pairwise attention, we incorporate
a compact set of fusion bottleneck tokens, denoted as Zfsn = [z1

fsn, z2
fsn, . . . , zn

fsn], into our
input sequence. Consequently, the input sequence takes the form:

FIT = [FI|Zfsn|FT] (6)

Our model is then designed to channel all cross-modal attention via these bottleneck
tokens. To be precise, at layer l, token representations are calculated as follows:

F̃ = Transformer
([

Zl
i |Zl

fsn

]
; θi

)
(7)

Here, Transformer refers to the Transformer-Encoder for multimodal data. z represents
the fusion of text and image information. In essence, this process allows us to obtain a
fused representation that encapsulates the combined characteristics of both text and image
modalities. In this arrangement, we harness the potency of the Transformer for calculating
the token representations, and the average of the new fusion bottleneck tokens is computed
to update the fusion bottleneck for the next layer. The above measures streamline our
model’s processing capabilities, leading to an overall enhancement in its performance.

3.5. Attentive Pooling

This work uses an attentive pooling mechanism to better capture the salient features in
our input vector F̃. Traditional pooling methods, such as max-pooling and average-pooling,
often fail to consider the varying importance of elements in F̃. Attentive pooling addresses
this limitation by assigning learned attention scores to each element, creating a weighted
input representation.

We first compute the attention scores α using a small neural network with parameters
Wa and ba, followed by a softmax activation:

α = softmax(WaF̃ + ba) (8)

αi =
exp((WaF̃ + ba)i)

∑n
j=1 exp((WaF̃ + ba)j)

(9)

The output o of the attentive pooling layer is then computed as the weighted sum of
the input F̃, weighted by the attention scores α:

z =
n

∑
i=1

αiF̃ (10)

The model can focus on the most relevant elements in F̃ for the task at hand through
this attentive pooling mechanism.

3.6. Supervised Contrastive Losses

Supervised contrastive loss (SupCon) is utilized in scenarios where multiple samples
with known labels belong to the same class. SupCon aims to enhance the discrimination of
representations within the same class. The formulation of the SupCon loss is given by:

LSupCon =
N

∑
i=1

−1
|P(i)| ∑

p∈P(i)
log

exp(zi · zp/τ)

∑ a ∈ A(i) exp(zi · za/τ)
(11)

In Equation (11), P(i) represents the indices of positive samples within the augmented
batch (consisting of both original and augmented samples) relative to the anchor zi. |P(i)|
denotes the cardinality of P(i). zi corresponds to the anchor sample, za represents the
negative samples, and zp denotes the positive samples. A(i) denotes the index set of
negative samples.
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The supervised contrastive loss can be combined with the cross-entropy loss as a form
of regularization. The overall loss function is given by:

Loss = LCross-Entropy + LSupCon (12)

By incorporating the SupCon loss alongside the cross-entropy loss, we aim to jointly
optimize the model for both classification accuracy and enhanced discrimination within
the same class.

4. Experiments and Results
4.1. Datasets

To evaluate the effectiveness of our proposed strategy, we conduct experiments on
three publicly available datasets: MVSA-Single, MVSA-Multiple2 [39], and HFM3 [40].
These datasets are collected from Twitter and involve sentiment analysis tasks. Each
text–image pair in these datasets is associated with a single sentiment label.

We preprocess the original MVSA datasets using the same procedure as [41] to ensure
fair comparisons. Similarly, for the HFM dataset, we follow the preprocessing method
outlined in [40]. This consistent preprocessing procedure ensures a standardized approach
across all datasets.

For the MVSA datasets, we randomly split the data into training, validation, and test
sets using an 8:1:1 ratio. This division allows us to effectively train and evaluate our models
while reasonably balancing the datasets’ subsets.

Table 1 provides a detailed overview of the MVSA-Single, MVSA-Multiple, and HFM
datasets. Interestingly, the HFM dataset is deployed as a binary classification mechanism
within the multimodal sentiment analysis landscape. In contrast, the MVSA-Single and
MVSA-Multiple are employed as ternary classification systems in the same domain.

Table 1. Number of data points for each sentiment category in each dataset.

Dataset Label Train Val Test

MVSA-Single
Positive 2147 268 268
Neutral 376 47 47

Negative 1088 135 135

MVSA-Multiple
Positive 9056 1131 1131
Neutral 3528 440 440

Negative 1040 129 129

HFM Positive 8642 959 959
Negative 11,174 1451 1450

4.2. Implementation Details

For our experiments, we utilize PyTorch and HuggingFace Transformers [42] libraries
to implement both the baseline models and our proposed technique.

We employ the BERT-base as the text encoder within the fusion module and ViT [43]
as the image encoder. These pre-trained models are chosen for their strong performance in
capturing textual and visual features.

To specify the batch sizes for the experiments, we set them to 32 for MVSA-Single, 64
for MVSA-Multiple2, and 128 for HFM datasets. These batch sizes are selected to ensure
efficient training while considering each dataset’s specific characteristics and computational
requirements.
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We use the AdamW optimizer with a learning rate of 2× 10−5 to optimize the model
parameters. This optimizer is well-suited for training deep neural networks and has shown
effective performance in various natural language processing tasks.

All experiments are conducted on an A6000 GPU, which provides computational
power for efficient model training and evaluation. The GPU accelerates the training process
and enables faster experimentation.

4.3. Baselines

Our model is benchmarked against both unimodal sentiment models and multimodal
baseline models.

Unimodal Baselines: We consider well-established models for text classification tasks
like CNN, Bi-LSTM, and TGNN [44], a text-level graph neural network. BERT [45], a
pre-trained model, is fine-tuned solely for text. For image modality, we have included
OSDA [46], an image sentiment analysis model with multiple views, and ResNet [47],
which is pre-trained and fine-tuned exclusively for images.

Multimodal Baselines: We compare our approach with several multimodal sentiment
analysis models. These include MultiSentiNet [41], a deep semantic network with attention,
and HSAN [48], a hierarchical semantic attentional network relying on image captions.
Co-MN-Hop6 [49] is a co-memory network designed to model interactions across multiple
modalities. MGNNS [50] integrates multi-channel graph neural networks with sentiment
awareness for image-text sentiment detection. Schifanella et al. [51] propose a multimodal
feature representation model that concatenates distinct feature vectors of different modali-
ties; Concat(2) joins text and image features, while Concat(3) adds an extra image attribute
feature. MMSD [40] offers a multimodal hierarchical fusion model blending text, image,
and image attributes. Finally, Xu et al. [52] introduces the D& R Net, which builds the
Decomposition and Relation Network to fuse text, image, and image attributes.

4.4. Results and Analysis

Table 2 compares the performance of our proposed model with benchmark methodolo-
gies. The evaluation metrics used for MVSA-Single and MVSA-Multiple2 are weighted-F1
and ACC, while for the HFM dataset, Macro-F1 and ACC are employed.

Our observations from the results are as follows: (1) Our model demonstrates compa-
rable performance to other robust baseline models across all three datasets. (2) Our model
outperforms the other baseline models on all three datasets. This could be attributed to
the sparsity and noise present in the emotive characteristics of images, making it challeng-
ing for the models to extract meaningful features for sentiment analysis. In contrast, our
approach incorporates statistical features of the images, while the multi-head attention
method may capture the global features of the images. (3) The performance gain of the
multimodal models is more limited for simpler tasks. For example, on the HFM dataset,
the improvement in our model compared to BERT is less pronounced than on the MVSA-
Single dataset. This can be attributed to HFM being a binary classification task, while
MVSA-Single involves three-class classification.

Overall, our proposed model exhibits strong performance compared to the baseline
models, indicating its effectiveness in capturing the sentiment information from both text
and image modalities.
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Table 2. The experimental results.

Modality Model MVSA-Single MVSA-Multiple Model HFM
Acc F1 Acc F1 Acc F1

Text

CNN 0.6819 0.5590 0.6564 0.5766 CNN 0.8003 0.7532
BiLSTM 0.7012 0.6506 0.6790 0.6790 BiLSTM 0.8190 0.7753

BERT 0.7111 0.6970 0.6759 0.6624 BERT 0.8389 0.8326
TGNN 0.7034 0.6594 0.6967 0.6180

Image ResNet-50 0.6467 0.6155 0.6188 0.6098 ResNet-50 0.7277 0.7138
OSDA 0.6675 0.6651 0.6662 0.6623 ResNet-101 0.7248 0.7122

Multimodal

MultiSentiNet 0.6984 0.6984 0.6886 0.6811 Concat(2) 0.8103 0.7799
HSAN 0.6988 0.6690 0.6796 0.6776 Concat(3) 0.8174 0.7874

Co-MN-Hop6 0.7051 0.7001 0.6892 0.6883 MMSD 0.8344 0.8018
MGNNS 0.7377 0.7270 0.7249 0.6934 D&R Net 0.8402 0.8060
CLMLF 0.7533 0.7346 0.7200 0.6983 CLMLF 0.8543 0.8487

Ours 0.7689 0.7611 0.7352 0.6996 Ours 0.8663 0.8522

4.5. Ablation Study

We conducted further evaluations to assess the impact of the statistical fusion mod-
ules, Transformer-based multi-layer fusion modules, and supervised contrastive learning.
The results of these experiments are presented in Table 3. The findings demonstrate that
our model achieves the highest performance compared to all other models. This indi-
cates that the multi-layer fusion module effectively fuses the multimodal data, improving
performance.

Table 3. Ablation results of our model. “w/o Transformer” refers to a simple concatenation of text
features and image features without using a Transformer model.

Network MVSA-Single MVSA-Multiple HFM
Acc F1 Acc F1 Acc F1

Ours 0.7689 0.7611 0.7352 0.6996 0.8663 0.8522
w/o Statistics 0.7569 0.7346 0.7234 0.6994 0.8634 0.8478

w/o Attention
bottlenecks fusion 0.6951 0.6801 0.6829 0.6738 0.8012 0.7991

w/o Sup 0.7347 0.7212 0.7194 0.6834 0.8439 0.8011

Moreover, incorporating supervised contrastive learning enhances the model’s per-
formance even further. This suggests that contrastive learning enables the model to learn
common sentiment aspects while effectively differentiating between various sentiment
data. By maximizing agreement and separation within the latent space, the contrastive
learning mechanism aids in capturing essential patterns and improving the model’s ability
to understand the underlying sentiment dynamics.

Overall, these results highlight the effectiveness of our proposed model, showcas-
ing the benefits of the statistical fusion modules, Transformer-based multi-layer fusion
modules, and supervised contrastive learning in capturing and leveraging multimodal
sentiment information.

4.6. Compared with Funnel Transformer

The funnel Transformer [53] is an innovative modification of the standard Transformer
architecture designed to enhance computational efficiency by filtering out sequential re-
dundancy. A funnel-shaped encoder-decoder structure effectively compresses the input
sequence while maintaining comparable performance across various natural language
processing tasks. We replaced the attention bottleneck fusion module in our multimodal
fusion framework with funnel Transformer fusion and conducted experiments on three
datasets. As shown in Figure 3, our proposed model outperforms funnel Transformer
fusion. We speculate that the reason for this is that the funnel Transformer is designed
solely to reduce computational costs. In contrast, by introducing fusion bottleneck tokens
and cross-attention mechanisms, attention bottlenecks selectively incorporate relevant



Entropy 2023, 25, 1421 10 of 15

portions from both text and images into the bottleneck tokens. This effective fusion of text
and images is most beneficial for downstream sentiment analysis tasks.
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Figure 3. Comparative analysis of funnel Transformer fusion and attention bottleneck fusion. At-
tention bottleneck fusion model demonstrates superior performance in integrating text and image
features. ABF refers to attention bottleneck fusion, while FT refers to funnel Transformer fusion.

4.7. The Effect of Transformer Layer

To investigate the impact of different layers within the Transformer Encoder on the
model’s performance, we conducted experiments by varying the number of layers for both
the text-image Transformer bottleneck fusion and the image Transformer layers. This is
illustrated in Figure 4, where (a) represents the variation of the text-image Transformer
fusion layer from 1 to 6, and (b) represents the variation of the image Transformer layer
from 1 to 6.

For our experiments, we considered different combinations of layers for the text-image
Transformer fusion and image Transformer layers, such as 3-2, 5-2, and 6-1, respectively,
for the three datasets. These combinations allowed us to analyze the contributions of text
and images separately and understand their impact on the model’s performance.

Table 2 provides an overview of the results obtained from these experiments. Notably,
our model relies more on text-based than image-based features in the HFM dataset. Con-
sequently, we assign more Transformer layers to the text-related components within the
multi-layer fusion (MLF) module, emphasizing their significance in capturing sentiment
information effectively.

These experiments highlight the importance of considering the distinct contributions
of text and images to the dataset. This allows us to optimize the model by appropriately
allocating the Transformer layers within the MLF module to leverage each modality’s
specific characteristics and relevance for sentiment analysis tasks.
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Figure 4. Experimental results of different layers of multi-layer fusion module. The solid line indicates
the F1 score, while the x-axis denotes the layer count within the Transformer: (a) the text-image
Transformer fusion layer; (b) the image Transformer layer.
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4.8. The Effect of Contrastive Learning

To demonstrate the effectiveness of our proposed contrastive learning approach in
facilitating the model’s understanding of sentiment-related common features from multi-
modal inputs, we conducted a visualization experiment using the MVSA-Single dataset. We
employed dimensionality reduction techniques to visualize the data feature vectors from
the final layer of our model. In this experiment, we utilized the t-SNE (t-distributed stochas-
tic neighbor embedding) dimensionality reduction method to generate a two-dimensional
feature vector, which we then visualized.

Figure 5a represents the visualization of the fusion result output from our model,
while Figure 5b represents the visualization of the cross-entropy output from our model.
The visualizations demonstrate that contrastive learning enhances the separation between
positive and negative sentiments in the vector space, making the data aggregation patterns
more discernible. This indicates that our model effectively distinguishes data points in
the vector space based on shared characteristics among samples of the same emotional
sentiment.

(a) (b)

Figure 5. Cluster visualization of MVSA-Single: (a) supervised contrastive learning; (b) cross-entropy.

Furthermore, our visualization results exhibit a grouping pattern for the neutral
sentiment data instead of scattering them across the vector space, as is observed with
BERT. This is due to the relatively smaller amount of neutral sentiment data available. The
grouping of neutral data indicates that our model captures common features associated
with neutral sentiment, contributing to its improved performance.

Overall, these visualization results highlight the efficacy of incorporating contrastive
learning in enabling the model to acquire and leverage common sentiment-related traits,
thereby enhancing its overall performance.

4.9. Case Study

To provide a more intuitive understanding of our model’s validity, we present a set of
illustrative examples and a case study demonstrating the model’s efficacy. In particular, we
compare sentiment labels derived from our model and those predicted by the BERT model.

The case study is structured as follows: the leftmost column showcases the example
image, the second column features the corresponding textual information, the third column
displays the sentiment prediction determined by the BERT pre-trained model, and the final
column exhibits our model’s performance. This layout is intended to facilitate a direct
comparison between our model and the BERT pre-training model, thereby highlighting the
relative merits of our approach.

As demonstrated in Table 4, relying solely on text-based sentiment analysis may lead
to incorrect interpretations of users’ emotional inclinations. Take, for example, the first
data point in Table 4. Although the text appears negative, adding a smiley face image
introduces a positive sentiment. Similarly, the second data point’s text may initially suggest
neutrality. However, the accompanying image conveys a negative sentiment, altering the
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overall emotional context. These examples underscore how effectively our model captures
and processes multimodal information and the interactions between various modalities.

Table 4. Example of data misclassified by BERT and correctly classified by Ours.

Image Text BERT Ours

Sweet & Spicy Stir Fry Neutral Positive

I really can see love, peace, and happiness in it Neutral Positive

Niall onstage in Edmonton last night !!! Negative Positive

5. Conclusions

In conclusion, this paper introduces novel multimodal fusion methods for multimodal
analysis tasks, specifically focusing on the association of individual statistical features across
multiple modalities. Furthermore, we incorporate contrastive learning to aid the model in
learning sentiment-related features from multimodal data and improve its ability to extract
and fuse multimodal data features. Our proposed approaches have demonstrated superior
performance through extensive experiments compared to baseline methods. These findings
highlight the effectiveness of our methods in capturing and leveraging the synergies
between different modalities, ultimately leading to improved performance in sentiment
analysis tasks.
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