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Abstract: Deep convolution neural networks have proven their powerful ability in comparing many
tasks of computer vision due to their strong data learning capacity. In this paper, we propose a
novel end-to-end denoising network, termed Fourier embedded U-shaped network (FEUSNet). By
analyzing the amplitude spectrum and phase spectrum of Fourier coefficients, we find that low-
frequency features of an image are in the former while noise features are in the latter. To make full
use of this characteristic, Fourier features are learned and are concatenated as a prior module that
is embedded into a U-shaped network to reduce noise while preserving multi-scale fine details. In
the experiments, we first present ablation studies on the Fourier coefficients’ learning networks and
loss function. Then, we compare the proposed FEUSNet with the state-of-the-art denoising methods
in quantization and qualification. The experimental results show that our FEUSNet performs well
in noise suppression and preserves multi-scale enjoyable structures, even outperforming advanced
denoising approaches.

Keywords: deep convolution neural network; end-to-end denoising network mechanism; Fourier
coefficients

1. Introduction

Image denoising [1], a fundamental and important issue in low-level vision and image
processing, aims at removing or eliminating external noise as much as possible while
preserving clear details in the original image. Its essence lies in the process of reducing
noise in the image, restoring and reconstructing the original clear image. While image
restoration [2] is a long-standing problem, in the general image restoration problem a
damaged image Y can be expressed as follows:

Y = T(X) + n (1)

where X represents a clear image, T( • ) represents a degenerate function, and n repre-
sents additive noise. Generally referring to additive noise, image denoising is a common
restoration technique.

In the early days, the most representative methods of traditional image denoising were
block-matching and 3D filtering [3] (BM3D) and non-local means [4] (NLM), among oth-
ers [5]. However, in recent years, deep learning-based image denoising methods have
surpassed traditional image denoising methods [6] in terms of inference time and denoising
performance. Early deep learning image denoising methods used reinforcement learn-
ing techniques [7], such as Q-learning [8] and other training recursive neural networks.
However, reinforcement learning-based methods require a large amount of computation
and have low search efficiency. Currently, deep learning denoising methods combine
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skip connections [9], attention mechanisms [10], multiscale feature fusion [11], and the
introduction of residual blocks [12] to improve the network feature expression capabilities.
Current methods for image denoising can be roughly divided into two categories: image
denoising based on traditional methods and image denoising based on deep learning.
For example, bilateral filters [13], Gaussian filters [14], and median filtering [15] are tradi-
tional image denoising methods. Discrete cosine transform [16], wavelet transform [17],
and other methods are also used to modify the transform coefficients [18], and the average
neighborhood [19] values are utilized to calculate the local similarity [20]. These methods
are based on image denoising and attempt to preserve more edge details using smooth
image features. However, the images processed with these methods often become blurry,
and the edge details of the original image are not clearly retained, resulting in a poor
overall effect.

With the development of deep learning, neural networks have overcome the draw-
backs of traditional denoising methods. Most deep learning-based methods are external
prior methods [21]. In 2017, Zhang et al. [22] proposed a convolutional neural network
(CNN) called DnCNN, which utilizes residual learning and batch normalization to achieve
network denoising. In 2018, Zhang et al. [23] proposed a faster and more flexible denoising
convolutional neural network called FFDNet, which can remove more complex noise.
In 2019, Guo et al. [24] proposed a real image-blind denoising network called CBDNet.
They trained the network using synthetic and real-world noise images, dividing it into two
subnetworks: nonblind denoising and noise estimation, which improved the generalization
ability of deep CNN denoisers [25]. Presently, deep learning-based denoisers [26–29] have
achieved good results, but most of these networks execute CNNs in the spatial domain.
In recent years, transformer models have been successful in natural language processing
(NLP). Visual transformers [30] have been widely used in image restoration [31] tasks owing
to their strong global modeling ability. In 2022, Fan et al. [32] proposed the SUNet network,
which combined a Swin transformer [33] and UNet into a denoising model and demon-
strated impressive performance in image denoising tasks. Although these methods [34]
have outstanding image denoising capabilities, they overlook the inherent priors of noisy
images, making them prone to overfitting in synthetic datasets.

To date, some researchers have applied the Fourier transform to other low-level visual
tasks, such as image deblurring [35] and image deraining [36]. We introduced a Fourier
transform into the field of image denoising and learned the frequency domain features
of the images. We equipped our Fourier transform residual blocks with a simple three-
layer UNet [37]. A more complex network structure may result in greater performance
improvement. Compared to the structural information, additive Gaussian white noise has
a higher frequency. According to experimental results, we find that such a conclusion is
reasonable. In view of this, we tried to plug the Fourier transform into a U-shaped network
for a noise removal model construction, and the experimental results demonstrate that the
proposed method can achieve promising results. Meanwhile, we also present their time
cost. Compared with current mainstream deep learning-based image denoising methods,
our network can achieve better performance, reflecting the superiority of our Fourier prior
in image denoising tasks.

The main contributions of this study can be summarized as follows:

1. We propose a Fourier prior for image denoising that includes the physical characteris-
tics of noisy images in both the spatial and frequency domains;

2. We designed and implemented a simple and effective residual block based on the Fourier
transform that processes the amplitude and phase spectra of noisy images in parallel
within Res FFT blocks and learns the frequency domain features of noisy images.
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2. Fourier Embedded U-Shaped Network

We first introduce the Fourier prior in Section 2.1, where we conjecture and prove
the well-known characteristics [38,39] of amplitude and phase spectra in noisy images.
In Section 2.2, we present our proposed Res FFT blocks. In Section 2.3, we introduce our
network structure. The loss function used for training is described in Section 2.4.

2.1. Fourier Prior

Mathematically, the Fourier transform refers to the ability to represent a function that
satisfies certain conditions as a linear combination of a series of sine or cosine functions.
When the Fourier transform is applied to image operations from a physical perspective, it
transforms an image from the spatial domain to the frequency domain, whereas its inverse
transformation transforms the image from the frequency domain to the spatial domain.
Given image f (x, y) ∈ RH×W×1, the Fourier transform is represented as

F (u, v) =
1

HW

H−1

∑
x=0

W−1

∑
y=0

f (x, y)e−j2π( ux
H +

vy
W ) (2)

where u = 0, 1, 2, . . . , H − 1 and v = 0, 1, 2, . . . , W − 1. Similarly, given F (u, v), f (x, y) can
be obtained through an inverse Fourier transform, which can be formulated as

f (x, y) =
H−1

∑
x=0

W−1

∑
y=0
F (u, v)ej2π( ux

H +
vy
W ) (3)

where x = 0, 1, 2, . . . , H − 1 and y = 0, 1, 2, . . . , W − 1. Given f (x, y), the amplitude spec-
trum |F (u, v)| and the phase spectrum ϕ(u, v) can be obtained after the Fourier transform
as follows:

|F (u, v)| =
√

Re2(u, v) + Im2(u, v) (4)

ϕ(u, v) = arctan
[

Im(u, v)
Re(u, v)

]
(5)

Here, Re(u, v) and Im(u, v) represent the real and imaginary parts of F (u, v), respectively.
By comparing the visualized images in Figure 1, we found that, in terms of visual

perception, there was no significant difference in the real, (a) and (e), and imaginary, (b)
and (f), parts of both the noisy image and the ground truth after the Fourier transform.
However, there is a small difference in the amplitude spectra, (c) and (g), between the noisy
image and the ground truth, and a significant difference in the phase spectra, (d) and (h),
between the noisy image and the ground truth. Therefore, we infer that the noise features
of the image may mostly exist in the phase spectrum of the image and that a small portion
of the noise features may also exist in the amplitude spectrum of the image.

In Figure 2, we can observe from the results in (a) and (b) that the amplitude spectrum
of the image represents the brightness of each pixel in the image. The center of the
amplitude spectrum is the low-frequency region; the higher the brightness of the image is,
the larger the corresponding amplitude spectrum value. That is, the amplitude spectrum
stores the amplitude information of each pixel in the image, but the position information of
the original pixel has been disrupted, and the original image cannot be reconstructed solely
by the amplitude spectrum of the image. We can see from the results of (c) and (d) that the
phase spectrum of the image records the position information of each pixel in the image.
By observing the phase spectrum of the image for visualization operation in Figure 1d,h,
the phase spectrum resembles a cluster of noise, but it is also particularly important for
image reconstruction, and the original image cannot be reconstructed solely from the phase
spectrum of the image. We then compare (e) and (f) in Figure 2. According to the rotation
invariance of the Fourier transform, when the amplitude spectrum of the noise image is
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rotated 180° and the phase spectrum of the original noise image is reconstructed, it can be
seen with the naked eye that the overall image does not rotate.

Figure 1. Visualized image after Fourier transform. (a) represents the real part diagram of the complex
matrix of the noisy image after Fourier transform and frequency domain centralization; (b) represents
the imaginary part diagram of the complex matrix of the noisy image after Fourier transform and
frequency domain centralization; (c) represents the amplitude spectrum obtained by the Fourier
transform calculation of the noisy image after centralization; (d) represents the phase spectrum
obtained by the Fourier transform calculation of the noisy image after centralization; (e) represents
the real part diagram of the complex matrix of the ground truth after Fourier transform and frequency
domain centralization; (f) represents the imaginary part diagram of the complex matrix of the ground
truth after Fourier transform and frequency domain centralization; (g) represents the amplitude
spectrum obtained by the Fourier transform calculation of the ground truth image after centralization;
(h) represents the phase spectrum obtained by the Fourier transform calculation of the ground truth
image after centralization.

Figure 2. (a) represents the image reconstructed using only the phase spectrum from its noise
image; (b) represents the image reconstructed using only the phase spectrum from its ground truth;
(c) represents the image reconstructed using only the amplitude spectrum from its noise image;
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(d) represents the image reconstructed using only the amplitude spectrum from its ground truth;
(e) represents the image reconstructed by combining the amplitude spectrum of the noise image
rotated 180° and the phase spectrum of the original noise image; (f) represents the image reconstructed
by combining the phase spectrum of the noise image rotated 180° and the amplitude spectrum of the
original noise image; (g) represents the image reconstructed by combining the amplitude spectrum of
the noisy image and the phase spectrum of the ground truth; (h) represents the image reconstructed
by combining the amplitude spectrum of the ground truth and the phase spectrum of the noisy image.

When the phase spectrum of the noise image is rotated 180° and the amplitude
spectrum of the original noise image is reconstructed, it can be seen with the naked eye that
the overall image is rotated 180°, thus verifying the conclusions of the above two points
regarding the amplitude spectrum and phase spectrum of the image. To further prove our
hypothesis, we found that (g) and (h) in Figure 2 compared the original noisy image with
the labeled image, and (g) and (h) showed varying degrees of noise reduction visible to the
naked eye. The noise level of (h) was significantly higher than that of (g), and (g) exhibited
a decrease in image brightness. As mentioned previously, we can safely conclude that most
noise features of the image exist in the phase spectrum of the image.

2.2. Res FFT Blocks

A widely used residual Fast Fourier Transform module based on ReLU is only utilized
to concatenate the real and imaginary parts in the last dimension after the Fourier transform.
However, it ignores the respective roles of the real and imaginary parts of the Fourier
coefficients in the image, as shown in Figure 3a. We propose an improved Res FFT block,
in which we preserve the identity mapping and normal spatial residual edges for auxiliary
network training. To utilize the Fourier priors, we used dual channels in the channels of
the Fourier transform to process the amplitude and phase spectra in parallel, known as
RFAPB, where we used eight cascaded residual blocks in the ERB and DRB. The RFAPB
structure is shown in Figure 3b.

Figure 3. (a) represents the existing Res FFT-Conv Block; (b,c) represent the proposed improved Res
FFT-Conv Block, where (b) represents our proposed RFAPB.

We set X ∈ RH×W×C as the input feature graph, where H, W, and C are the height,
width, and number of channels of the feature graph, respectively. The overall data flow
processing of RFAPB is as follows: (1) Input feature map X ∈ RH×W×C. (2) (i) Fourier
transform flow: calculate the two-dimensional discrete Fourier transform of X to obtain
F (X) ∈ CH×W×C; take the real partR[F (X)] of the Fourier coefficient and the imaginary
part I [F (X)] of the Fourier coefficient and calculate the amplitude spectrum A[F (X)]
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and the phase spectrum P [F (X)] based on the real and imaginary parts of the Fourier
coefficient. Two stacked 1× 1 convolution layers (convolution operator �) and a ReLU
activation function are used in the middle to process the amplitude spectrum A[F (X)] and
the phase spectrum P [F (X)], respectively. The processing part of the amplitude spectrum
is formulated as

f {A[F (X)], C1, C2} = ReLU(A[F (X)]� C1)� C2 (6)

where f {A[F (X)], C1, C2} ∈ CH×W×C. The processing part of the phase spectrum is
formulated as

f {P [F (X)], C1, C2} = ReLU(P [F (X)]� C1)� C2 (7)

where f {P[F(X)], C1, C2} ∈ CH×W×C. The feature graph Y f f t ∈ RH×W×C is reconstructed
according to the amplitude spectrum and phase spectrum, and the reconstructed feature
graph Yf f t is calculated by using the two-dimensional inverse discrete Fourier transform,
which can be formulated as

Y f f t = F−1{A[F (X)],P [F (X)]} (8)

(ii) Main branch feature flow: Input feature map X through two stacked 3 × 3 convolution
layers (convolution operator �). A ReLU activation function is used in the middle, which
can be formulated as

Ymain = g{X, C1, C2} = ReLU(X� C1)� C2 (9)

(iii) Short-cut branching: output feature map X ∈ RH×W×C. (3) Output feature map
of improved residual modules Y = Y f f t + Ymain + X, Y ∈ RH×W×C, Y f f t ∈ RH×W×C,
Ymain ∈ RH×W×C, and X ∈ RH×W×C.

2.3. U-Shaped Network

The encoder–decoder structure is widely used in image denoising networks. The en-
coder structure refers to the gradual conversion of the input image data into feature maps
with smaller spatial dimensions and more image channels, followed by the gradual con-
version and restoration of the feature maps to the input image size through the decoder.
This network structure is a symmetrical CNN, the most typical of which is a UNet network
structure. In the encoder and decoder stages, a conventional skip connection method is
used to combine different levels of information, which is conducive to the propagation
of gradients and convergence of the model. The network structure diagram is shown in
Figure 4.

In Figure 4, we not only use global residual learning but also introduce residual
blocks for encoding and decoding. Here, we simply used the Res FFT blocks in the UNet
architecture. We reviewed the reconstruction process of applying residuals to deep learning
for image denoising. This method can also be used to build deep networks. Simultaneously,
using multilevel residuals to stack, we can expand the receptive field of the feature image,
which can be used to extract more delicate features in the image. After the Fourier transform,
noisy images can be used to separate the low- and high-frequency features of the image,
which is beneficial for preserving low-frequency features and removing high-frequency
noise features. The structure of the residual network also solves the problem of network
degradation to a certain extent and provides a simple mapping of the original features in
the forward propagation process, which helps the model converge. In Figure 5, we present
the intermediate results at different stages. The entire network is divided into two layers
(Encode and Decode), and we visualize all the high-dimensional feature maps for each
intermediate filter.
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Figure 4. Network structure. Our network structure embeds the RFAPB module within a three-layer
UNet architecture. The abbreviations ERB and DRB stand for encoding residual blocks and decoding
residual blocks, respectively, as illustrated in the example.

2.4. Loss Function

Because the mean square error (MSE) is the average square of the difference between
the predicted value X̂ of the model and the ground truth Xlabel of the sample for image
denoising tasks, high-frequency texture information may be lost during the training process
because of the MSE penalty, resulting in blurred and overly smooth vision. Therefore, we
used the conventional mean absolute error (MAE) to balance image noise removal with the
preservation of detailed features.

Loss = L1 + λLphase (10)

where λ can be set according to the empirical value and λ is set to 0 in our experiment;

L1 = 1
n

n
∑

i=1

∣∣∣X̂− Xlabel

∣∣∣, and Lphase =
1
n

n
∑

i=1

∣∣∣P(X̂
)
−P(Xlabel)

∣∣∣.
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Figure 5. The intermediate results at different stages.

3. Experiments
3.1. Datasets
3.1.1. Training Set and Validation Set

We trained our model using the DIV2K [40] dataset, which contains 900 high-resolution
color images and is currently one of the most commonly used datasets for image super-
resolution. We divided the 900 images in this dataset into 800 and 100 high-resolution
images at an 8:1 ratio (with an average resolution of approximately 1920 × 1080). For the
training set, we randomly cropped each training image into 10 pieces with a size of
256 × 256 patches and randomly applied additive Gaussian white noise (AWGN) to each
patch with noise levels of σ = 5∼50 and a noise level interval of 5. For the validation set, we
randomly cropped each image into three sizes of 256 × 256 patches and added AWGN with
three different noise levels, σ = 10, σ = 30, and σ = 50, to each patch. Therefore, 16,000
patches of size 256 × 256 were used to train the image denoising task, and 1800 patches
of size 256 × 256 were used to validate the image denoising task. The dataset comprised
17,800 images.

3.1.2. Testing Set

CBSD68 [41] is a dataset used to evaluate the performance of image denoising al-
gorithms and is part of the Berkeley segmentation dataset and benchmark. The dataset
includes 12 buildings; 30 animals, such as cats, tigers, and horses; 11 people; four plants
and animals; and 11 other outdoor scene images. Kodak24 [42] mainly provides outdoor
scene images, mostly from the perspective of buildings, sky, and sea. The scene images
of BSD68 [43] and CBSD68 are the same, but the former are the grayscale versions of the
images in the CBSD68 dataset. There are nine outdoor scene images and three indoor
scene images in Set12, including five characters, three animals, and other outdoor scene
images such as houses and ships. The CBSD68 and Kodak24 datasets were used to test
the color image denoising model, whereas the BSD68 and Set12 [22] datasets were used to
test the grayscale image denoising model. We tested our model on these four commonly
used datasets (CBSD68, Kodak24, BSD68, and Set12). To test the impact of different noise
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intensities on the network performance, we added AWGN with noise levels of 10, 30, and 50
to these datasets.

3.2. Experiment Setup
3.2.1. Implementation Details

All the experiments were conducted on a server equipped with a third-generation
intelligent Intel Xeon processor and an NVIDIA Tesla A100 40G. Our model trained a patch
of size 256 × 256, and it took approximately 30 h to train the synthetic noise images on the
DIV2K dataset. During the training process, it was primarily used to remove the AWGN.
The Adam optimizer was used to optimize the network parameters. The hyperparameter
batch size for training was 12, and the initial learning rate was set to 2× 10−4. Using the
cosine annealing learning strategy, the minimum learning rate decreased to 1× 10−6, and a
total of 200 epochs were trained. We used the default settings for the other hyperparameters
of the Adam optimizer.

3.2.2. Evaluation Metric

To quantitatively compare the advantages and disadvantages of the denoising perfor-
mance, we used the peak signal-to-noise ratio [44] (PSNR) and structural similarity [45]
(SSIM) for quantitative evaluation and analysis. In recent research, new methods [46–49]
for image quality assessment have been proposed, which have potential implications for
the performance evaluation of image denoising algorithms.

The PSNR is currently the most widely used method in the field of image denoising,
and it mainly represents the difference in pixel values between images, which can be
formulated as

PSNR = 10log10

[
(2n − 1)

MSE

2
]

(11)

where n is the number of bits per pixel, usually n = 8, which means that the pixel’s gray
scale is 256 (in dB); MSE represents the mean square error of the current image f̂ (i, j) and
the reference image f (i, j), which can be formulated as

MSE =
1

MN

M

∑
i=1

N

∑
j=1

[
f̂ (i, j)− f (i, j)

]2
(12)

where M and N represent the height and width of the image.
SSIM measures the quality of images from three aspects: luminance, contrast, and struc-

tural information of the sample image. The calculation formulas for the luminance (l),
contrast (c), and image structure information (s) are as follows:

l(x, y) =
2uxuy + c1

u2
x + u2

y + c1
(13)

c(x, y) =
2σxσy + c2

σ2
x + σ2

y + c2
(14)

s(x, y) =
σxy + c3

σxσy + c3
(15)

Here, c3 = c2
2 , ux represents the mean value of the pixels in image x, uy represents the mean

of the pixels in image y, σ2
x represents the variance of the pixels in image x, σ2

y represents
the variance of the pixels in image y, and σxy represents the covariance of image x and
image y. The calculation formula for SSIM is as follows:
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SSIM(x, y) = [l(x, y)]α[c(x, y)]β[s(x, y)]γ (16)

where, α, β, and γ represent the weights of the three dimensions and generally α = β =
γ = 1. The value of SSIM should not exceed 1, and the closer it is to 1, the better the
denoising effect on the image.

3.3. Ablation Experiment

We propose two structures, as shown in Figure 3. The structure in Figure 3c adds a
convolution layer of 1 × 1 before the Fourier transform relative to the structure shown in
Figure 3b. To verify the effectiveness of the Fourier transform residual blocks, we ablated the
use of two structures and trained them using different loss functions. The results in Table 1
present the denoising effect when the residual structures of different Fourier transforms are
matched with different loss functions. The loss function is shown in Equation (10), which
changes λ to conduct ablation experiments based on the empirical values. We separately set
λ = 0, 0.05, 0.2, 0.5; L1phase ∈ MAE, and L2phase ∈ MSE. These data represent the evaluation
of the denoising model on the validation set, where Gaussian white noise was added at
noise levels of 10, 30, and 50. When calculating the PSNR and SSIM, the noisy images of
the entire validation set were averaged. According to the experimental results in Table 1,
using the structure in Figure 3b and the loss function of Equation (10), the best denoising
effect is achieved at λ = 0. When the same structure and the same loss function are used,
the denoising effect will decrease to varying degrees with an increase in λ. Using the same
Fourier transform residual structure and different loss functions, when λ is the same, the
utilization of L1phase in the phase part can often achieve a better denoising effect.

Table 1. Verify the results of residual structure image denoising using different Fourier transforms
and highlight the best results in bold font.

Methods Loss λ = 0 λ = 0.05 λ = 0.2 λ = 0.5
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

(b)
L1 + λL1phase

33.5579 0.8872
33.2095 0.8836 32.7649 0.8751 31.8952 0.8579

L1 + λL2phase 32.3945 0.8666 31.6962 0.8453 29.1296 0.7655

(c)
L1 + λL1phase

33.3783 0.8843
33.2428 0.8837 32.8874 0.8770 29.4967 0.7906

L1 + λL2phase 32.5373 0.8695 31.6969 0.8454 30.1490 0.7995

In Figure 6, we show the visualization results of the color image denoising models in
different ablation experiments and enlarge the details. Figure 6a shows the Fourier residual
structure of Figure 3b with loss function L1; Figure 6b shows the Fourier residual structure of
Figure 3b with loss function L1 + 0.05L1phase; Figure 6c shows the Fourier residual structure
of Figure 3b with loss function L1 + 0.2L1phase; Figure 6d shows the Fourier residual
structure of Figure 3b with loss function L1 + 0.5L1phase; Figure 6e shows the Fourier
residual structure of Figure 3b with loss function L1 + 0.05L2phase; Figure 6f shows the
Fourier residual structure of Figure 3b with loss function L1 + 0.2L2phase; Figure 6g shows
the Fourier residual structure of Figure 3b with loss function L1 + 0.5L2phase; Figure 6h
shows the Fourier residual structure of Figure 3c with loss function L1; Figure 6i shows the
Fourier residual structure of Figure 3c with loss function L1 + 0.05L1phase; Figure 6j shows
the Fourier residual structure of Figure 3c with loss function L1 + 0.2L1phase; Figure 6k shows
the Fourier residual structure of Figure 3c with loss function L1 + 0.5L1phase; Figure 6l shows
the Fourier residual structure of Figure 3c with loss function L1 + 0.05L2phase; Figure 6m
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shows the Fourier residual structure of Figure 3c with loss function L1 + 0.2L2phase; and
Figure 6n shows the Fourier residual structure of Figure 3c with loss function L1 + 0.5L2phase.

Figure 6. A comparison of the visual effects of denoising color image “kodim08” from the Kodak24
dataset using different Fourier transform structures for denoising is performed. The image is cor-
rupted with additive Gaussian white noise σ = 50. The bottom right corner of each subfigure
shows the enlarged result within the red box. The first row represents the visualization results
of the noisy image and the Fourier residual structure of Figure 4b with different loss functions.
The second row represents the visualization results of the ground truth and the Fourier residual
structure of Figure 4c with different loss functions. The best results are highlighted in bold. Noisy
image: 18.2552 dB/0.5348; ground truth: ∞/1.0; (a): 30.5806 dB/0.8451; (b): 30.4021 dB/0.8381;
(c) 30.3749 dB/0.8351; (d) 24.3112 dB/0.8286; (e): 24.1747 dB/0.8269; (f): 23.7677 dB/0.8061;
(g): 22.5183 dB/0.7448; (h): 30.2183 dB/0.8328; (i): 30.4640 dB/0.8391; (j): 24.5194 dB/0.8362;
(k): 22.8274 dB/0.7684; (l): 24.1793 dB/0.8246; (m): 29.7990 dB/0.8095; (n): 22.8878 dB/0.7675.

3.4. Comparison with State-of-the-Art Denoising Methods

In this section, we present the results of our network for denoising grayscale and
color images corrupted by AWGN and compare them with the results of DnCNN, UNet,
and SUNet.

3.4.1. Gray Image Denoising

Table 2 lists the results of image denoising using different denoising models on the
BSD68 dataset and displays the parameter quantities and runtime of different models used
for image denoising tasks in the last column. On the BSD68 dataset with a noise level of 50,
our method improved the PSNR by 1.4323 dB and the SSIM by 0.0208 compared to those of
DnCNN. On the BSD68 dataset with a noise level of 50, our method improved the PSNR
by 1.0126 dB and the SSIM by 0.0122 compared to those of UNet. Compared to SUNet,
a model with a large number of parameters as a transformer, our method improved the
PSNR by 0.9677 dB and the SSIM by 0.0033.

Tables 3 and 4, respectively, list the results of image denoising using different denoising
models on the Set12 dataset for images with noise levels of 10, 30, and 50. On the Set12
dataset with noise levels of 10 and 30, our method achieved ideal results. For example,
when the noise level was 30, our method improved the average PSNR by 0.3959 dB and
the average SSIM by 0.0168 compared to those of DnCNN. Compared with UNet, our
method had an average PSNR increase of 1.1033 dB and an average SSIM increase of 0.0116.
Compared to SUNet, our method had an average PSNR improvement of 0.9487 dB and
an average SSIM improvement of 0.0074. Although our method did not achieve the best
average PSNR on the Set12 dataset with a noise level of 50, both the average SSIM and
the SSIM of a single image achieved higher results than those obtained by DnCNN, UNet,
and SUNet. On balance, our network showed advantages in the noise removal of gray
images. Figure 7 shows a comparison of the visual effects of image “test006” in the BSD68
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dataset after denoising using different gray-level image denoising models with a noise
level of 50. Figure 8 shows a comparison of the visual effects of image “Monarch” in the
Set12 dataset after denoising using different grayscale image denoising models with a noise
level of 30. Figure 9 shows a comparison of the visual effects of image “Lena” in the Set12
dataset after denoising using different gray-level image denoising models with a noise
level of 50.

Table 2. The results of image denoising using different denoising models on the BSD68 dataset show
that all PSNR and SSIM values are averaged across the entire dataset, with the best results highlighted
in bold font.

Methods

BSD68

Parms Runtimeσ = 10 σ = 30 σ = 50

PSNR SSIM PSNR SSIM PSNR SSIM

DnCNN [22] 33.6233 0.9552 28.9922 0.8806 26.4376 0.8269 558K 0.005 s
UNet [37] 33.9969 0.9640 29.7034 0.8931 26.8573 0.8355 34M 0.009 s

SUNet [32] 35.2309 0.9671 29.5802 0.8964 26.9022 0.8444 99M 0.048 s

FEUSNet 35.8763 0.9689 30.2040 0.9004 27.8699 0.8477 8M 0.044 s

Table 3. On the Set12 dataset, for images with noise levels of 10, 30, and 50, the PSNR (in dB)
of grayscale images denoised using different denoising models is obtained, and the best result is
highlighted in bold font.

Images C.man House Peppers Starfish Monarch Airplane Parrot Lena Barbara Boat Man Couple Average

Noise level 10

DnCNN [22] 31.8587 34.9391 27.0164 32.6365 40.3418 35.9615 33.1813 30.9360 34.5168 33.0507 34.0274 31.6149 33.3401

UNet [37] 33.2413 35.6834 26.4148 32.0360 40.1507 32.9350 34.9532 38.1159 31.1866 33.2963 26.5380 32.7682 33.1100

SUNet [32] 33.7737 41.9341 32.3558 39.1856 33.9902 30.5177 35.5054 39.7368 36.9011 40.0563 27.6437 33.1838 35.3987

FEUSNet 33.5682 41.8812 36.5702 40.7204 40.6232 32.0950 35.5087 35.5617 33.4224 35.1235 34.0752 34.6913 36.1534

Noise level 30

DnCNN [22] 29.0558 36.6891 25.7730 28.8950 29.2347 25.4943 29.6536 33.5781 32.6968 28.4647 30.2848 28.2205 29.8367

UNet [37] 29.3609 36.7196 23.5930 28.5871 27.6426 24.3376 29.9903 28.3835 26.7738 34.8503 30.2311 29.0818 29.1293

SUNet [32] 29.6134 36.7858 25.6224 28.3282 34.6563 23.9163 30.1507 27.8893 26.9235 34.7974 24.7896 27.9343 29.2839

FEUSNet 29.9776 38.1233 25.7778 34.9665 36.0304 27.1347 30.4399 29.2414 28.5770 29.2499 23.5881 29.6847 30.2326

Noise level 50

DnCNN [22] 27.0796 27.8077 33.0292 26.0415 26.3214 23.6338 27.4224 26.0859 24.6739 32.0285 28.3184 26.1363 27.3816

UNet [37] 27.3405 34.2780 28.0408 26.2381 33.1297 24.1050 27.6724 26.8109 24.2559 26.3609 22.0707 26.5218 27.2354

SUNet [32] 27.5922 35.0753 26.9206 32.3959 27.1645 24.0077 27.7915 32.6766 23.7805 32.5406 22.3230 26.3605 28.2191

FEUSNet 27.8703 27.6870 25.1088 26.9962 26.7924 24.8094 27.9388 32.6816 22.9595 26.5815 28.9749 27.1161 27.1264

Table 4. On the Set12 dataset, for images with noise levels of 10, 30, and 50, the results of denoising
using different denoising models for grayscale images are SSIM, and the best result is highlighted in
bold font.

Images C.man House Peppers Starfish Monarch Airplane Parrot Lena Barbara Boat Man Couple Average

Noise level 10

DnCNN [22] 0.9257 0.9605 0.9638 0.9650 0.9800 0.9587 0.9666 0.9608 0.8904 0.9635 0.8930 0.9621 0.9492

UNet [37] 0.9377 0.9646 0.9645 0.9631 0.9813 0.9633 0.9751 0.9632 0.9376 0.9634 0.8948 0.9673 0.9563

SUNet [32] 0.9455 0.9672 0.9695 0.9688 0.9811 0.9678 0.9774 0.9676 0.9550 0.9684 0.9009 0.9693 0.9615

FEUSNet 0.9452 0.9728 0.9742 0.9753 0.9841 0.9692 0.9793 0.9726 0.9720 0.9733 0.9123 0.9738 0.9670
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Table 4. Cont.

Images C.man House Peppers Starfish Monarch Airplane Parrot Lena Barbara Boat Man Couple Average

Noise level 30

DnCNN [22] 0.8851 0.9313 0.9318 0.9249 0.9462 0.9105 0.9288 0.9094 0.8463 0.8966 0.7942 0.8990 0.9003

UNet [37] 0.8912 0.9330 0.9319 0.9262 0.9464 0.9144 0.9345 0.9190 0.8483 0.9083 0.8067 0.9057 0.9055

SUNet [32] 0.9016 0.9368 0.9362 0.9209 0.9498 0.9165 0.9369 0.9217 0.8594 0.9095 0.8156 0.9115 0.9097

FEUSNet 0.9030 0.9399 0.9413 0.9259 0.9550 0.9213 0.9384 0.9307 0.9070 0.9152 0.8083 0.9193 0.9171

Noise level 50

DnCNN [22] 0.8449 0.9062 0.8980 0.8756 0.9094 0.8767 0.8971 0.8605 0.7972 0.8489 0.7299 0.8413 0.8571

UNet [37] 0.8540 0.9135 0.9061 0.8808 0.9158 0.8805 0.9037 0.8746 0.8082 0.8581 0.7336 0.8485 0.8648

SUNet [32] 0.8663 0.9224 0.9112 0.8865 0.9218 0.8865 0.9080 0.8881 0.8199 0.8667 0.7405 0.8566 0.8729

FEUSNet 0.8679 0.9235 0.9145 0.8952 0.9239 0.8869 0.9099 0.8976 0.8405 0.8720 0.7560 0.8691 0.8798

Figure 7. A comparison of the visual effects of the image “test006” in the BSD68 dataset after
denoising using different grayscale image denoising models with a noise level of 50 is presented.
The PSNR and SSIM values are calculated based on the patch in the upper part of the subgraph and
highlighted in red font.

Figure 8. A comparison of the visual effects of the image “Monarch” in the Set12 dataset after
denoising using different grayscale image denoising models is presented. The image is adversely
affected by additive Gaussian white noise with a standard deviation of σ = 30. The PSNR and SSIM
values are displayed in the upper part of the image and highlighted in yellow font. Additionally,
an enlarged result image is shown within the red box in the bottom right corner of the subgraph.
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Figure 9. A comparison of the visual effects of the image “Lena” in the Set12 dataset after denoising
using different grayscale image denoising models is presented. The image is affected by additive
Gaussian white noise with a standard deviation of σ = 50. The PSNR and SSIM values are displayed
in the upper part of the image and highlighted in yellow font. Additionally, an enlarged result image
is shown within the red box in the bottom right corner of the subgraph.

3.4.2. Color Image Denoising

Table 5 lists the PSNR and SSIM values under different noise levels compared on
the CBSD68 and Kodak24 datasets, respectively. The last column displays the parameter
quantities and runtime of different methods used for image denoising tasks. On the CBSD68
dataset with a noise level of 50, our method improved the PSNR by 1.1443 dB and the SSIM
by 0.0282 compared to those of DnCNN. On the Kodak24 dataset with a noise level of 50,
our method improved the PSNR by 1.2443 dB and the SSIM by 0.0339 compared to those of
DnCNN. On the CBSD68 dataset with a noise level of 50, our method improved the PSNR
by 0.7419 dB and the SSIM by 0.0180 compared to those of UNet. On the Kodak24 dataset
with a noise level of 50, our method improved the PSNR by 2.2228 dB and the SSIM by
0.0243 compared to those of Une. Compared with SUNet, our method had a much smaller
number of parameters in the network. Although the improvement in the PSNR and SSIM
is minimal on the CBSD68 dataset with a noise level of 50, on the Kodak24 dataset with
a noise level of 50, our method increased the PSNR by 1.1673 dB and the SSIM by 0.0103.
In summary, our network exhibited a clear advantage in the noise removal performance
of color images. Figure 10 shows the comparison results of the visual effects of denoising
image “14037” in the CBSD68 dataset with a noise level of 30 using different denoising
models. Figure 11 shows the comparison results of the visual effects of denoising image
“21077” in the CBSD68 dataset with a noise level of 50 using different denoising models.
Figure 12 shows the comparison results of the visual effects of denoising image “kodim20”
in the Kodak24 dataset with a noise level of 50 using different denoising models.

Table 5. The results of image denoising using different denoising models on the CBSD68 and Kodak24
datasets show that all PSNR and SSIM values are averaged across the entire dataset, with the best
results highlighted in bold font.

Methods

CBSD68 Kodak24

Parms Runtimeσ = 10 σ = 30 σ = 50 σ = 10 σ = 30 σ = 50

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DnCNN [22] 33.5717 0.9618 28.7173 0.8922 26.6094 0.8306 33.1976 0.9560 29.4191 0.8889 28.2674 0.8332 558K 0.007 s
UNet [37] 34.8622 0.9664 29.4497 0.8987 27.0964 0.8408 35.3172 0.9618 29.9454 0.8944 27.2889 0.8428 34M 0.011 s

SUNet [32] 35.0486 0.9706 29.8743 0.9081 27.8385 0.8542 35.0168 0.9663 30.1521 0.9038 28.3444 0.8568 99M 0.059 s

FEUSNet 36.6497 0.9732 30.6664 0.9119 27.8383 0.8588 37.1193 0.9716 31.3508 0.9123 29.5117 0.8671 8M 0.051 s
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Figure 10. A comparison of the visual effects of the image “14037” in the CBSD68 dataset after
denoising using different color image denoising models is presented. The image is affected by additive
Gaussian white noise with a standard deviation of σ = 30. The PSNR and SSIM values are calculated
based on the patch in the upper part of the subgraph and displayed in yellow font. Furthermore,
the enlarged result within the red box of the subgraph is shown in the bottom right corner.

Figure 11. A comparison of the visual effects of the image “21077” in the CBSD68 dataset after
denoising using different color image denoising models is presented. The image is affected by
additive Gaussian white noise with a standard deviation of σ = 50. The PSNR and SSIM values
are calculated based on the patch in the upper part of the subgraph and displayed in yellow font.
Furthermore, the bottom right corner of the subgraph shows the enlarged result within the red box.

Figure 12. A comparison of the visual effects after denoising the image “kodim20” in the Kodak24
dataset using different color image denoising models is presented. The image is affected by additive
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Gaussian white noise with a standard deviation of σ = 50. The PSNR and SSIM values are displayed
in the upper part of the image, highlighted in red font. Additionally, the enlarged result image is
shown within the red box located at the bottom right corner of the subgraph.

4. Conclusions

In this paper, we proposed a method for image denoising based on Fourier priors. We
designed and implemented residual blocks for amplitude spectrum and phase spectrum
processing of noisy images. Experiments on synthetic noise datasets showed that our
method can effectively recover clean images from noisy images and that the content
and details are well preserved, which significantly improves the performance of image
denoising. In the future, we will attempt to explore the frequency domain features of noisy
real-world images.
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