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Abstract: Zebra finches are a model animal used in the study of audition. They are adept at recogniz-
ing zebra finch songs, and the neural pathway involved in song recognition is well studied. Here,
this example is used to illustrate the estimation of mutual information between stimuli and responses
using a Kozachenko–Leonenko estimator. The challenge in calculating mutual information for spike
trains is that there are no obvious coordinates for the data. The Kozachenko–Leonenko estimator
does not require coordinates; it relies only on the distance between data points. In the case of bird
songs, estimating the mutual information demonstrates that the information content of spiking does
not diminish as the song progresses.
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1. Introduction

The mutual information between two random variables X and Y is often conveniently
described using a diagram like this:

H(X, Y)

H(Y|X)H(X|Y)

where the whole rectangle represents the entropy H(X, Y) of the joint variable (X, Y). This
is, in general, less than the sum of H(X) and H(Y) because X and Y are not independent.
In this diagram, the purple and green regions together are intended to represent H(X),
and the green and yellow regions are intended to represent H(Y). The purple region on its
own represents H(X|Y): the entropy remaining, on average, when the value of Y is known.
In the same way, the yellow region represents H(Y|X). Now, the mutual information is
represented by the green section:

H(X, Y)

I(X, Y)

It is
I(X, Y) = H(X)− H(X|Y) = H(Y)− H(Y|X) (1)
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or, by substitution,

I(X, Y) = E log2

[
pX|Y(x|y)

pX(x)

]
= E log2

[
pY|X(y|x)

pY(y)

]
(2)

Here, for illustrative purposes, mutual information is described relative to a specific
example: the neural response of cells in the zebra finch auditory pathway to zebra finch
songs. This is both an interesting neuroscientific example and an example which is typical
of a broad set of neuroscience problems.

The zebra finch is a model animal used to study both auditory processing and learning;
the male finch sings, and he has a single song which begins with a series of introductory
notes, followed by two or three repetitions of the motif: a series of complex frequency
stacks known as syllables, separated by pauses. Syllables are about 50 ms long, with songs
lasting about two seconds. The songs have a very rich structure, and both male and female
zebra finches can distinguish one zebra finch song from another.

Here, we use a data set consisting of spike trains recorded while the bird is listening to
a set of songs, and we provide an estimate for the mutual information between the song
identity and spike trains recorded from cells in the auditory pathway. This is an interesting
and non-trivial problem. Generally, calculating mutual information is costly in terms of
data because it requires the estimation of probabilities such as pY(y) and pY|X(y|x). For
this reason, some measure of correlation is often used when quantifying the relationship
between two random variables. However, not all data types have a correlation: calculating
the correlation assumes algebraic properties of the data that are not universal. As an
example, calculating the correlation between X and Y requires the calculation of E[XY],
which in turn assumes that it makes sense to multiply the x and y values. This is not the case
for the typical neuroscience example considered here, where the set of outcomes for X is the
song identities and that for Y is the spike trains. To circumvent this, spike trains are often
replaced with something else, spike counts for example. However, this involves an implicit
assumption about how information is coded. This is likely to be inappropriate in many
cases. Indeed, the approach taken to calculating mutual information can involve making
very strong assumptions about information coding, the very thing that is being studied.

The purpose of this review paper is to demonstrate a different approach: there is a
metric-space version of the Kozachenko–Leonenko estimator [1,2] introduced in [3–5] and
inspired by [6]. This approach has been tested on simulated data, for example in [5], and
this shows it to be promising. However, it is important to also test it on real data. Here, it is
applied in the zebra finch example.

2. Materials and Methods

Let
D = {(x1, y1), (x2, y2), ... , (xn, yn)} (3)

be a data set. In our case, the xi are the labels for songs in the set of stimuli, with each
xi ∈ {1, . . . , ns}; ns is the number of different songs. For a given trial, yi is the spiking
response. This will be a point in “the space of spike trains”. What exactly is meant by the
space of spike trains is less clear, but for our purposes here, the important point is that
this can be regarded as a metric space, with a metric that gives a distance between any
two spike trains; see [7,8], or, for a review, [9].

Given the data, the mutual information is estimated by

I(X, Y) ≈ 1
n

n

∑
i=1

log2

[
pY|X(yi|xi)

pY(yi)

]
(4)

where the particular choice of which conditional probability to use, pY|X rather than pX|Y,
has been made for later convenience. Thus, the problem of estimating mutual information
is one of estimating the probability mass functions pY|X and pY at the data points in D. In
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our example, there is no challenge to estimating pX , since each song is presented an equal
number of times during the experiment pX(xi) = 1/ns for all xi and, in general pX(xi) is
known from the experiment design. However, estimating pY|X and pY is more difficult.

In a Kozachenko–Leonenko approach, this is performed by first noting that for a small
volume Ri containing the point yi,

pY(yi) ≈
1

vol(Ri)

∫
Ri

pY(y) dy (5)

with the estimate becoming more and more exact for smaller regions Ri. If the volume of
Ri were reduced towards zero, pY(y) would be constant in the resulting tiny region. Here,
vol(Ri) denotes the volume of Ri. Now, the integral

∫
Ri

pY(y) dy is just the probability mass
contained in Ri and so it is approximated by the number of points in D that are in Ri:∫

Ri

pY(y) dy ≈
|{yj ∈ Ri}|

n
. (6)

It should be noted at this point that this approximation becomes more and more exact as Ri
becomes bigger. Using the notation

ki = |{yj ∈ Ri}| (7)

this means
pY(yi) ≈

ki
nvol(Ri)

. (8)

This formula provides an estimate for pY(yi) provided that a strategy is given for
choosing the small regions Ri around each point yi. As will be seen, a similar formula can be
derived for pY|X(yi|xi), essentially by restricting the points to Di = {(xj, yj) ∈ D|xj = xi}:

pY|X(yi|xi) ≈
hi

ncvol(Ri)
(9)

where hi is the number of points in Ri with label xi and nc is the total number of points
with label xi. In the example here, nc = n/ns. Once the probability mass functions are
estimated, it is easy to estimate the mutual information. However, there is a problem: the
estimates also require the volume of Ri. In general, a metric space does not have a volume
measure. Furthermore while many everyday metric spaces also have coordinates providing
a volume measure, this measure it not always appropriate since the coordinates are not
related to the way the data are distributed. However, the space that the yi’s belong to is not
simply a metric space, it is also a space with a probability density, pY(y). This provides a
measure of volume:

vol(Ri) =
∫

Ri

pY(y)dy (10)

In short, the volume of a region can be measured as the amount of probability mass it
contains. This is useful because this quantity can in turn be estimated from data, as before,
by counting points:

vol(Ri) ≈
ki
n

. (11)

The problem with this, though, is that it gives a trivial estimate of the probability.
Substituting back into the estimate for pY(yi), Equation (8) gives pY(yi) = 1 for all points yi.
This is not as surprising as it might at first seem. Probability density is a volume-measure
dependent quantity; that is what is meant by calling it a density and is the reason that
entropy is not well defined on continuous spaces. There is always a choice of coordinate
that trivializes the density.

However, it is not the entropy that is being estimated here. It is the mutual information
and this is well defined: its value does not change when the volume measure is changed.
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The mutual information uses more than one of the probability densities on the space; in
addition to pY(yi), it involves the conditional probabilities pY|X(y|x). Using the measure
defined by pY(y) does not make these conditional probability densities trivial. The idea
behind the metric space estimator is to use pY(y) to estimate volumes. This trivializes the
estimates for pY(yi), but it does allow us to estimate pY|X(y|x) and use this to calculate an
estimate of the mutual information.

In this way, the volume of Ri is estimated from the probability that a data point is in
Ri, and this, in turn, is estimated by counting points. Thus, to fix the volume vol(Ri), a
number h of data points is specified, and for each point, the h− 1 nearest data points are
identified, giving h points in all when the “seed point” is included. This is equivalent to
expanding a ball around yi until it has an estimated volume of h/n. This defines the small
region Ri. The conditional probability is then estimated by counting how many points in
Ri are points with label xi, that is, are points in Di. In fact, this just means counting how
many of the h points that have been identified are in Di, or, put another way, it means
counting how many of the h− 1 nearest points to the original seed point are from the same
stimulus as the seed point. In summary, the small region consists of h points. To estimate
pY|X(yi|xi), the number of points in the small region corresponding to label xi is counted;
this is referred to as hi so

hi = |{yj ∈ Ri | xj = xi}| = |Ri ∩Di|. (12)

This is substituted into the formula for the density estimator, Equation (6), to obtain

pY|X(yi|xi) ≈
n
nc

hi
h

(13)

where, as before, nc is the total number of trials for each song. It is assumed that each song is
presented the same number of times. It would be easy to change this to allow for different
numbers of trials for each song, but this assumption is maintained here for notational
convenience. Substituting back into the formula for the estimated mutual information,
Equation (4) gives

I0 =
1
n

n

∑
i=1

log2
nshi

h
(14)

The calculation of I0 is illustrated in Figure 1. The subscript zero has been added in order
to preserve the unadorned I for the information itself and Ĩ for the de-biased version of the
estimator; this is discussed below.

This estimate is biased, and it gives a non-zero value even if X and Y are independent.
This is a common problem with estimators of mutual information. One advantage of the
Kozachenko–Leonenko estimator described here is that the bias at zero mutual information
can be calculated exactly. Basically, for the estimator to give a value of zero hi = h/ns
would be required for every i. In fact, while this is the expected value if X and Y are
independent, hi has a probability distribution which can be calculated as a sort of an urn
problem. As detailed in [10], performing this calculation gives the de-biased estimator:

I ≈ Ĩ = I0 − Ib (15)

where Ib, the bias, is

Ib =
h

∑
r=1

ns

∑
c=1

nc

n
u(r− 1; nc − 1, h− 1, n− nc) log2

ncr
h

(16)
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and u is the probability for the hypergeometric distribution using the parameterization used
by the distributions.jl Julia library.

u(k; s, h, f ) =
(

s
k

)(
f

m− k

)/(
s + f

m

)
≡ Hypergeometric(s, m, f ) (17)

Obviously, the estimator relies on the choice of smoothing parameter h. Recall that
for a small h, the counting estimates for the number of points in the small region and
for the volume of the small regions are noisy. For a large h, the assumption that the
probability density is constant in the small region is poor. These two countervailing points
of approximation affect I0 and Ib differently. It seems that a good strategy in picking h for
real data is to maximize Ĩ(h) over h. This is the approach that will be adopted here.

A B

Figure 1. The calculation of I and the spiking data. (A) illustrates how the estimator is calculated.
The circles and triangle are data points, and red and blue represent two different labels. The dashed
line is the small region around the seed point in the center marked by a triangle N while the other,
non-seed points are circles: • and •. Here, h = 7, so the ball has been expanded until it includes seven
points. It contains four red points, the colour of the central point, so hN = 4. For illustration, the
points have been drawn in a two-dimensional space, but this can be any metric space. (B) describes
the data. The spiking responses of a typical neuron to each presentation of a song is plotted as a
raster plot, with a mark for each spike. The trials are grouped by song, so the ten responses in each
group correspond to repeated presentations of a single stimulus. Stimulus onset is aligned at 0, with
the shortest song lasting 1.65 s.

As an example, we will use a data set recorded from zebra finches and made available
on the Collaborative Research in Computational Neuroscience data sharing website [11].
This data set contains a large number of recordings from neurons in different parts of the
zebra finch auditory pathway. The original analysis of these data are described in [12,13].
The data set includes different auditory stimuli; here, though only the responses to zebra
finch song are considered. There are 20 songs, so ns = 20, and each song is presented ten
times, nc = 10, giving n = 200. The zebra finch auditory pathway is complex and certainly
does not follow a single track, but for our purposes, it looks like

auditory nerve→ CN→ MLd→ OV→ Field L→ HVc (18)

where CN is the cochlear nuclei; MLd is the mesencephalicus lateralis pars dorsalis, analo-
gous to mammalian inferior colliculus; OV is the nucleus ovoidalis; Field L is the primary
auditory pallium, analogous to mammalian A1; and, finally, HVc is regarded as the locus
of song recognition. The mapping of the auditory pathway and our current understanding
of how to best associate features of this pathway to features of the mammalian brain is
derived from, for example [13–17].

In the data set, there are 49 cells from each of MLd and Field L, and here, the entropy
is calculated for all 98 of these cells.
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3. Results

Our interest in considering the mutual information for bird songs was to check whether
the early part of the spike train was more informative about the song identity. It seemed
possible that the amount of information later in the spike train would be less than in the
earlier portion. This does not seem to be the case.

There are a number of spike train metrics than could be used. Although these differ
markedly in the mechanics of how they calculate a distance, it does appear that the more
successful among them are equally good at capturing the information content. In Figure 2A,
the total mutual information between song identity and spike train is plotted. Here, the
Victor–Purpura (VP) metric [7], the spike count, the Earth mover distance (EMD) [18], and
the van Rossum metric [8] are considered. The Victor–Purpura metric and van Rossum met-
ric both include a parameter which can be tuned, roughly corresponding to the precision of
spike timing. Here, the optimal value for each case has been used, chosen to maximize the
average information. These values are q = 32.5 Hz for the VP metric and τ = 15 ms for the
vR metric. The mutual information estimator uses the metric to order the points, and each
small region contains the h− 1 points nearest the seed point so the estimator does not de-
pend on the distances themselves, just the order. Indeed, the estimated mutual information
is not very sensitive to the choice of q or τ. This is demonstrated in Figure 2B, where the
mutual information is calculated as a function of q, the parameter for the VP metric.

A B

Figure 2. Information content according to different distances. (A) shows mean mutual informa-
tion (MI) among the 98 neurons from both regions according to different distance metrics, the
Victor–Purpura metric, the firing rate, the Earth mover distance, and the van Rossum metric. To
calculate the mutual information, 1.65 s of spike train is used, corresponding to the length of the
short song. (B) shows how that mean MI varies according to the q parameter for the Victor–Purpura
metric. In both cases, blue corresponds to MLd and red corresponds to Field L. In (B), the translucent
band corresponds to the middle 20% of data points; there is substantial variability in information
across cells.

The Victor–Purpura metric and van Rossum metric clearly have the highest mutual
information and are very similar to each other. This indicates that the estimator is not
sensitive to the choice of metric, provided the metric is one that can capture features of the
spike timing as well as the overall rate. The spike count does a poor job, again indicating
that there is information contained in spike timing as well as the firing rate. Similar results
were seen in [9,19], though a different approach to evaluating the performance of the
metrics was used there.

The cells from MLd have higher mutual information, on average, than the cells from
Field L. Since Field L is further removed from the auditory nerve than MLd, this is to be
expected from the information processing inequality. This inequality stipulates that away
from the source of information, information can only be lost, not created.

In Figure 3, the information content of the spike trains as a function of time is con-
sidered. To achieve this, the spike trains are sliced into 100 ms slices and the information
is calculated for each slice. The songs have variable lengths, so the mutual information
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becomes harder to interpret after the end of the shortest song, marked by a dashed line.
Nonetheless, it is clear that the rate of information and the information per spike are largely
unchanged through the song.

A B

Figure 3. Information content per time. These figures show the time-resolved mutual information
by calculating the mutual information for spiking response over 0.1 s slices; the centers of which,
T, are plotted against the mean mutual information. (A) shows how this varies over time, with a
vertical line showing the ending of the shortest stimulus. (B) shows the mean information per spike;
although (A) shows a small decrease, (B) seems to indicate that this corresponds to a reduction in
firing rate, not in the information contained in each spike. In both cases, the metric is the VP metric
with q = 30 Hz.

4. Discussion

As well as demonstrating the use of the estimator for mutual information, we were
motivated here by an interest in the nature of coding in spike trains in a sensory pathway.
It is clear that the neurons in MLd and Field L are not “grandmother” neurons, responding
only to a specific song and only through the overall firing rate. The firing rate contains
considerably less information than was measured using the spike metrics. The spike metrics,
in turn, give very similar values for the mutual information; this appears to indicate that
the crucial requirement of a spike train metric is a “fuzzy” sensitivity to spike timing.
This demonstrates the need for an estimator such as the Kozachenko Leonenko estimator
used here.

Approaches that do not incorporate spike timings underestimate the mutual infor-
mation, but histogram methods, which do include timings, are computational impractical
for modest amounts of data. A pioneering paper, [19], also examines mutual information
for zebra finch songs, but using a histogram approach. The substantial conclusion there
was similar to the conclusion here: there was evidence that spike timings are important.
However, it seems likely that this early paper was constrained in its estimates by the size of
the data set. This is suggested by the way the amount of information measured increased
monotonically as the bin-width in the temporal discretization was reduced, a signature of a
data-constrained estimate.

Finally, it is observed that it is not the case that the precision of spiking diminishes as
the song continues. Since that song can often be identified from the first few spikes of the
response, it might be expected that the neuronal firing would become less precise. Precision
is metabolically costly. However, although the firing rate falls slightly, the information
remains constant on a per-spike basis.
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