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Abstract: We study the Galam majority rule dynamics with contrarian behavior and an oscillating
external propaganda in a population of agents that can adopt one of two possible opinions. In
an iteration step, a random agent interacts with three other random agents and takes the majority
opinion among the agents with probability p(t) (majority behavior) or the opposite opinion with
probability 1− p(t) (contrarian behavior). The probability of following the majority rule p(t) varies
with the temperature T and is coupled to a time-dependent oscillating field that mimics a mass media
propaganda, in a way that agents are more likely to adopt the majority opinion when it is aligned
with the sign of the field. We investigate the dynamics of this model on a complete graph and find
various regimes as T is varied. A transition temperature Tc separates a bimodal oscillatory regime
for T < Tc, where the population’s mean opinion m oscillates around a positive or a negative value
from a unimodal oscillatory regime for T > Tc in which m oscillates around zero. These regimes
are characterized by the distribution of residence times that exhibit a unique peak for a resonance
temperature T∗, where the response of the system is maximum. An insight into these results is given
by a mean-field approach, which also shows that T∗ and Tc are closely related.

Keywords: opinion dynamics; majority rule model; noise; periodic field; stochastic resonance

1. Introduction

In recent decades, statistical physics has expanded its scope to venture into the field
of sociology, giving rise to a discipline called sociophysics [1–10]. A commonly studied
phenomenon is the dynamics of opinion formation, by means of simple mathematical
models. In these models, individuals are called agents, and each of them is characterized
by the value of a variable that represents its opinion on a particular topic—such as the
intention to vote for a candidate on a ballot—which, for simplicity, can take one of two
possible values (+1 or −1). The opinion of each agent can change after interacting with
other agents following simple rules. One of the most implemented interaction rules is
that introduced in a model by Galam [11] and extensively studied later on [6,12–14], to
which we refer as the Galam Majority Model (GMM), in which all agents in a group chosen
at random adopt the opinion of the majority in that group. This local dynamic drives a
steady increase in the initial global majority opinion (provided the system’s symmetry is
not broken by ties for even-size groups), which eventually ends with a consensus, i.e., an
absorbing state where all agents share the same opinion. Multiple extensions of the GMM
have been studied in the literature, including the possibility of contrarian behavior, that
is, all members of a chosen group taking the minority opinion [7]. This work studied the
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effects of introducing a fixed fraction a of contrarian agents to the original GMM, where
it was found that, instead of a frozen consensus, as in the model with no contrarians, the
system reaches an ordered stationary state for a < ac and a disordered stationary state
for a > ac. The transition value ac separates an ordered phase, where a large majority of
agents hold the same opinion, from a disordered phase, in which both opinions are equally
represented in the population.

Many other opinion formation models with contrarians were also studied in [15–34]. In
particular, the effects of contrarian behavior were also investigated in the voter model (VM)
for opinion formation [24], where agents interact in pairs and one adopts the opinion of the
other, with a probability of 1−P (imitation), or the opposite opinion, with a probability of P
(contrarian). It was shown that the model displays a transition from order to disorder when
the probability of having a contrarian behavior overcomes the threshold Pc = (N + 1)−1

in a system of N agents. The contrarian voter model [24] was recently studied under
the presence of a mass media propaganda that influences agents’ decisions [34]. The
propaganda was implemented in the form of an external oscillating field that tends to align
agents’ opinions in the direction of the field. A stochastic resonance (SR) phenomena within
an oscillatory regime was found, that is, there is an optimal level of noise for which the
population effectively responds to the modulation induced by the external field [35,36].

In order to expand our knowledge on the combined effects of contrarians and mass
media propaganda on opinion models, we study in this article the GMM with contrarian
behavior under the presence of an external oscillating field. Each agent in the population
can either follow a majority rule that increases similarity with its neighbors or behave as a
contrarian by adopting the opposite opinion, with respective probabilities p(t) and 1− p(t).
The majority probability p(t) varies periodically in time according to an external field or
propaganda, based on a mathematical form introduced in [21,22] for the Sznajd model and
implemented in [34,37] for the VM, so that agents tend to follow the majority when it is
aligned with the field. Although we understand that this model is relatively far from being
adequate to describe real social systems where mass media does not necessarily change
sign periodically, it provides analytical insight on features that could be actually relevant in
the real word. We also notice that, unlike models where a predetermined group of agents
always behaves as a contrarian (adopt the minority opinion) and the rest of agents always
behave as a follower (adopt the majority opinion), like in [7], in our model each agent
can behave as both, as a contrarian or as a follower at each iteration step of the dynamics,
with a frequency of choosing the contrarian behavior given by 1− p(t). However, we
note that these two models lead to identical mean-field (MF) equations for the system’s
evolution in an all-to-all interaction setup. By exploring the dynamics of the GMM under
the influence of an oscillating external field and the presence of contrarians, we aim to gain
deeper insights into the manifestation of the SR phenomenon in opinion dynamics models.
We show that this model exhibits unimodal and bimodal oscillatory regimes, as well as an
SR that is observed close to the transition between the two regimes.

It is worth mentioning that the GMM studied in this article belongs to a class of “non-
linear” models, while the VM with contrarians described above and studied in [34] belongs
to a completely different class. That is, in the VM an agent switches opinion (s → −s,
s = +1,−1) with a probability equal to the fraction of neighbors that hold the opposite
opinion σ−s (linear in σ−s), while in the GMM the switch happens with a probability that is
proportional to a combination of σ2

−s and σ3
−s, i.e., non-linear in σ−s. Then, the equation that

governs the time evolution of the fraction of agents in a given opinion can be written as a
Ginzburg–Landau equation with an associated potential that has two symmetric wells in
the GMM, as in the Ising model for ferromagnetism, while in the VM the potential is zero.
A main consequence of this difference in the potential is in the type of domain coarsening
observed in spatial systems: while in the GMM the coarsening is driven by curvature,
in the VM it is without surface tension [38] (driven by noise). Another consequence is
that, in the version of these models with contrarians, the order–disorder transition in the
thermodynamic limit (N → ∞) takes place at a finite fraction of contrarian agents ac > 0 in



Entropy 2023, 25, 1402 3 of 13

the GMM, while in the VM the transition happens at a vanishing contrarian probability
(Pc → 0).

We also need to mention that the SR effect has also been observed in other opinion
models. For instance, in [21,22] the authors found SR in a variation of the Sznajd model with
stochastic driving and a periodic signal. The work in [14] analyzed a majority rule dynamics
under the action of noise and an external modulation, and found an SR that depends on the
randomness of the small-world network. There are also other works [39–43] that explored the
combined effects of stochastic driving and an external signal on a majority rule dynamics.
However, none of these works have incorporated a contrarian behavior in the dynamics.

The rest of this article is organized as follows. We introduce the model in Section 2.
In Section 3, we present numerical simulation results for the evolution of the system and
the behavior of different magnitudes that characterize the SR phenomena. In Section 4,
we develop an MF approach that gives an insight into the system’s evolution and the
relation between the SR and the transition between different regimes. Finally, in Section 5
we summarize our findings and discuss the results.

2. The Model

We consider a population of N interacting agents where a given agent i (i = 1, ..., N)
can hold one of two possible opinion states, si = +1,−1. We denote by σ+(t) and σ−(t) the
fraction of nodes with respective states +1 and−1 at time t, such that σ+(t) + σ−(t) = 1 for
all t ≥ 0. In a time step ∆t = 1/N of the dynamics, we follow the basic GMM using groups
of size three to update individual opinions. However, here, for our purpose of investigating
the effects of propaganda at the level of a single individual, we implement the rule in a
different setting, where only one individual can update its opinion state in an iteration step.
Instead of selecting three agents randomly to update all of them at once, we pick one agent
i with state si and a group of three other different agents j, k, l (i 6= j 6= k 6= l), all randomly
chosen. In the N � 1 limit, their respective states are (sj, sk, sl) with probability σsj σsk σsl . A
majority of + choices is thus obtained for the configurations (+,+,+), (+,+,−), (+,−,+)
and (−,+,+), yielding an overall probability

P+ ≡ σ3
+ + 3σ2

+σ−. (1)

Similarly, a majority of − occurs for (−,−,−), (+,−,−), (−,+,−) and (−,−,+), with
the overall probability

P− ≡ σ3
− + 3σ2

−σ+. (2)

Then, agent i updates its state in two steps. (i) First, the update follows the basic GMM,
where agent i simply adopts the majority state of the group of the three agents j, k and l. We
thus have si → si = +1 with probability P+, or si → si = −1 with probability P− = 1− P+.
(ii) Second, agent i can either preserve this majority state (si → si) with probability psi , or
change to the opposite (minority) state (si → −si) with the complementary probability
1− psi , where psi is defined below. The implication of this second step is that each agent
can behave as a “contrarian” by adopting the state opposed to the majority (minority state)
with probability 1− psi , or as a “majority follower” with probability psi . Thus, there is no
fixed fraction of contrarian agents, as in [7].

At this point, we introduce the effect of an external field H on agent i in state si within
a Boltzmann scheme by assuming that the probability psi to preserve the majority state is
larger when si is aligned with H [i.e., sign(si) = sign(H)],

psi ,H =
e[si H]/T

e[si H]/T + e−[si H]/T
, (3)

where T ≥ 0 is a parameter that plays the role of a social temperature analogous to the
contrarian feature of the GMM. The related probability to oppose the field is 1− psi ,H .
We assume that H is an oscillating periodic field H(t) = H0 sin(ωt) with amplitude H0
(0 ≤ H0 ≤ 1), frequency ω = 2π/τ and period τ, which represents an external propaganda.
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Thus, according to Equation (3), agents are more likely to keep the opinion that is aligned
with the propaganda. In addition to the external field, we introduce an individual “inertia”
parameter I, which provides an agent with a weight to preserve its current state against a
field favoring the opposite state. It is a self-interaction−Isisi which modifies Equation (3) as

psi ,a,H =
e[Isi+H]si/T

e[Isi+H]si/T + e−[Isi+H]si/T
, (4)

which can be rewritten as

psi ,1,H =
e[1+si H]/T

e[1+si H]/T + e−[1+si H]/T
, (5)

where I, H and T have been rescaled as 1, H
I and T

I using s2
i = 1.

At this stage, we combine the GMM with the inertia and field effects by taking

psi (t) =
e[1+si H(t)]/T

e[1+si H(t)]/T + e−[1+si H(t)]/T
(6)

for the probability of agent i to keep the majority state si, and 1− psi (t) for the probability
to adopt the opposite (minority) state −si, which can be interpreted as a noise. Finally,
combining Equations (1), (2) and (6), the probability P+ for a randomly selected agent i to
adopt the state + in a single time step ∆t is given by

P+ = (σ3
+ + 3σ2

+σ−)
e[1+H(t)]/T

e[1+H(t)]/T + e−[1+H(t)]/T
+ (σ3

− + 3σ2
−σ+)

e−[1−H(t)]/T

e[1−H(t)]/T + e−[1−H(t)]/T
, (7)

where the first term comes from following a local majority + among the three selected
agents, which happens with probability P+p+(t), while the second term corresponds to
opposing the state − in case of a majority of − among the three selected agents, which hap-
pens with probability P−[1− p−(t)]. Analogously, the state − is selected with probability
P− ≡ 1−P+.

As noted above, in a single iteration only one agent (the “focal agent” i) updates its
state, unlike in the original Galam’s model where all three agents in the chosen group
update their states at once [11]. However, as these two settings use the same majority rule
and they differ only in the number of agents updated in an iteration, they turn out to be
equivalent at the MF level, i.e., in an all-to-all interaction setup. That is, they both have the
same rate equations for the evolution of macroscopic quantities (see Section 4). Therefore,
the model introduced in this section is the same as the original Galam’s model, with the
novelty of the addition of an external oscillating field that is coupled to agents’ opinions,
which extends the parameter space of Galam’s model and leads to new phenomena, as we
shall see.

Equation (6) shows that individuals are more prone to adopt the opinion of the majority
when it is aligned with the propaganda. In addition, p+ and p− approach the value one as
T → 0, which makes this case equivalent to the original GMM, with neither contrarians nor
an external field. In the opposite limit T → ∞, p+ and p− approach the value 1/2, which
corresponds to the pure noise case where agents take one of the two opinions at random,
independent of the field.

In the Glossary, we display a table with a list of the symbols of variables and their
names that we use throughout the text.

3. Numerical Results
3.1. Evolution of the Magnetization

We start by studying the time evolution of the mean opinion of the population, or
magnetization, defined as m(t) ≡ 1

N ∑N
i=1 si(t), for the simplest case of zero field H = 0,

which corresponds to the contrarian GMM with symmetric majority probabilities p+ =
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p− = p = (1 + e−2/T)−1. We run several independent realizations of the dynamics where,
initially, each agent adopts state +1 or −1 with respective probabilities σ+(0) and σ−(0),
leading to an initial average magnetization m(0) = σ+(0)− σ−(0). Due to the symmetry of
the system, the evolution of the average value of m over many realizations starting from
m(0) = 0 gives 〈m〉(t) ' 0 for all t ≥ 0, which does not describe the correct behavior of
the system. Instead, we look at the evolution of the absolute value of the magnetization,
|m|, as we show in Figure 1a, for various values of p. In Figure 1b we show in circles
the stationary value of 〈|m|〉 (〈|m|〉∗) as a function of T for H = 0. We observe that, as T
increases, the system displays a transition from an ordered state, (|m| > 0) for T < T0

c , to a
disordered state, (|m| ' 0) for T > T0

c , where T0
c is a transition temperature. This order–

disorder transition, reminiscent of the GMM with a fixed fraction of contrarian agents [7],
is induced by the presence of a contrarian behavior that acts as a source of external noise,
preventing the system from reaching full consensus. When the noise amplitude, controlled
by T, overcomes a threshold value T0

c , the system reaches complete disorder. In Section 4,
we develop an MF approach that allows one to estimate the transition temperature as
T0

c ' 1.24. When the field is turned on, these results change completely. In the case that
the field remains constant in time (constant propaganda H = const), the symmetry of the
system is broken in direction of H, increasing the stationary value of 〈|m|〉 as compared
with the H = 0 case. This effect can be seen in Figure 1b, where we see that 〈|m|〉∗ increases
monotonically with H. Additionally, the order–disorder transition disappears for H > 0
(see the H = 0.1 and H = 0.5 curves).

0 10 20 30 40 50 60 70 80
t

0.1

1

<
|m

|>

p=1.0 (T=0.00)
p=0.9 (T=0.91)
p=0.8 (T=1.44)
p=0.7 (T=2.36)
p=0.6 (T=4.93)
p=0.5 (T=∞)

(a)

0 0.5 1 1.5 2 2.5 3
T

0

0.2

0.4

0.6

0.8

1

<
|m

|>
*

H = 0.0
H = 0.1
H = 0.5

(b)

Figure 1. (a) Time evolution of the average value of the absolute magnetization |m| in a population
of N = 103 agents, zero field H = 0 and various values of majority probability p = (1 + e−2/T)−1, as
indicated in the legend. (b) Stationary value of 〈|m|〉 vs. temperature T for constant fields H = 0.0
(circles), H = 0.1 (squares) and H = 0.5 (diamonds). The solid line is the analytical expression from
Equation (11), while the dashed lines are the numerical integration of Equation (8). The averages
were performed over 103 independent realizations starting from a symmetric condition m0 = 0.

If we now let the field oscillate in time, a series of different regimes emerge. In Figure 2,
we show the evolution of m in a single realization under the effects of an oscillating field, for
three different amplitudes H0, period τ = 256 and various temperatures. For the H0 = 0.1
and H0 = 0.5 cases [panels (a,b)], we can see that for low temperatures m oscillates around
a positive value or negative value, and that oscillations vanish for small enough T values,
where m stays in a value close to 1.0 (consensus), as we can see for T = 0.2 and T = 0.1 in
panels (a) and (b), respectively. The center of oscillations can jump from positive to negative
values and vice versa (bimodal regime), as we can see in panel (b) for T = 0.5. Above a
given temperature threshold, Tc ' 1.0 for H0 = 0.1 [panel (a)] and Tc ' 0.5 for H0 = 0.5
[panel (b)], the magnetization oscillates around m = 0 (unimodal regime). This behavior is
reminiscent of the ordered and disordered phases in the model without a field [Figure 1b],
although the transition temperature T0

c ' 1.24 for H = 0 is quite different from that of the
model with an oscillating field. An insight into this behavior shall be given in Section 4.
For H0 = 1.0 [panel (c)], oscillations are centered at m = 0 even for small T, and, thus, the
bimodal regime is not observed. Finally, at very large temperatures, the high levels of noise
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lead to a purely stochastic dynamics where agents adopt an opinion at random, and, thus,
m fluctuates around zero.

0 500 1000 1500
t

-1

-0.5

0

0.5

1

m

T = 0.2
T = 0.7
T = 1.0
T = 2.0
T = 100
H(t)(a)

0 500 1000 1500
t

-1

-0.5

0

0.5

1

m

T = 0.1
T = 0.5
T = 1.0
T = 5.0
T = 100
H(t)(b)

Figure 2. Time evolution of the magnetization m in a single realization for a population of N = 1024
agents under the influence of an oscillating field with period τ = 256 and amplitudes H0 = 0.1
and 0.5, panels (a) and (b), respectively, and the temperatures indicated in the legends. Solid lines
correspond to MC simulations, while dashed lines in panel (a) represent the numerical integration of
Equation (8).

3.2. Residence Times

In order to characterize the different regimes described in the last section, we study
here the residence time tr, defined as the time interval between two consecutive changes
of the sign of m, i.e., when m crosses the center value m = 0. In a single realization, m can
change sign multiple times depending on the parameter values, leading to a distribution
of the residence time that is particular of each regime. Results are shown in Figure 3 for
N = 1025, H0 = 0.1, τ = 256 [panel (a)] and τ = 1024 [panel (b)]. In the unimodal regime,
m follows the oscillations of H(t) around zero, and, thus, m tends to change sign when
H does, every time the interval is τ/2. Therefore, the residence time distribution (RTD)
is peaked at tr ' τ/2, as shown in panel (a) for temperatures T = 1.04 and T = 1.3,
and in panel (b) for T = 0.98 and T = 1.3. In the bimodal regime, the RTD exhibits
multiple peaks at tr = (n + 1/2)τ (n = 0, 1, 2, ...) (see panels for T = 0.95). Here, m tends
to perform oscillations around a positive (negative) value until it changes to negative
(positive) oscillations, and back to positive (negative) oscillations again, as we observe in
Figure 2b for T = 0.5. These changes are more likely to happen when H changes sign, in
the first attempt at time t = τ/2, in the second attempt one period later (at t = 3τ/2), in
the third attempt at t = 5τ/2 and so on, leading to the different peaks in the RTD. Finally,
for very large T the RTD shows an exponential decay due to the stochastic fluctuations of
m around zero (panels for T = 10).
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Figure 3. Normalized histograms of the residence time tr in a system of N = 1025 agents under a
field of amplitude H0 = 0.1, period τ = 256 (a) and τ = 1024 (b), and the temperatures indicated in
the legends. The bottom-right panels are on a linear-log scale.
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3.3. Stochastic Resonance

The patterns of the RTD shown in Section 3.2 can be employed to quantify the phenom-
ena of stochastic resonance, as it was conducted in related systems [14,35]. The sensitivity
or response of the system to the external oscillating field can be measured by the area
A under the first peak around τ/2 in the RTD histogram. It is expected that A reaches
a maximum at the resonance temperature T∗, when m resonates with the field H. This
method to quantify the resonance is an alternative to the study of the signal-to-noise ra-
tio [21,22,34]. Figure 4a shows the response A vs. T for a field of amplitude H0 = 0.1. Each
curve corresponds to a different period τ. We observe thatA reaches a maximum value at a
temperature T∗ that depends on τ. The RTD for the resonance temperatures T∗ = 1.04 and
T∗ = 0.98 for periods τ = 256 and τ = 1024, respectively, are shown in the top-right panels
of Figure 3a,b, where we see the existence of a well-defined peak centered at tr = τ/2. For
larger temperatures (see T = 1.3), there is also a peak at τ/2, although lower than that for
T∗, and the RTD exhibits another pronounced peak near tr = 0, corresponding to the short
crossings of m(t) that become more frequent as T increases (larger fluctuations in m).

0.9 1 1.1 1.2 1.3
T

0

0.2

0.4

0.6

0.8

 A

τ =  128

τ =  256

τ =  512
τ =1024

(a)

64 256 1024 4096 16,384
τ

0.90

1.00

1.10

1.20 T
*

T
c

(b)

Figure 4. (a) Response A as a function of the temperature T for a field of amplitude H0 = 0.1 and
period τ indicated in the legend. (b) Resonance temperature T∗ [maximum of A vs. T curves from
(a)] and transition temperature Tc vs. period τ.

4. Mean-Field Approach

In this section, we analyze the behavior of the model within an MF approach by
deriving a rate equation for the evolution of m that corresponds to the dynamics introduced
in Section 2. Let us write the fractions of + and − agents in terms of the magnetization m,
σ+ = (1 + m)/2 and σ− = (1−m)/2. As we described in Section 2, in a time step ∆t =
1/N, a random agent i with state si = −1 is chosen with probability σ−, and then adopts
the state + (si = −1 → si = +1 flip) with probability P+ = P+p+ + P−(1− p−), which
corresponds to adopt either the majority state + of a selected + majority, or the minority
state + of a selected − majority, where P+ and P− are given by Equations (1) and (2),
respectively. This flip −1 → +1 leads to an overall change ∆m = 2/N in m. Conversely,
with probability σ+, the chosen agent i has state +1, and flips to−1 (si = +1→ si = −1 flip)
with probability P− = P−p− + P+(1− p+), leading to a change ∆m = −2/N. Assembling
these factors, the mean change of m in a time step can be written as

dm
dt

=
1

1/N

[
σ−P+

(
2
N

)
− σ+P−

(
2
N

)]
,

which becomes, in the N → ∞ limit, the rate equation

dm
dt

=
1
2

m(m2 − 5) +
1
2

p+(1 + m)2(2−m)− 1
2

p−(1−m)2(2 + m), (8)
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after replacing the expressions for P+ and P− and doing some algebra. Here,

p+(t) =
e[1+H(t)]/T

e[1+H(t)]/T + e−[1+H(t)]/T
and p−(t) =

e[1−H(t)]/T

e[1−H(t)]/T + e−[1−H(t)]/T
(9)

are the probabilities of adopting the state +1 and −1 of a majority, respectively, as defined
in Equation (6).

We note that if we consider the original Galam’s model where, in an iteration step, a
group of three agents are chosen at random and all adopt the majority state, we can derive
a rate equation for m that has the same form as Equation (8), with a prefactor of three
multiplying the right-hand-side of the equation. Therefore, both models turn out to be
equivalent in MF; they have the same stationary states and the same behavior. They only
differ by a factor of three in the time scale associated with the relaxation to the steady state.

For the zero field case, (H0 = 0) is p+ = p− = p = (1 + e−2/T)−1, and, thus,
Equation (8) is reduced to the simple equation

dm
dt

=
1
2

m
[
6p− 5− (2p− 1)m2

]
. (10)

Equation (10) has three fixed points corresponding to the possible stationary states of the
agent-based model. The fixed point m∗0 = 0 is stable for p < 5/6 and corresponds to a
disordered active state with equal fractions of + and − agents (σ+ = σ− = 1/2), whereas
the two fixed points

m∗± = ±
√

6p− 5
2p− 1

(11)

are stable for p > 5/6, and they represent asymmetric active states of coexistence of
+ and − agents, with stationary fractions σ∗+ = (1 + m∗+)/2 > σ∗− = (1− m∗+)/2 and
σ∗+ = (1 + m∗−)/2 < σ∗− = (1−m∗−)/2. The stable fixed points are plotted with a solid line
in Figure 1b, where we observe a good agreement with MC simulation results (solid circles).
Equation (11) shows the existence of a transition from order to disorder as T overcomes
the value T0

c = 2/ ln(5) ' 1.24 (p0
c = 5/6), as we already mentioned in Section 3.1. Notice

that the probability of behaving as a contrarian 1− p0
c = 1/6 is identical to the critical

proportion of contrarians ac = 1/6 obtained in the GMM for groups of size three [7]. Given
that Equation (10) can be rewritten as a Ginzburg–Landau equation with an associated
double-well potential with two minima at m∗±, we expect a bistable regime for T < Tc,
where, in a single realization, m jumps between m∗+ and m∗−.

For a field that is constant in time (H = const 6= 0), the fixed points of Equation (8)
are given by the roots of a cubic polynomial, and m = 0 is no longer a root. Only one
root is real, and corresponds to the stationary state of the agent-based model. As the
analytical expression for the real root is large and not very useful, we integrated Equation (8)
numerically to find the stationary value m∗, which we plot with a dashed line in Figure 1b
for H = 0.1 and 0.5. We observe a good agreement with MC simulations (symbols). A
positive field H > 0 breaks the symmetry in favor of the + state, given that p+ > p−,
leading to a positive stationary value m∗ > 0 that increases monotonically with H.

For an oscillating field H(t), we have that p+(t) and p−(t) oscillate in time according
to H(t), which in turn leads to oscillations in m(t). In order to explore, within the MF
approach, the behavior of m in the different regimes described in Section 3.1, we plot in
Figure 5a the evolution of m obtained from the numerical integration of Equation (8) for
H0 = 0.1, τ = 256 and various temperatures. For low temperatures, we see that m oscillates
around a positive value (it could also be a negative value for other initial conditions), but
when the temperature is increased beyond a threshold value, oscillations turn to be around
m = 0. At first sight, this transition that happens in the oscillatory regime of m, already
reported in Section 3.1 from MC simulations, appears to be quite sharp, where the center of
oscillations seems to jump from a large value to zero after a small increment of T. To better
characterize the transition, we plot in Figure 5b the temporal average of m from t = 0 to
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t = 1000τ, called m, as a function of T and for several periods τ. The value of m can be
seen as an order parameter, which takes a positive or negative value in the bimodal regime
and a value close to zero in the unimodal regime. We can see that m decreases continuously
with T for low τ (see curve for τ = 64), and that the transition becomes more abrupt as τ
increases (see curves for τ ≥ 256). The inset shows a more detailed view of the transition
in the value of m.
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Figure 5. (a) Time evolution of the magnetization m from Equation (8) for a field of amplitude
H0 = 0.1, period τ = 256 and the temperatures indicated in the legend. Horizontal dashed lines
represent the time average value of m, m, in the interval t ∈ (0, 1000τ). (b) Time average of the
magnetization, m, vs. temperature T for the field’s periods indicated in the legend. The inset shows a
closer look around the transition values Tc.

In Figure 2a, we compare the evolution of m obtained from the MF approach (dashed
lines) with that from MC simulations, for H0 = 0.1, τ = 256 and various temperatures.
We observe a good agreement with single realizations of the dynamics, except for the
temperature T = 1.0, which is close to the transition value Tc ' 0.981, estimated from
Figure 5b as the point where m becomes zero. This discrepancy is due to the fact that the
MF approach cannot reproduce the random jumps of m from the value m ' 0.564 in the
bimodal regime to m ' 0 in the unimodal regime. These jumps are induced by finite-size
fluctuations, and are more frequent when the control parameter T is close to the transition
point Tc.

An insight into the behavior of the resonance temperature T∗ with the period τ can
be obtained from the MF approach, assuming that the response A reaches a maximum
value at a temperature similar to the transition point Tc, that is, we expect, T∗ ' Tc. This is
because, in the bimodal regime T < Tc, the magnetization m oscillates around a positive
or a negative value and eventually crosses m = 0 around times t = τ/2, 3τ/2, etc., via
finite-size fluctuations, leading to multiple peaks in the residence time distribution. Then, at
T = Tc, oscillations start to be centered at m = 0, and, thus, we expect that the RTD shows
a single peak at τ/2. By increasing T beyond Tc, we expect that the height of the peak for
T = Tc is reduced by the presence of a higher noise that induces another maximum of the
RTD at t = 0, as explained in Section 3.2, leading to a smaller A. Therefore, we expect that
A is at its maximum at T ' Tc. Figure 4b shows in diamonds the value of Tc obtained from
Figure 5b for various periods τ. We see that Tc decreases with τ, as it happens with T∗

(circles), although discrepancies between Tc and T∗ increase as τ decreases.

5. Summary and Discussion

In this article, we studied the dynamics of the binary-state majority rule model in-
troduced by Galam for opinion formation under the presence of an external propaganda
and contrarian behavior. When an agent has to update its opinion, it can either follow the
majority opinion among three random neighbors, similarly to the original GMM, or adopt
the opposite (contrary) opinion, i.e., the minority opinion. The probability to adopt the
majority opinion p±(t) is coupled to an external field that oscillates periodically in time
(propaganda), in a way that agents are more likely to adopt the majority opinion when
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it is align with the field. This rule tries to reproduce a reinforcing mechanism by which
individuals have a tendency to follow the majority opinion when it is in line with mass
media propaganda. Additionally, the majority probability p± depends on a parameter T
(temperature), which acts as an external source of noise, in such a way that by increasing T
from zero the system goes from following the majority opinion only (p± = 1 for T = 0) to
adopting a random opinion for large temperatures (p± = 0.5 for T � 1).

We explored the model in a complete graph (all-to-all interactions) and found different
phenomena associated with different regimes as T is varied. For T below a threshold
value Tc, the system is in a bimodal regime, where the mean opinion m oscillates in time
around a positive or negative value, m±, and performs jumps between m+ and m− due to
finite-size fluctuations, similarly to what happens in a bistable system. As the temperature
is increased beyond Tc, there is a transition to an unimodal regime in which m oscillates
around zero, where the amplitude of oscillations decreases with T and eventually vanishes
in the T � 1 limit that corresponds to pure noise. The transition at Tc becomes more abrupt
as the period τ of the field increases. We also studied the response of the system to the
external field by means of the distribution of residence times, i.e., the time interval between
two consecutive changes of the sign of m. We found that there is an optimal temperature T∗

for which the response is maximum, that is, a stochastic resonance phenomenon induced
by the external noise controlled by T. Furthermore, we developed an MF approach that
lead to a non-linear rate equation for the time evolution of m in the thermodynamic limit,
whose numerical solution agrees very well with MC simulations of the model. We used
this equation to give a numerical estimate of Tc, and found that the behavior of Tc with
the period τ is qualitatively similar to that of T∗. Although the transition temperature Tc
is similar to the resonance temperature T∗ only for large τ, this analysis shows that they
are related.

A possible interpretation of these results in a social context is the following. Reacting
with a contrarian attitude occasionally (small T/low noise) on a given issue, that is, adopt-
ing an opposite position to that of the majority of our acquaintances, leads to a state of
collective agreement in a population, which can be reversed completely after some time by
means of a collective decision, independently of the external propaganda. This alternating
behavior between opposite opinions might be seen as more “socially healthy” than a frozen
full consensus in one of the two alternatives, which happens in populations with a total
absence of contrarian attitudes (T = 0). However, having a contrarian behavior more
often could induce a collective state where the mean opinion oscillates in time following
the external propaganda, which can be interpreted as a society whose opinions are ma-
nipulated optimally by the mass media, in opposition to collective freedom. Finally, in
the extreme case of having a very frequent contrarian attitude (T � 1), the population
falls into a state of opinion bipolarization, where there are two groups of similar size with
opposite opinions.

Given that the opinion formation model introduced and studied in this article is simple
enough, it allowed for a mathematical treatment that led to numerical and analytical results.
However, due to its simplicity, the model is not very adequate to describe the complexity
observed in real social systems, and, thus, some extensions are necessary to cope with real
life scenarios. For instance, one can possibly collect real data to infer how mass media
propaganda evolves over time. We could expect that real propaganda oscillates with a
frequency that is not constant like in the model, but varies in time, and is centered at an
arbitrary positive or negative number in the interval (−1, 1). Nevertheless, we have seen
that the model provides insights on features that could be actually relevant in the real word,
like the conditions for which the opinions of a society are optimally manipulated by mass
media, as described in the paragraph above, related to the stochastic resonance effect.

The results presented in this article correspond to a fully connected network. Although
we expect that the conclusions remain valid qualitatively for other interaction topologies, it
might be worthwhile to study the model in complex networks like scale-free or Erdös Renyi
networks, which better-represent social interactions. This version of the model would be
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more realistic, not only for the interaction topology, but also because the size of the majority
group would be different for each agent or node in the network (its degree or number of
neighbors), allowing for the case of ties if the group has an even number of agents. It might
also be interesting to explore how the stochastic resonance effect depends on the topology
of the network. Finally, the model can be easily adapted to include some of the possible
real time features of mass media propaganda described above. We leave all these ideas for
future work.
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Glossary

Symbol Name
si = ±1 Opinion of agent i;
N Number of agents;
t Time;
∆t = 1/N Time step;
p(t) Majority probability;
H(t) External field;
H0 Amplitude of H(t);
τ Period of H(t);
T Temperature;
T∗ Resonance temperature;
Tc Transition temperature;
σ± Fraction of agents with ±1 opinion;
m Magnetization;
〈|m|〉 Ensemble average of absolute value of m;
m Time average of m;
tr Residence time;
RTD Residence time distribution;
A Response;
GMM Galam majority rule;
VM Voter Model;
MF Mean field;
SR Stochastic Resonance.
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